

Universal Serial Bus

 Device Class Definition

for

Video Devices:

Frequently Asked Questions

(FAQ)

Revision 1.5

August 9, 2012

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 ii

Contributors
Abdul R. Ismail Intel Corp.

Allison Hicks Texas Instruments

Anand Ganesh Microsoft Corp.

Anshuman Saxena Texas Instruments

Bertrand Lee Microsoft Corp.

David Goll Microsoft Corp.

Eric Luttmann Cypress Semiconductor Corp.

Geraud Mudry Logitech Inc.

Hiro Kobayashi Microsoft Corp.

Jean-Michel Chardon Logitech Inc.

Jeff Zhu Microsoft Corp.

Olivier Lechenne Logitech Inc.

Remy Zimmermann Logitech Inc.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 iii

Copyright © 2012, USB Implementers Forum, Inc.

All rights reserved.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR

INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM

ALL LIABILITY FOR INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS,

RELATING TO IMPLEMENTATION OF INFORMATION IN THIS

SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO

DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL

NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED "AS IS” AND WITH NO WARRANTIES,

EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE. ALL WARRANTIES ARE

EXPRESSLY DISCLAIMED. NO WARRANTY OF MERCHANTABILITY, NO

WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY

PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT OF ANY

PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER FOR

THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS,

LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL,

INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER CONTRACT, TORT,

WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS

SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF

THE POSSIBILITY OF SUCH DAMAGES.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to <video-chair>@usb.org

Revision History

Revision Date Description

1.0 Initial released version

1.0a Added:

2.21 Interlaced Video

1.0b Added:

2.22 Maximum Values of the PTS and STC fields

within the Payload Header

2.23 Protocol STALL behavior

2.24 Current and Future Payload Header Format and

Extensibility

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 iv

1.0c June 5, 2004 Added:

2.25 Motion JPEG Characteristics

1.1 June 1
st
, 2005 Added MPEG2 APT information.

Added Terminal association information (RR0052).

Added Forward and Backward Compatibility

Guidelines (RR0055).

Added support for Stream Based Payload (MPEG4-

SL, VC1, H264) relying on MPEG2 systems

specification (RR0061).

Added 1.30 Host Behavior of the Still Image

Capture Method 2. (RR0068).

Applied RR0064. Change VDC to UVC in Terms

and Abbreviation. Update section 2.1 with updated

document set.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 v

Table of Contents
1 Introduction ... 1

1.1 Purpose ... 1
1.2 Scope .. 1
1.3 Related Documents .. 1

1.4 Terms and Abbreviations ... 1
2 Frequently Asked Questions (FAQ) .. 1

2.1 Set of USB Video Class Documents .. 1
2.2 Host USB Bandwidth Management Support ... 4

2.2.1 Microsoft Windows .. 4

2.2.2 Apple Mac OS X .. 4
2.3 Device Alternate Interface Set ... 5

2.4 USB Video Class and HID Interfaces .. 6

2.5 USB Video Class Scope ... 7
2.6 Bulk versus Isochronous Transfers .. 8

2.6.1 Characteristics of bulk and isochronous transfers .. 8
2.6.2 Bulk pipe transfers .. 9

2.6.3 DATA PID Ordering of Bulk Transfers ... 10
2.7 Audio and Video Stream Synchronization ... 10

2.8 Support for Streaming Encrypted Video Content over the USB 13
2.9 Layout of a GUID Data Structure .. 15
2.10 Host Processing of Incoming and Outgoing Data .. 15

2.10.1 Diagram Terminology .. 15
2.10.2 Incoming Data State Diagram for Frame-based Video Formats 17

2.10.3 Incoming Data State Diagram for Stream-based Video Formats 18
2.10.4 Outgoing Data State Diagram for Frame-based and Stream-based Video Formats19

2.11 Relationship between Frame Interval and Frame Rate .. 20
2.12 Clock Recovery Mechanism .. 20
2.13 MaxPayloadTransferSize selection .. 23

2.14 Payload Format Forward Compatibility ... 24
2.15 Device/Host Processing Partitioning .. 24

2.16 Power Mode Control .. 25
2.17 Probe and Commit operations .. 26
2.18 Input and Output Terminals association .. 29
2.19 Multiple Color Matching Descriptors .. 29
2.20 Request Error Code Control ... 30
2.21 Isochronous pipes and data availability ... 30
2.22 Interlaced Video ... 30

2.23 Maximum Values of the PTS and STC fields within the Payload Header 31
2.24 Protocol STALL behavior .. 32

2.24.1 SET_XXX request with Setup Stage error ... 33
2.24.2 SET_XXX request with Data Stage error .. 34
2.24.3 GET_XXX request with Setup Stage error .. 35

2.25 Current and Future Payload Header Format and Extensibility 35
2.26 Motion JPEG Characteristics ... 36

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 vi

2.27 MPEG2-TS APT .. 36

2.28 Host and Device interoperability.. 37
2.29 Stream based payload support .. 39

2.29.1 MPEG-4 SL .. 39

2.29.2 VC1 .. 39
2.29.3 H.264 .. 39

2.30 Host Behavior for Still Image Capture Method 2 .. 39

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 vii

List of Tables
Table 2-1 Set of USB Video Class Documents 1

Table 2-2 Device Alternate Interface Set 5

Table 2-3 Layout of a GUID Data Structure 15

Table 2-4 Host-Side Clock Recovery Algorithm 22

Table 2-5 Video Device Power Source 26

Table 2-6 Matrix of Color Standards and Scenarios 29

Table 2-7 Interoperability guidelines 37

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 viii

List of Figures
Figure 2-1 Recommended HID Implementation 7

Figure 2-2 Incoming Data State Diagram for Frame-based Video Formats 17

Figure 2-3 Incoming Data State Diagram for Stream-based Video Formats 18

Figure 2-4 Outgoing Data State Diagram for Frame-based & Stream-based Video Formats19

Figure 2-5 Device/Host Processing Partitioning 25

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 1

1 Introduction
1.1 Purpose

This document provides guidelines and answers to frequently asked questions regarding

implementation of USB video class-compliant devices. It also describes possible

implementation-specific support for compliant devices. This document is provided as an aid to

implementers of the USB Video Device Class specification and, as such, is informative only.

Should a conflict arise between this document and a specification, the specification shall take

precedence.

1.2 Scope

Implementation and host-specific issues not part of the base document USB Device Class

Definition for Video Devices are addressed in this document.

1.3 Related Documents

USB Specification Revision 2.0, April 27, 2000, www.usb.org

USB Device Class Definition for Video Devices, www.usb.org

1.4 Terms and Abbreviations

The following table defines terms and abbreviations used throughout this document.

Term Description

CSM Content security method

FAQ Frequently asked questions

HID Human interface device

UVC USB Video Class

2 Frequently Asked Questions (FAQ)
Frequently asked questions are addressed in the following sections.

2.1 Set of USB Video Class Documents

Question: What are the documents specifying the USB Video Device Class standard?

Answer: The following table lists the USB Video Device Class documents that are included in

this documentation. In addition to the base specification, other sections describe specific areas.

Table 2-1 Set of USB Video Class Documents

Category Document topic / Filename Description

Base specification Universal Serial Bus Device Class

Definition for Video Devices

(USB_Video_Class)

Defines the overall USB

Video Class framework.

Terminal

specification

Media Transport Terminal

(USB_Video_Transport)

Defines the Media Transport

Terminal for Digital Video

Cameras/Decks.

http://www.usb.org/
http://www.usb.org/

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 2

Payload specification MJPEG

(USB_Video_Payload_MJPEG)

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

the MJPEG video format.

Payload specification DV

(USB_Video_Payload_DV)

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

the DV video format.

Payload specification MPEG2TS

(USB_Video_Payload_MPEG2-TS)

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

the MPEG2TS video format.

Payload specification MPEG1-SS, MPEG2-PS

(USB_Video_Payload_MPEG1-

SS_MPEG2-PS)

Revision 1.0. Obsolete. See

Payload Stream Based

Specification.

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

the MPEG1-SS and MPEG2-

PS video formats.

Payload specification Uncompressed

(USB_Video_Payload_Uncompressed)

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

the Uncompressed video

formats.

Payload specification Vendor

(USB_Video_Payload_Vendor)

Revision 1.0. Obsolete. See

Payload Stream Based

Specification or Payload

Frame Based specification.

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

a Vendor specific video

format.

Payload specification Stream Based

(USB_Video_Payload_Stream_Based)

Defines the payload and the

header usage (if necessary),

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 3

based on both bulk and

isochronous video streams for

a Stream Based video format.

Payload specification Frame Based

(USB_Video_Payload_Frame_Based)

Defines the payload and the

header usage (if necessary),

based on both bulk and

isochronous video streams for

a Frame Based video format.

Example Video Camera Example

(USB_Video_Example)

Provides the descriptors and

requests based on sample

video device topologies.

FAQ Frequently Asked Questions

(USB_Video_FAQ)

Answers questions about the

USB video device

specification, implementation

of compliant devices as well

as host/device interactions.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 4

2.2 Host USB Bandwidth Management Support

Question: How do hosts manage the limited amount of USB bandwidth?

Answer: The following paragraphs describe the bandwidth-management policies and

mechanisms that are available in various operating systems.

2.2.1 Microsoft Windows

Bandwidth management is at the discretion of the Video Class driver (usbvideo.sys). The only

mechanism for adjusting isochronous bandwidth usage in Microsoft Windows operating systems

is via Alternate Interface selection. All current versions of Microsoft Windows require that

bandwidth be released and reallocated during the process of changing from one non-zero

Alternate Interface to another non-zero Alternate Interface. This means that the isochronous

stream must be stopped and restarted.

Bandwidth reallocation is atomic, but only if the new bandwidth requirement can be met. This is

possible because all alternate interface selection requests are serialized through the port driver

(usbport.sys). However, if the new bandwidth requirements cannot be met, the old bandwidth

reservation is lost and must be reacquired via a separate Set Alternate Interface request (thus

becoming non-atomic).

When selecting alternate interfaces (also known as configuring endpoints), the class driver is

able to override the wMaxPacketSize of the isochronous endpoint that is part of that interface.

In combination with the bandwidth negotiation between the Video Class driver and the device,

this would allow the device to specify just one Alternate Interface (other than Alternate Interface

0), and the class driver would specify the agreed-upon wMaxPacketSize when configuring the

endpoints.

2.2.2 Apple Mac OS X

Bandwidth management for isochronous endpoints on Mac OS X is at the discretion of the Video

Class Driver. The primary mechanism for adjusting isochronous bandwidth usage in Mac OS X

is via the Alternate Interface selection. Mac OS X requires that bandwidth be released and

reallocated during the process of changing from one non-zero Alternate Interface to another non-

zero Alternate Interface. This means that the isochronous stream will be stopped and restarted.

Bandwidth reallocation is atomic, but only if the new bandwidth requirement can be met. This is

possible because all alternate interface selection requests are serialized through the USB

Controller driver. However, if the new bandwidth requirements cannot be met, the old bandwidth

reservation is lost and must be reacquired via a separate Alternate Interface request (thus

becoming non-atomic).

Mac OS X provides a mechanism to adjust the allocated bandwidth for an isochronous endpoint:

If not enough bandwidth is available to successfully create the isochronous endpoint (using the

wMaxPacketSize specified in the isochronous endpoint descriptor for the selected interface), the

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 5

endpoint will get an allocation of 0 bytes. The Video Class driver can then negotiate a

bandwidth requirement with the Video Class device and use the SetPipePolicy() API to specify

the actual bandwidth required by the endpoint. This would allow the device to specify just one

Alternate Interface (other than Alternate Interface 0) and lets the Video Class driver and the

Video Class device negotiates an appropriate bandwidth selection.

Bandwidth allocation for full speed devices attached to a high speed hub is done in the same

manner as described above. However, the amount of bandwidth available to a device depends

on the type of high speed hub. High speed hubs can have one or more transaction translators

attached to some or all of the ports. Each transaction translator will provide 12 Mb/s of

bandwidth. So, a high speed hub with only one transaction translator will need to allocate the

12Mb/s bandwidth among all its ports. A 4-port USB Hub with four transaction translators can

allocate 12 Mb/s to each of the ports.

2.3 Device Alternate Interface Set

Question: How would a device implementer determine the number of alternate interface settings

that a particular VideoStreaming interface should support?

Answer: This would depend on the bandwidth usage of the various video parameter

combinations supported by that particular VideoStreaming interface.

For example, suppose that a VideoStreaming interface supports the following parameter set:

Video Format: NV12 (12 bits per pixel)

Video Frame Size: 320 x 240 or 640 x 480

Frame Rate: 5, 10, or 15 fps

This parameter set would have the bandwidth usage characteristics described in the following

table (assuming high-speed transfers with one packet per microframe):

Table 2-2 Device Alternate Interface Set

Packet size required (in bytes) 5 fps 10 fps 15 fps

320 x 240 72 144 216

640 x 480 288 576 864

The device implementer may choose to implement the following alternate settings:

0: MaxPacketSize = 0

1: MaxPacketSize = 290

2: MaxPacketSize = 580

3: MaxPacketSize = 870

With this combination of alternate settings, no more than 218 bytes per frame is wasted (that is,

reserved but left unused while streaming), which amounts to less than 3% of total bus bandwidth.

Of course, finer granularity and less waste of bandwidth can be achieved by implementing more

alternate settings. However, this may result in increased device cost.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 6

The final choice of alternate settings and MaxPacketSize ranges is left to the device implementer.

The general guideline is that they should be chosen to minimize bandwidth waste for any

supported video parameter combination.

2.4 USB Video Class and HID Interfaces

Question: Is HID required for USB Video Class devices? If not, when is it appropriate to use

HID?

Answer: USB Video Class devices are not required to implement HID interfaces in order to

communicate device state to the host. The key distinction of HID interfaces is the

communication of user intent through an arbitrary Human Interface on a device.

For example, a device with a tape transport will probably have buttons that allow the user to play,

pause, or stop the tape. If the device designer wishes to model the device such that the host

software is aware of the state of these buttons, then a HID interface should be used. However, the

state of the tape transport, although controlled by the buttons on the device, can be independently

represented through the USB Video Class interface. That is to say, the class driver is only

concerned with the state of the transport; it is not concerned with how the transport was made to

change its state.

The USB Video Class interface will be the sole interface through which a host controls the

device state. This is true even if the device implements a HID interface to represent the buttons

on the device. With HID, the user controls on the device would be detached from the internal

device mechanism, and all button events would go through the host. The host would respond to

these button events by translating them into function-specific requests and relaying those

requests to the device through the currently active, video device driver instance.

The following illustration shows a recommended HID implementation on a Microsoft Windows

platform.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 7

Figure 2-1 Recommended HID Implementation

2.5 USB Video Class Scope

Question: What is the Video Device Class scope?

Answer: The Video Device Class definition applies to all devices or functions within composite

devices that are used to manipulate video and video-related functionality. This includes devices

such as desktop video cameras (or "webcams"), analog video converters, analog and digital

television tuners, and still image cameras and digital camcorders with video-streaming

functionality.

Device types covered in these specifications:

 Desktop video cameras (Web cameras)

 Digital video cameras/decks (digital camcorders)

 Digital still-image cameras with video-streaming functionality

 Analog video converters

Device types NOT covered in these specifications:

 Analog television tuners

 Digital television tuners

 Other video devices

IExtDevice…

User Mode

Kernel Mode

USBVID USBHID

USBCCGP

Proxy

Interface

Video Device

HID Service

Application(s)

Optional

HID

Support

Device

Control

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 8

Note: Each device category could be added as a terminal or a unit in the future.

2.6 Bulk versus Isochronous Transfers

2.6.1 Characteristics of bulk and isochronous transfers

Question: What are the characteristics of bulk versus isochronous transfers?

Answer: Bulk transfer ensures error-free transmission at much higher potential bit rates than

isochronous transfer. Bulk transfer uses any bandwidth not already being used by isochronous

and/or interrupt endpoints; however, bulk-transfer bandwidth cannot be reserved or guaranteed.

This means that competition with other devices on the bus may reduce the available bulk-transfer

bandwidth below that needed for real-time transfer of video.

For real-time transfer of video, such as with video conferencing, bulk transfer cannot guarantee

that all data will be delivered, or if delivered, it is not guaranteed to be delivered on time.

Ironically, the reason has to do with the error-free nature of bulk transfer. Data can be dropped

when buffering at both the source and the destination is kept to a minimum (a requirement for

low latency). For instance, data could be dropped at the source if the previous data transfer is still

in progress due to retries. Or, data might have to be discarded when it finally reaches the

destination, because the presentation time for the sample has already passed.

Therefore, while certainly possible, bulk transfer is not the optimal approach for real-time

transfer (for example, video conferencing) due to the lack of bulk-bandwidth reservation and the

potentially unbounded latency of data transfer. However, if the latencies in producing and

transferring an entire video frame fall well enough within the frame interval, and contention with

other devices is managed by the user, bulk transfer can ensure error-free and timely video data

transmission.

Bulk transfer for USB Video Class devices is best used for transfer from sequential storage (for

example, capture for Non-Linear Editing), where data accuracy is the primary concern, rather

than the timeliness of delivery.

Bulk transfer may impose extra buffering requirements at the source and destination. The

buffering in the device allows data to accumulate, so that in the event of transmission retries,

additional data can be collected instead of discarded. This would be especially important for

transfer to and from sequential storage, where the transport mechanism does not have fine-

grained throttling capabilities. Buffering introduces latency, which if too great, is unsuitable for

video conferencing.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 9

2.6.2 Bulk pipe transfers

Question: Why do we need a bulk pipe for video streams?

Answer: In general, a bulk pipe has the following three major features:

1) Access to the USB on a bandwidth-available basis.

2) Retry of transfers, in the case of occasional delivery failure due to errors on the bus.

3) Guaranteed delivery of data but not guaranteed bandwidth or latency.

For the following scenarios, a bulk pipe with the previous features (high speed, reliability) is

more suitable than an isochronous pipe for transferring video stream data.

Video Editing Scenario

In video editing, it takes one hour to transfer one hour of video data from a device to a host over

an isochronous pipe. However, it may take less time using a bulk pipe instead. Depending on the

USB traffic conditions, the bulk pipe may manage data faster than the actual length of time.

Furthermore, the reliability of video data, which is very important for video editing, can be

guaranteed with the bulk transfer due to the error-correction functionality. The bulk video

transfer could be possible with mass storage class devices; however, it is not applicable for

sequential media storage devices that do not have a file system like FAT, such as a DV

camcorder.

In conclusion, bulk video transfer is the preferable method for video editing, because video data

stored in the device could be transferred to the host more quickly and reliably. Therefore, video

editing could be done without data loss, which would be of significant value to video editors.

Multiple Camera Control Scenario

In the case of a surveillance-camera system, many cameras could be connected to a host,

although every single camera would not need to send the video data at a high frame rate. If an

isochronous pipe was used, each camera would have to reserve the bandwidth; in this case, the

host application would have to control the frame rate and calculate the bandwidth of all of the

cameras to avoid a bandwidth shortage. For example, if twenty cameras were connected to the

host, the bandwidth control in the host application would be very complicated. However, if a

bulk pipe is used, bandwidth control would not be necessary, and it would be easier for the host

application to control many cameras on the bus at the same time.

Direct Recording Video Capturing from USB Video Device to USB Mass Storage Device

Scenario

This scenario involves recording data directly from a USB video device to a USB DVD-RW

device (mass storage class).

If a USB video device uses an isochronous video transfer, the isochronous pipe could occupy

most of the USB bandwidth. In that case, a bulk-pipe bandwidth of a USB DVD-RWMSC

device that is on the same bus would be limited, because the bulk pipe has a lower priority than

an isochronous pipe. As a result, the recorded video picture might not be of an acceptable quality.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 10

However, if the USB video device uses a bulk video transfer, it would not reserve the bus

bandwidth. Therefore, you can capture the video in the best way possible, since the bulk pipes

for both devices have equal priority.

2.6.3 DATA PID Ordering of Bulk Transfers

Question: Is my bulk endpoint required to start every payload transfer with a packet having a

DATA0 PID?

Answer: No. The bulk transfer examples in section 2 of the USB Device Class Definition for

Video Devices specification show DATA0 PIDs at the start of each transfer, but this is only

meant to simplify the diagrams. The USB Specification Revision 2.0 requires alternating DATA0

and DATA1 PIDs for bulk transfer packets.

2.7 Audio and Video Stream Synchronization

Question: What are the synchronization mechanisms provided by the USB Video Device Class?

Answer: To properly synchronize multiple audio and video streams from a media source, the

media source must provide certain information to the media sink. This information includes its

local stream latency, periodic clock-reference information, and a way for the media sink to

determine the proper presentation time for samples from each stream (relative to the other

streams).

Latency

The media source is required to report its internal latency (delay from data acquisition to data

delivery on the bus). This latency reflects the lag introduced by any buffering, compression,

decompression, or processing done by the stream source. Without latency information for each

stream, a media sink (or rendering device) cannot properly correlate the presentation times of

each stream.

In the case of a video source, this means that the source must guarantee that the portion of a

sample fully acquired as of SOFn (start of frame n) will have been completely sent to the bus as

of SOFn+. Latency is the source’s internal delay expressed in frames. For high-speed endpoints,

the resolution increases to 125s, and the delay will be specified in micro-frames.

Every video streaming interface must report this latency value. For more information, see the

description of the wDelay parameter in the "Video Probe and Commit Controls" section of the

USB Device Class Definition for Video Devices specification. By following these latency rules,

phase jitter is limited to ±1 ms (or ±125s for high-speed endpoints). It is up to the video sink to

synchronize streams by scheduling the rendering of samples at the correct moment, taking into

account the internal delays of all media streams being rendered.

Per Frame Latency

If the media source expects variable delay per frame, potentially due to encoding or other video

processing on the source, it should implement PTS and SCR as described below. Note that this

type of implementation is requires for H.264 and VP8 payloads.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 11

Video delay between sensor capture and host driver timestamp is calculated in two parts. The

delay on the camera due to pipeline processing and encoding, and the delay caused by USB

transport and host processing.

The webcam generates two pieces of data that aid in calculating these two delays, Presentation

Time Stamp (PTS) and Source Clock Reference (SCR). PTS and SCR are attached to the

payload header as described in the associated payload specification. PTS should be attached to

every frame and SCR at the frequency required to address clock drift. An abbreviated definition

is as follows:

• Presentation Time Stamp (PTS) is the value of the Source Time Clock (STC) in native

device clock units when the raw frame capture begins. The PTS is in the same units as

specified in the dwClockFrequency field of the Video Probe Control response.

• The Source Clock Reference (SCR) contains two fields that enable the host to correlate

between the device clock and the USB clock.

 STC: device’s STC value in units of the dwClockFrequency field of the Probe and

Commit response of the device

 SOFTC: Start-of-Frame (SOF) token counter for USB expressed in units of the 1

KHz USB host controller clock.

In generating the SCR, both the STC clock and SOF clocks are sampled at the SOF boundary

when the video frame is sent over USB. While the UVC 1.1 specification states that the SOF is

not required to match the ‘current’ frame number, for this solution, the SOF must be the same

frame number as that of the USB packet to which the SCR is attached.

The delay of the video frame on the camera is calculated as:

DeviceDelay = (SCR_STC) - PTS Equation 1

This delay is expressed in units of dwClockFrequency, where dwClockFrequency is provided by

the device as part of Probe & Commit. The delay caused by USB transport and processing is

calculated as the difference between the SOF marker when the driver receives the video payload

and the SOF in the SCR from the device:

TransportDelay = SOF_Driver – SOF_SCR Equation 2

TransportDelay is expressed in units of the 1 KHz USB host controller clock.

The total delay for each video frame between capture and the video class driver is calculated as

the sum of the two delays calculated in Equation 1 and Equation 2 above, and is expressed in

units of the host QPC clock.

Total Video Delay = DeviceDelay + TransportDelay Equation 3

The next task is to correlate between Device and PC clocks. Since the capture time of the video

frame (PTS) is indicated by the device using the STC, and A/V sync will rely on PC clock values,

we need to correlate the two clocks. On Windows, the PC clock is exposed via the Query

Performance Counter (QPC), and this clock will be used as the PC clock in the following

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 12

discussion. The correlation ‘constant’ between PTS and QPC can be calculated as the most

recent Total Video Delay.

Clock Correlation Constant (CCC) = Total Video Delay Equation 4

The timestamp applied by the video driver to the current video frame is calculated as the

timestamp for the current frame – CCC.

Timestamp for current frame = QPC - CCC Equation 5

For video samples that are split into multiple slices per frame, timestamp calculated above

should be applied to all slices belonging to the same picture. New pictures can be detected by

inspecting the payload header to see if the FID bit has flipped.

Clock Reference

Clock reference information is used by a media sink to perform clock-rate matching. Rate

matching refers to the synchronization of the media sink’s rendering clock with the media

source’s sampling clock. Without clock-rate matching, a stream will encounter buffer over- or

under-run errors. This has not been a problem with audio streams due to the relative ease of

performing audio sample-rate conversion. But with video, sample-rate conversion is significantly

more difficult, thus a method for rate matching is required.

To understand the problem of clocks running at slightly different rates, consider the following

example. For simplicity, assume that video buffers can be filled instantaneously, and that there is

one buffer available to be filled at any given time within the video frame interval. Also assume

that the two crystals governing the source and rendering clocks operate with 100 ppm (parts per

million) accuracy. The accuracy value is a ratio that can be applied such that for every frame, the

clock will drift by a fraction of the frame that is equal to the ratio. In other words, two clocks

with accuracy of 100 ppm could have a worst-case drift relative to each other of 1/5,000
th

 of a

frame (two clocks at opposite extremes of their valid operating range for a cumulative error ratio

of 2 * 100/1,000,000). Therefore, a frame glitch will occur once every 5,000 frames. At a frame

rate of 30 fps, this would equate to a glitch every 166.67 seconds. At a frame rate of 60 fps, the

glitch rate is worse, with one glitch every 83.3 seconds.

Frame glitches can be postponed, but not avoided, by adding additional buffers to hold video

frames before they are rendered. If the source clock is running slower than the rendering clock,

the buffer underrun could only be postponed by letting the extra buffers fill to a certain threshold

before rendering, resulting in unacceptable latency. Once the first glitch occurs, the extra buffers

are effectively useless, since the behavior will degrade to the single-buffer case from that point

onward.

This specification assumes that in all cases, the media sink has no control over the media source

clock, and that the source and sink do not "slave" to a common clock (the bus clock lacking

sufficient resolution). Also, due to cost constraints, additional isochronous endpoints to

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 13

communicate clock-rate information will not be used. Therefore, this specification requires that a

video stream include clock-reference information that can be used to adjust the rendering clock

rate. The clock-reference information may be encapsulated in a transport stream, or it may be

provided via an optional field in each sample header. This field becomes required in the latter

case.

Presentation Time

For fixed-rate streams, the presentation time can be derived from the data stream. For a fixed-

rate audio stream (for example, PCM), the media sink can derive the presentation time from the

stream offset (typically the count of bytes since start of capture). For variable-rate streams, each

sample must be accompanied by a presentation time stamp. The media sink is responsible for

converting the time stamp to native units and adjusting the time stamp to account for the local

clock offset when a stream starts, as well as accounting for source-stream latency. Even though

video streams might arrive at the media sink at a fixed frame rate, if they are subject to variable-

rate compression/encoding, they are not considered fixed-rate streams and will require time

stamps on the samples.

2.8 Support for Streaming Encrypted Video Content over the USB

Question: What support would be available for streaming encrypted video content over the

USB?

Answer: The USB Content Security (CS) class defines a mechanism for audio and video devices

to support the streaming of encrypted data.

The base CS class specification standardizes on the endpoints, descriptors and requests needed

for a content-security interface in a composite device. This CS interface is intended to

supplement existing audio/video interfaces, and allows for the enumeration and application of

content security methods (CSM) to particular audio/video/other data-transport endpoints or

interfaces on a device.

The various CSMs that are supported are outlined in separate companion specs, with two

currently available for v 1.0:

- CSM 1: Basic Authentication Protocol - This spec simply defines a host request to retrieve a

unique channel ID from the device.

- CSM 2: Digital Transmission Content Protection (DTCP) (aka 5C) - This spec defines the

requests, interrupts, descriptors and packet formats that are needed to support DTCP over USB.

The DTCP spec itself defines the AKE (Authentication and Key Exchange) protocols, cipher

negotiation and transmission management needed to send encrypted data between the device and

the host.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 14

In order to leverage the CS class to support encrypted video streams, the following would have

to occur (for Microsoft Windows platforms):

 Due to legal and/or licensing issues, DTCP is not supported on Microsoft Windows

platforms. Therefore, a new CSM would have to be defined that provides similar

functionality (Authentication/Key Exchange/Cipher negotiation/Transmission

management).

 A Content Security (CS) class driver would have to be developed to control the CS

interface on the device, and to provide support for the new CSM that is defined, including

encryption/decryption capability.

 A new Secure Video Path would have to be defined for Windows platforms that would

secure the driver and application components that form the data transport channel. This is

not currently available on Microsoft Windows platforms, but is being explored for future

versions.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 15

2.9 Layout of a GUID Data Structure

Question: What is the layout of the GUID data structure and how should a device transmit and

parse this data structure?

Answer:

Table 2-3 Layout of a GUID Data Structure

Offset Field Size (bytes) Example

0 Data1 4 47504a4d

4 Data2 2 0000

6 Data3 2 0010

8 Data4a 1 80

9 Data4b 1 00

10 Data4c 1 00

11 Data4d 1 AA

12 Data4e 1 00

13 Data4f 1 38

14 Data4g 1 9B

15 Data4h 1 71

Therefore, for a GUID defined as {47504A4D-0000-0010- 8000-00AA00389B71}, as described

in the table above, the little-endian byte-stream representation would be:

0x4D, 0x4A, 0x50, 0x47, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0xAA, 0x00, 0x38, 0x9B,

0x71

2.10 Host Processing of Incoming and Outgoing Data

The following paragraphs describe the host data processing state machines.

2.10.1 Diagram Terminology

These are descriptions of the terms used in the state diagrams that follow:

 Data – This refers to an incoming (or outgoing) video data unit arriving from (or going

to) the device through a UVC VideoStreaming pipe. For isochronous pipes, a data unit is

defined as a USB packet. For bulk pipes, a data unit is defined as the smallest format-

specific block to which a UVC header is attached. It is assumed that the size of a single

data unit is always less than or equal the size of a single buffer.

 New Frame – This indicates the condition where the host driver detects a new

frame/sample through a transition in the state of the FID bit from the previous data packet

received (if available).

 Buffer – This refers to the data buffer currently being processed. Data buffers are

submitted by the host application to the host driver as part of sequential read or write

IRPs (I/O request packets). The driver will queue these IRPs, and the buffer belonging to

the IRP at the head of the queue is the current buffer. For incoming data, the driver will

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 16

fill this buffer with video data received from the device, and complete the read request

(that is, return the filled buffer back to the application) when a frame boundary is

encountered (as indicated by the EOF and/or FID bits), or when the buffer is full. For

outgoing data, the driver will transmit the data in the current buffer to the device, setting

the EOF and/or FID bits as necessary, and complete the write request when the all the

buffer data has been transmitted.

 Buffer Ready – This indicates whether there is a current buffer available. This condition

is true only when the "Fetch Buffer" state was passed through, and a pending buffer was

available in the driver queue on the last buffer fetch attempt, and the current buffer was

not dequeued and completed.

 Empty Buffer – This condition is true only if a current buffer is available and it contains

no data.

 Buffer Full – This indicates that the current buffer is full, or that the remaining buffer

space available to be filled is less than the size of a single data unit.

 Fast Complete – This flag is set at the Fill Buffer stage if the host detects a frame

boundary (EOF=1) or a full buffer after filling the current buffer. It is reset to zero at the

Fetch Data stage.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 17

2.10.2 Incoming Data State Diagram for Frame-based Video Formats

The following state diagram depicts the host behavior in handling data packets arriving from the

device for frame-based video formats. Support of the FID and EOF bits is required.

Start Fetch Data Fill Buffer

Data Ready Check Buffer

Complete

Buffer
Fetch Buffer

Discard Data

Data Available

(New Frame) and

!(Empty Buffer)

Buffer Ready

!(Fast Complete)

!(New Frame) or

(Empty Buffer) !(Buffer Ready)

(EOF = 0) and

!(Buffer Full)

(EOF = 1) or (Buffer Full)

(=> Fast Complete)

!(Data Available)

Fast Complete

Figure 2-2 Incoming Data State Diagram for Frame-based Video Formats

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 18

2.10.3 Incoming Data State Diagram for Stream-based Video Formats

The following state diagram depicts the host behavior in handling data packets arriving from the

device for stream-based video formats. Support of the FID and EOF bits is not required.

Start Fetch Data Fill Buffer

Check Buffer

Complete

Buffer
Fetch Buffer

Discard Data

Data Available

Buffer Ready

!(Buffer Ready)

!(Buffer Full)

Buffer Full

!(Data Available)

Buffer Available

!(Buffer Available)

Buffer Completed

Figure 2-3 Incoming Data State Diagram for Stream-based Video Formats

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 19

2.10.4 Outgoing Data State Diagram for Frame-based and Stream-based Video Formats

The following state diagram depicts the host behavior in handling data being transmitted to the

device for frame-based and stream-based video formats. The FID and EOF bits are supported by

the host for frame-based video formats.

For data formats that support embedded bus timing information, the host could possibly parse

this information and selectively throttle transmission, to prevent data overrun in the device buffer.

This is indicated by the optional states depicted in dashed lines in the following diagram. Note

that this is distinct from the timing information present in the UVC packet header BFH[0] (SCR

and PTS fields), which the device should parse in all cases where they are made available, to

support rate matching and stream synchronization.

Fetch Buffer

Check

Buffer

Timestamp

Discard Buffer

Check Buffer

Data Offset

Toggle FID Set EOF

Wait

Fill Data Unit

Dequeue and

Complete

Buffer

Submit

Transfer

Buffer Available

Late

EarlyNo Buffer

On Time

(Stream-based)or

(!(Start of Buffer) and

!(End of Buffer)) !(End of Buffer) and

!(TransferFull) (*)

!(Buffer ready)

Frame-based and

End of Buffer

Frame-based and

Start of Buffer

End of Buffer

Start

!(End of buffer) and

TransferFull (*)

 (*) TransferFull = CurrentTransferSize > MaxTransferSize - MaxPacketSize

Buffer ready

Timestamp = MasterClock

Figure 2-4 Outgoing Data State Diagram for Frame-based & Stream-based Video Formats

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 20

2.11 Relationship between Frame Interval and Frame Rate

Question: How is the video frame interval (used in various payload frame descriptors and VS

interface controls) derived from the frame rate?

Answer: The video frame interval is specified in 100 ns units and is derived from the frame rate

as follows: For a frame rate x, the video frame interval is (10,000,000/x) truncated to an integer

value.

For example:

15 fps: Frame interval = (10000000/15) = 666666

30 fps: Frame interval = (10000000/30) = 333333

25 fps (PAL): Frame interval = (10000000/25) = 400000

29.97 fps (NTSC): Frame interval = (10000000/29.97) = 333667

2.12 Clock Recovery Mechanism

Question: What is the clock recovery mechanism used by the USB Video Class?

Answer: The USB Video Class has adopted much of the same principles and terminology used

in Annex D of reference [1], which covers this subject in detail. Although applying the same

principles, the USB Video Class modifies certain aspects, as described here.

Reference [1] differentiates between SCRs (System Clock References as defined for MPEG2

Program Stream) and PCRs (Program Clock References as defined for MPEG2 Transport

Stream). The USB Video Class has settled on a single term, SCR (Source Clock Reference).

MPEG2 SCRs and PCRs have differing interval requirements due to the intended method of

transmission of the respective types of streams. The USB Video Class standardizes on a single

maximum interval of 100ms for both bulk and isochronous streams.

The MPEG2 SCR/PCR values are used to reconstruct the source’s System Time Clock (STC) at

the destination. In a typical implementation, the destination will implement a PLL to slave a

rendering clock to the STC. See [1], Annex D for a description of such a PLL.

In order to support the production of useful e values by a Low Pass Filter (LPF) within a PLL,

the SCR must have sufficient resolution to allow the clock to be adjusted within the constraints

of the maximum slew rate.

The MPEG2 approach is to use a 42 bit value for the SCR/PCR, where the most-significant 33

bits contain 90 KHz clock values, and the least significant 9 bits contain 27 MHz clock values. A

27 MHz clock provides more than enough resolution to remain within the bounds of a 0.1Hz/sec

maximum slew rate (which requires at least 10 MHz resolution). The 27 MHz clock portion of

the SCR will roll over many times during an SCR/PCR interval, but the 90 KHz clock portion

can be used to reconstruct the full 27 MHz clock. The 27 MHz clock values are used as the input

to the LPF.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 21

The USB Video Class standardizes on a 48 bit value for the SCR. The least-significant 32 bits

(D31..D0) contain clock values sampled from the System Time Clock (STC) at the source. This

clock may be of any resolution. If the source is the USB device, the resolution is at the discretion

of the device implementer; if the source is the host, the resolution is based on the highest

resolution clock available to the host.

The times at which the STC is sampled must be correlated with the USB Bus Clock. To that end,

the next most-significant 11 bits of the SCR (D42..D32) contain a 1 KHz SOF counter,

representing the frame number at the time the STC was sampled. The STC is sampled at SOF

boundaries. It is the same size and frequency as the frame number associated with USB SOF

tokens; and is required to match the current frame number.

The most-significant 5 bits (D47..D43) are reserved, and must be set to zero.

The maximum interval between STC samples is 100ms, or the video frame interval, whichever is

greater. Shorter intervals are permitted.

Host-Side Clock Recovery Algorithm

The host software exposes a clock that is slaved to the SCR stream. The same device clock is

used by the device to generate the PTS values. The host converts the PTS values into native host

timestamps by converting from device clock units to host clock units. Aside from rebasing the

time stamps such that they are zero at the start of the stream, no other scaling or adjustment is

made. Clock rate matching is achieved by applying a scaling value to the clock exposed by the

host software. The scaling value is obtained by calculating the slope between the device and host

clock ticks counted over a fixed-length sliding time window.

The host software samples a host-based high-resolution counter every time an SCR is received.

This high resolution counter is referred to as the Performance Counter (or QPC for short). Each

QPC is associated with the USB Frame Counter value at the time the QPC was sampled. The

result is a time stamp that varies over a 1ms window around each USB Frame Counter. Over

time, the timestamps average out and are effectively free of jitter. The slope SCR(delta) /

QPC(delta) would be 1.0 if the clocks are advancing at identical rates. If they are not, the slope

provides a direct scaling value to skew the QPC clock values to the SCR clock.

The algorithm given below is shown in two major parts. The first part shows the processing that

occurs on the receipt of an SCR from the device. The second part shows the processing that

occurs when the host software is queried for the current master clock value. It is this value that is

scaled to keep pace with the device clock. The algorithms are shown from the perspective of the

host in a capture scenario; however the same principles can be applied to a device

implementation in a render scenario. For simplicity, no care is taken to detect system errors,

discontinuities, nor arithmetic overflow. Floating point arithmetic is used except where noted.

The algorithm can be modified to use integer arithmetic.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 22

The following values and functions are defined (temporary variables are not described in this

table):

Table 2-4 Host-Side Clock Recovery Algorithm

Accumulate_QPC() Samples the host clock and USB Frame number, incorporating

the new pair with the previous clock and frame number pairs.

Accumulate_SCR() Incorporates the device clock and frame counter from the

current SCR with the previous clock and frame number pairs.

SOF_delta The number of frames observed between SCR(n) through

SCR(m), where SCR(n) represents the earliest SCR available,

and SCR(m) represents the most recent. Note that the SCR

history may be trimmed to permit a clock slaving mechanism

that is more responsive to short-term fluctuations in the host

and device clocks.

QPC_delta(n) The number ticks observed in the host clock over the most

recent n SOF packets (returns 0 if insufficient history

available)

SCR_delta(n) The number of ticks observed in the device clock over the

most recent n SOF packets (returns 0 if insufficient history

available)

QPC_freq The frequency of the host clock (initialized via a host-

dependent mechanism)

SCR_freq The frequency of the device clock (provided by the device

through a USB Video descriptor)

ClockSlaveRatio The clock slave ratio calculated on each receipt of an SCR

(initial value 1.0)

MinSlavable The minimum ratio considered valid for clock slaving

(constant value 0.8)

MaxSlavable The maximum ratio considered valid for clock slaving

(constant value 1.2)

MinSOF_delta The minimum number of milliseconds before clock slaving

can begin (constant value 2000)

QPC() Current host clock value

BaseQPCForLastReturnedTime Record of last unscaled host clock value

CarriedError Record of error resulting from cast to integer from floating

point

SlavedClock The slaved clock value

Part 1: Receipt of an SCR

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 23

Accumulate_QPC();

Accumulate SCR();

if (SOF_delta > MinSOF_delta) {

 dHostDelta = QPC_delta(SOF_delta) / QPC_Freq;

 dMasterDelta = SCR_delta(SOF_delta) / SCR_Freq;

 if (dHostDelta != 0) {

 dNewRatio = dMasterDelta / dHostDelta;

 if (dNewRatio >= MinSlavable &&

 dNewRatio <= MaxSlavable) {

 ClockSlaveRatio = dNewRatio;

 }

 }

}

Part 2: Master Clock Query

llNow = QPC();

llDelta = llNow - BaseQPCForLastReturnedTime;

dDelta = (double)llDelta;

// scale according to our slope

dDeltaScaled = dDelta * ClockSlaveRatio;

// accumulate the error

dDeltaScaled += CarriedError;

// compute the non FP value that we are going to use

llDelta = (LONGLONG)dDeltaScaled;

// carry the error to the next call

CarriedError = dDeltaScaled - (double)llDelta;

// save the basis for the last returned time

BaseQPCForLastReturnedTime = llNow;

SlavedClock += llDelta;

References:

[1] ISO/IEC 13818-1: Information technology -- Generic coding of moving pictures and

associated audio information: Systems

2.13 MaxPayloadTransferSize selection

Question: How should the MaxPayloadTransferSize value be selected?

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 24

Answer: As defined, the MaxPayloadTransferSize parameter depends on the type of USB

transfer supported by a video streaming interface.

For an isochronous streaming pipe, this value shall be lower or equal to the USB

wMaxPacketSize of the streaming endpoint in the alternate interface selected. The host software

is responsible for selecting the appropriate isochronous transfer size based on buffering, latency

and processing overhead.

For bulk transfers, this value is implementation specific and is subject to the following tradeoffs:

- a large value potentially increases decoding latency as the USB host controller will only

complete an I/O request packet after a completed bulk transfer. As this value is used for

memory buffer allocation on the host, this potentially increases the host buffering

requirements.

- a small value increases the amount of I/O request packet traffic and increases the number of

stream headers to be transferred.

Depending on the target application and tradeoffs mentioned above, the

MaxPayloadTransferSize should be set to a value comprised between 10ms worth of data and

dwMaxVideoFrameSize.

2.14 Payload Format Forward Compatibility

Question: How can future payload formats be supported?

Answer: Future payload formats can be supported by defining the payload according to the

Vendor Payload specification document and require no change to the host video class driver.

2.15 Device/Host Processing Partitioning

Question: Are devices with device/host processing partitioning supported?

Answer: Devices relying on the host for some processing are supported by the device class

specification. These devices rely on a vendor specific payload format and rely on host software

class driver functionality providing a control and event path from the associated codec to the

device’s unit(s) and terminal(s).

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 25

Figure 2-5 Device/Host Processing Partitioning

2.16 Power Mode Control

Question: What does the power mode state mean?

Answer: POWER MODE CONTROL describes the controlling device power mode. There are

three power sources available to operate a device:

1) A.C. power

2) USB

3) Battery

In the case of the first two power sources, the user doesn't need to be concerned with the power

consumption. However, if the host can not supply enough power to make the device work when

another device is also connected to it, the host can use POWER MODE CONTROL to allow the

device to work with low power.

If the power source is a battery, the user needs to be concerned with power consumption, and

should use POWER MODE CONTROL to conserve battery power consumption. For example, if

USB Video

Class Driver

Codec

Client

application

USB Video

Class Device

(2)

(1)

(3)

(1) Application control & event path

(2) Codec control & event path

(3) Video stream path

(1) (2)

(3)

(3)

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 26

the device has the capability to reduce the power consumption by not using some of the device

functionality, use POWER MODE CONTROL to do so.

Table 2-5 Video Device Power Source

Power source Description

A.C. power Device driven by A.C. power supply

USB Device driven by USB power supply

Battery Device driven by battery power supply

A configuration descriptor can indicate to the host which power source(s) a device can use (bus

powered and/or self powered). Further a host can use the GetStatus command to determine

whether the device is currently self powered. However, the host has no way to know whether a

self powered device is using A.C. power or battery power. Specifying the power source would

enable the host to know the condition of the power supply on the device side.

2.17 Probe and Commit operations

Question: My device supports only one streaming parameters set (format, resolution, frame rate,

etc), what should be implemented for handling the probe/commit controls?

Answer: All the requests and attributes need to be supported but all the GET_XXX request will

always return the same data structure content. The commit SET_CUR requests must still validate

the required parameters.

Question: How do I cycle through supported stream attributes?

Answer: Issue a request with the GET_XXX attribute. In the returned control data structure,

change the stream field (dwFrameInterval, wKeyFrameRate, wPFrameRate, wCompQuality,

wCompWindowSize) you want to cycle through by subtracting 1 and issue a SET_CUR request:

this will force the device to use the next lower supported value for this field according to the

negotiation loop avoidance when a GET_CUR request is issued. The host detects the end of the

enumeration when the device state doesn’t change anymore (or the enumerated field reached its

minimum as returned by the GET_MIN request).

Question: In what cases can a probe/commit request fail?

Answer: A probe/commit request will fail if:

 bFormatIndex and/or bFrameIndex have invalid values

 A given stream specified by bFormatIndex and bFrameIndex cannot be supported with a

specified dwMaxPayloadTransferSize.

All the other fields will be negotiated

Question: How does the host software use the Video Probe and Commit Controls to negotiate

streaming parameters and video compression properties such as key frame rate, etc.?

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 27

Answer: The Video Probe and Commit controls are extremely versatile and can be used in many

different ways depending on host software design and requirements.

The following is just one specific example of how the host software could use the Probe and

Commit controls.

(Note: The video compression fields/parameters referenced in this example refer to the

KeyFrameRate, PFrameRate, CompQuality and CompWindowSize fields)

Retrieving range information for the video compression fields (key frame rate, etc.)

1. Host sets format index (and frame index/interval, if supported), sets all other fields to zero,

issues SET_CUR to probe control

2. GET_MIN to probe control to get min values for video compression fields

3. GET_MAX to probe control to get max values for video compression fields

4. GET_DEF to probe control to get default values for video compression fields

5. GET_RES to probe control to get resolution values for video compression fields

6. Host repeats from step 1 with a different set of format (and frame index/interval) indices

Setting Video Compression parameters before streaming commences (user-selected format/frame

index and frame interval already known)

1. Set all bmHint fields to fixed/variable according to user preferences

2. Set MaxPayloadTransferSize fields to zero (Delay and MaxVideoFrameSize fields are

always set by device)

3. Prepare probe/commit data structure:

 Set FormatIndex, FrameIndex and FrameInterval fields to values chosen by

user/application

 Set Video Compression Parameters (KeyFrameRate, PFrameRate, CompQuality,

CompWindowSize) to values chosen by user/application

4. SET_CUR to probe control

5. GET_CUR to probe control

6. Save KeyFrameRate, PFrameRate, CompQuality, CompWindowSize,

MaxVideoFrameSize, Delay and MaxPayloadTransferSize fields returned from device.

Getting Video Compression parameters before streaming commences (user-selected

format/frame index and frame interval already known)

1. If required parameter is cached, return cached value to client application

2. If required parameter is not cached, prepare ProbeCommit data structure:

 Set FormatIndex, FrameIndex and FrameInterval fields to values chosen by

user/application

 Set Video Compression Parameters (KeyFrameRate, PFrameRate, CompQuality,

CompWindowSize) to values chosen by user/application.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 28

 Set bmHint fields to fixed/variable based on user preference and previously initialized

parameters.

3. SET_CUR to probe control

4. GET_CUR to probe control

5. Return requested parameter to client application

Stream Format Negotiation (setup for streaming)

1. Set all bmHint fields to fixed/variable according to user preferences

2. Set MaxPayloadTransferSize fields to zero (Delay and MaxVideoFrameSize fields are

always set by device)

3. Prepare probe/commit data structure:

 Set FormatIndex, FrameIndex and FrameInterval fields to values chosen by

user/application

 Set Video Compression Parameters (KeyFrameRate, PFrameRate, CompQuality,

CompWindowSize) to values chosen by user/application

4. SET_CUR to probe control

5. GET_CUR to probe control

6. Save KeyFrameRate, PFrameRate, CompQuality, CompWindowSize,

MaxVideoFrameSize, Delay and MaxPayloadTransferSize fields returned from device.

7. When streaming is about to begin, SET_CUR to commit control using values from Step 6 (this

should always succeed since it was based on values returned from the probe control)

8. Attempt to select alt setting based on MaxPayloadTransferSize saved in step 6 (isoch pipes

only)

9. If failed, return failure code or, for isoch pipes, update MaxPayloadTransferSize and attempt

to select smaller alternate interface setting by going to step 3.

Getting Video Compression Parameters during streaming

1. GET_CUR to commit control

Setting Video Compression Parameters during streaming

1. GET_CUR to commit (to retrieve active device state)

2. Update parameter that is being set

3. Set MaxPayloadTransferSize field to current alternate interface max packet size

4. SET_CUR to probe control

5. GET_CUR to probe control

6. If returned parameters are acceptable, issue SET_CUR to commit control

7. If SET_CUR was issued, save KeyFrameRate, PFrameRate, CompQuality,

CompWindowSize, Delay and MaxPayloadTransferSize fields

8. If SET_CUR was not issued, return failure code

Notes:

Probe control refers to VS_PROBE_CONTROL

Commit control refers to VS_COMMIT_CONTROL

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 29

2.18 Input and Output Terminals association

Question: For bAssocTerminal field in Input or Output terminal descriptors, what is the meaning

of an association between two Terminals?

Answer: The implied meaning of Associated Terminals in the Specification is that if we

associate two Terminals, we cannot use them at the same time.

Example 1: If we use a Media Transport Terminal such as a Tape.

Since a Tape Terminal cannot be used at the same time for both reading and writing Data, the

Input and Output Terminals corresponding to this Tape shall be associated in the corresponding

Descriptors.

Example 2: If we use a Media Transport Terminal such as a Random Access Media.

Since a Random Access Media can be used for both reading and writing Data at the same Time,

the Input and Output Terminals corresponding to this Random Access Media shall not be

associated in the corresponding Descriptors.

2.19 Multiple Color Matching Descriptors

Question: How to deal with multiple color matching descriptors?

Answer: Changes in color matching descriptors are handled by the same mechanism used for

dynamic format changes.

Question: Is there justification for the three color matching fields in the descriptor?

Answer: Yes there is. There are numerous devices and standards related to color and very often

the standards do not reflect the current usage scenarios. To resolve these ambiguities the color

format needs to be explicitly stated. The problem is partly illustrated by the table that follows. It

shows different scenarios and the standards used in defining the color.

Table 2-6 Matrix of Color Standards and Scenarios

Color Primary Transfer
Function

Luma Matrix Example Scenario

709 709 709 DVB HDTV Standard Rec.

709 709 601 Typical webcam

240 709 601 NTSC tuner/video capture device

709 709 601 PAL tuner/video capture device

709 240 240 HDTV(1035/60)

170 170 170 DVB 30Hz SDTV

470 * * DVD’s

240 470(M) 601 NTSC SDTV

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 30

709 470(B,G) 601 PAL SDTV

709 709 709 ATSC (1920/60)

Question: Why was NV12 chosen as one of the recommended 4:2:0 YUV planar format?

Answer: NV12 was chosen by the USB Video Class because it is the preferred format for

graphics cards. This is because NV12 has significant advantages in terms of cache-coherence and

overall graphics card performance. Current graphics cards have begun to support this format, and

in the future all graphics cards are expected to do so.

2.20 Request Error Code Control

Question: When is the Request Error Code Control value updated?

Answer: The Request Error Code Control is updated after any control request (including the

asynchronous control requests and requests to the Request Error Code Control itself). On success,

the Request Error Code Control value is reset to 0. On failure (protocol stall on the control pipe),

the Request Error Code Control value is set to the failure reason. Subsequent completions of

asynchronous control operations (via the Status Interrupt Endpoint) do not affect the Request

Error Code Control.

2.21 Isochronous pipes and data availability

Question: What is the expected behavior of a transmitter on an isochronous endpoint when no

data is available to be transmitted?

Answer: Isochronous endpoints must accept (OUT endpoints) or return (IN endpoints) a zero-

length packet for each bus interval in which data is not available. Note that a payload transfer

consisting of a payload header alone (with no payload data) is permitted if the maximum interval

for delivery of a Source Clock Reference (SCR) would otherwise expire during a period without

data.

Devices that use high bandwidth isochronous endpoints, the device must be ready to accept

(OUT endpoints) or return (IN) zero length packets with DATA pids of 0, 1 or 2 depending on

the number of additional transaction opportunities per microframe and the amount of buffer

remaining. Please to refer to section 5.9.2 and 8.5.5 of the USB Specification Revision 2.0 for

further details. In addition, Appendix D of the EHCI specification for USB Revision 1.0 clearly

states the rules that USB 2.0 host controller (and from that derive what a complaint device)

should follow to correctly handle high bandwidth isochronous endpoints.

2.22 Interlaced Video

Question: What do the following mean in the context of interlaced video fields: top, bottom,

field 1, field 2, odd and even?

Answer: Top and bottom are spatial terms referring to the actual picture lines in a video frame.

The first picture line is associated with the top field, and the second picture line is associated

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 31

with the bottom field. Field 1 and field 2 are temporal terms. The first field to be captured within

a frame is called Field 1, and the other field is called Field 2. Odd and even are overloaded terms

since they could refer to odd/even picture lines, or odd/even lines of the analog video field, and

for this reason we will refrain from using these terms in our explanations.

Question: What are the kinds of interlaced video formats supported by the USB Video Class?

Answer: The USB Video Class requires interlaced video content to be sent in one of two forms:

1) Line interleaved: Both fields are sent in the same video sample, but the lines of the top and

bottom fields are interleaved. i.e. the lines from the two fields keep alternating.

2) One field per sample: Each sample contains only one field and the FID bit is used to indicate

whether a given video sample contains a top field or a bottom field (see item below).

Question: How is the FID bit used to indicate top and bottom fields for interlaced video?

Answer: In the case of one-field-per-sample interlaced video, an FID value of 1 indicates a top

field, and a value of 0 indicates a bottom field. The FID bit, when used with the D2 bit of the

dwInterlaceFlags (Field1First) field of the uncompressed format descriptor, lets the host PC

combine the fields in an unambiguous manner. Note that temporally, field 1 is always assumed

to be sent before field 2 in one field per sample video data.

Question: What does the “Field1First” bit of the interlace flags mean?

Answer: “Field1First” must be read as “Field1First - Spatially”. This means the spatially first

field, or the top field, is captured first, and is the first field to be streamed in one field per sample

video data.

Question: How should the frame descriptor fields be interpreted for one-field-per-sample video

data? In particular, what should the value of wHeight be?

Answer: The values of the frame descriptor should refer to the field only, and not to the entire

video frame. Thus the dwMaxVideoFrameBufferSize refers to the number of bytes in one

sample (field), frame interval refers to the time interval between fields, and wHeight refers to the

number of lines in a field. Thus for a 29.97 fps, 720*576 video, the frame descriptor will report

59.94 (fields per second) and wHeight = 288 lines.

Question: What is the recommended format on Microsoft Windows operating systems?

Answer: On Microsoft operating systems, two fields per sample, line-interleaved format is the

best supported interlaced video format.

2.23 Maximum Values of the PTS and STC fields within the Payload Header

Question: What are the maximum values of the PTS and STC (a portion of the SCR) fields of

the Payload Header?

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 32

Answer: The maximum value of these fields can be either 0xFFFFFFFF (maximum value of a

32-bit unsigned value), or the clock resolution of the stream minus one. For example, if the

stream is delivered with a clock resolution of 13.5MHz, the PTS and STC values are permitted to

wrap to zero after reaching either 0xFFFFFFFF or 13,499,999. It is the responsibility of the

video sink (the host software when capturing from the device, the device firmware when

capturing from the host) to determine which maximum is being used while processing these

fields at runtime. The fields may independently wrap in either of the two ways within the same

implementation.

2.24 Protocol STALL behavior

Question: How does a video function handle request parameters validation and error reporting?

Answer: The USB Video Device Class specification defines a protocol STALL to allow the

video function to report errors; the function is required to validate control transfer parameters

and report errors when invalid.

Additionally, a Request Error Code Control is defined to allow precise reporting of the error’s

cause.

The following paragraphs describe potential handling of control transfer errors.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 33

2.24.1 SET_XXX request with Setup Stage error

This example shows a failing control write transfer due to invalid Setup Stage parameters. Note

that the STALL condition could also be reported during the Status Stage.

Out [Data1]

Setup [Data0]

Device Host

NAK

Out [Data0/1]

STALL

ACK

If the function requires

additional time for Setup

Stage parameter validation,

it is allowed to NAK the

Data Stage transactions

.

.

.

Setup

Stage

Data

Stage

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 34

2.24.2 SET_XXX request with Data Stage error

This example shows a failing control write transfer due to invalid Data Stage parameters.

Out [Data1]

Setup [Data0]

Device Host

ACK

In [Data1]

NAK

ACK

If the function requires

additional time for Data

Stage parameter

validation, it is allowed

to NAK the Status Stage

transaction

In[Data1]

STALL

.

.

.

.

.

.

Out [Data0/1]

ACK

Setup

Stage

Data

Stage

Status

Stage

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 35

2.24.3 GET_XXX request with Setup Stage error

This example shows a failing control read transfer due to invalid Setup Stage parameters.

2.25 Current and Future Payload Header Format and Extensibility

Question: Can the Payload Header be fixed size?

Answer: Yes. The bHeaderLength value of the Payload Header can specify any length as long as

it is sufficient to allow the Payload Header to hold the information indicated by the

bmHeaderInfo bitmap field(s). If the bHeaderLength value is larger than necessary, the extra

bytes are simply ignored.

Question: Can the bmHeaderInfo byte be extended while maintaining backward compatibility

with versions of class drivers released prior to the addition of new bmHeaderInfo bytes?

Answer: Yes. As long as the previous class driver versions use the “End of Header” (D7) bit of

the bmHeaderInfo byte(s) to determine when the remaining Payload Header values (if any) start,

the bmHeaderInfo portion of the Payload Header can be any number of bytes up to the maximum

allowed by the bHeaderLength value and any additional Payload Header data.

Question: Are there any restrictions placed on the bit assignments in bmHeaderInfo extensions?

Answer: Yes. The “End of Header” (D7) bit must be present in each extended bmHeaderInfo

byte. The value of the D7 bit will be 0 for all but the last bmHeaderInfo byte.

In[Data1]

Setup [Data0]

Device Host

NAK

In[Data1]

STALL

ACK

If the function requires

additional time for Setup

Stage parameter validation,

it is allowed to NAK the

Data Stage transactions

.

.

.

Setup

Stage

Data

Stage

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 36

2.26 Motion JPEG Characteristics

Question: Why do the colors output from my MJPEG device appear to be artificially boosted?

Answer: Newer video cards assume video is in the YCbCr color space (i.e. using BT-601 video

ranges). If the images are encoded with the luma and chroma units in the 0-255 range that is used

for typical JPEG still images, then the saturation and contrast will look artificially boosted when

the video is rendered under the assumption that the levels were in the YCbCr color space. BT-

601 specifies eight-bit coding where Y is in the range of 16 (black) to 235 (white) inclusive.

Similarly, Cb and Cr are in the range of 16 through 240 inclusive.

2.27 MPEG2-TS APT

Question: For the MPEG TS APT method, how are the implementation-dependent constant

value and the required buffer size determined?

Answer: The following two examples show how to determine the implementation-dependent

constant value and the required buffer size.

Example 1: If the sink’s local counter (microframe_count : microframe_offset) remains

unmodified:

In this case, the sink will calculate a constant value to be added to each APT value when it is

received. The value is constant for a particular stream. The constant value will directly determine

when each MPEG packet is released to the application and indirectly determine the sink’s buffer

size. The constant value is equal to the difference between the sink and source’s counters plus

some number of microframes. The extra number of microframes will compensate for any USB

jitter and delivery latency. For instance, if the first APT value in a stream is exactly 10

microframes behind the local (microframe_count : microframe_offset) value when it is received,

the constant value can be set to 13 microframes so that this particular packet will stay in the

buffer for exactly 3 microframes. Due to the inherent packet delivery jitter over USB, the

successive packets will stay in the buffer between 1 and 5 microframes, provided that the same

constant value is used. Therefore, the buffer size should be big enough to store at least 5

microframes worth of data in this example.

Note: While a value of “3 microframes” is mentioned in this example for buffering, the value for

each system is implementation dependent.

Example 2: If the sink’s local counter (microframe_count : microframe_offset) value is

initialized at the beginning of each stream:

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 37

If the sink's local (microframe_count : microframe_offset) value is properly initialized at the

beginning of a stream, each APT value can be compared against the local (microframe_count :

microframe_offset) value to determine the time of delivery to the application. No

implementation-dependent constant is required. To cope with the inherent packet delivery jitter

over USB, the sink should alter its local timer to be several microframes behind the source’s

counters so each packet stays in the buffer for some time before it is released to the application.

For instance, if the first APT value in a stream is exactly 6 microframes behind the local

(microframe_count : microframe_offset) value, a value of 9 microframes can be subtracted from

the local microframe_count counter so that this particular packet will stay in the buffer for

exactly 3 microframes. Due to the inherent packet delivery jitter over USB, the successive

packets will stay in the buffer between 1 and 5 microframes. Therefore, the buffer size should be

big enough to store at least 5 microframes worth of data in this example.

2.28 Host and Device interoperability

Question: How is backward and forward compatibility among devices and drivers handled?

Answer: The UVC specification defines the protocol by which devices and drivers must abide;

as the specification evolves, devices will integrate those changes and drivers must be resilient to

them. Devices are expected to properly respond to host driver requests based on earlier

specification version(s) and assume meaningful defaults for unspecified fields. Below are

guidelines addressing such interoperability issues.

Table 2-7 Interoperability guidelines

Specification

Modification

Expected Host Behavior How to address

issue/comments

Redefinition of a field Keep old field and define

new field.

Additional descriptor Skip it based on type and subtype (if

unknown, skip)

Addition of descriptor

field(s)

The descriptor length field can be used

to skip over unknown fields.

New terminal/unit The host class driver should either

expose it generically or ignore it.

If the host class driver cannot

expose the new terminal/unit

generically, new descriptors

will be ignored by older

drivers. The device should

have reasonable default

behavior when used in

conjunction with an older

driver.

New control on

existing unit/terminal

Expose it generically or ignore it Can be exposed generically

by the host class driver.

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 38

Additional

probe/commit field

Ignore it (set to default) The GET_LEN request

allows the host class driver to

size the probe/commit

structure properly. The host is

required to always submit

requests of the length

specified by the device,

setting all unknown fields to

zero. It must subsequently

preserve the values returned

by the device when it submits

the final set to the Commit

control.

Existing control

change

Host ignores unknown functionality. The following guidelines

allow forward/backward

compatibility to be

maintained:

 New functionality is in

the form of additional

fields

 The original fields

remain semantically and

syntactically the same as

previously defined.

 The GET_LEN request

shall become mandatory

if it wasn’t previously

defined for the control.

 If the GET_LEN request

is supported, the host

must submit requests

with the length specified

by the device (even if

GET_LEN was not

previously defined for

that control).

 The GET_DEF request

shall become mandatory

if it wasn’t previously

defined for the control.

The host will only

attempt a GET_DEF

request if the GET_LEN

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 39

indicates that there are

fields that the host does

not understand.

If the GET_DEF request is

not supported for earlier spec

revisions, the device will only

return defaults for the fields

within the control that were

added on or after the revision

in which the GET_DEF

request became mandatory.

Additional stream

header field

Ignore it Can be supported with

current header definition

Payload content

change

Cannot currently be supported The UVC specification

version 1.1 provides the

necessary versioning by

extending the Probe and

Commit requests.

2.29 Stream based payload support

Question: Are stream based payloads such as MPEG-4 SL, VC1, H.264 supported by the USB

Video Device Class specification?

Answer: Such payloads rely on the MPEG-2 systems specification (ISO/IEC 13818: 2000 / ITU-

T Rec. H.222.0).

2.29.1 MPEG-4 SL

The MPEG-2 systems specification (ISO/IEC 13818: 2000 / ITU-T Rec. H.222.0) section 2.11

describes encapsulation of MPEG-4 SL.

2.29.2 VC1

The SMPTE VC1 specification describes encapsulation of VC1 payload in MPEG-2 systems.

2.29.3 H.264

ITU-T Rec. H.222.0 amendment 3 describes encapsulation of H.264 in MPEG-2 systems.

2.30 Host Behavior for Still Image Capture Method 2

Question: My device supports Still Image Capture Method 2 (i.e. video streaming and still

image capture via a shared isochronous endpoint). What is the expected host behavior during

format negotiation and still image acquisition?

Answer: The host will use the Still Probe and Commit controls to inform the device of the

desired still image capture parameters (format, frame size and compression index), and to obtain

USB Device Class Definition for Video Devices - FAQ

Revision 1.5 August 9, 2012 40

the capture buffer and payload transfer sizes that the device will use when transmitting a still

image matching those parameters. The Still Probe and Commit negotiation will be performed at

least once, but possibly multiple times, prior to still image capture. The number of times is

application-dependent. The host is required to perform at least one

VS_STILL_COMMIT_CONTROL (SET_CUR) operation prior to the first still image transfer.

Also prior to still image capture, the host will determine the optimal alternate interface setting for

that isochronous endpoint by comparing the dwMaxPayloadTransferSize from the Still Probe

and Commit control with the wMaxPacketSize of each isochronous endpoint descriptor.

Although it seems logical that the maximum available isochronous bandwidth would be used

during still image transfer, this would not be appropriate if the device is unable to provide still

image data at that rate. Therefore, the host will select an alternate interface that most closely

matches the dwMaxPayloadTransferSize value provided by the device.

When a still image is to be captured, the host will:

1. halt video streaming over the endpoint (if active)

2. select the optimal alternate interface for still image capture

3. trigger the transfer

4. collect the still image bytes

5. restore the previous alternate interface selection

6. restart video streaming (only if previously active)

The host will not change the alternate interface setting if the device is actively streaming and the

bandwidth reservation of the optimal alternate interface for still image capture would be equal to

(or lower than) that of the current alternate setting.

If the bandwidth required for still image capture is not available, the host should gracefully

degrade, selecting an alternate interface representing the maximum bandwidth available at that

time. Under normal circumstances, this should never be less than the bandwidth already reserved

for any active video streaming. The device will only be aware of available bandwidth as a

passive recipient of alternate interface selections, so host behavior in low-bandwidth conditions

is not addressed here.

