USB 3.2 RFI System-Level Test Procedure

Rev1.5 January 14, 2022

Table of Contents

Α.	Test	Applicability1		
В.	Equipment List			
	B1.	USB RFI System Level Test Fixture2		
	B2.	RF Cable Requirements2		
	B3.	Shielding Box Requirements2		
	B4. Filter Modules			
C.	Signa	I/Spectrum Analyzer Test Configuration4		
D.	Test Setup6			
	D1.	Mobile Devices (Laptops/Notebooks/Smartphone)		
	D2.	DUT with AC power source7		
	D3.	Dock/Hub type with AC power source		
	D4.	Dock/Hubs		
E.	Testing Procedure			
	E1.	Configure Signal Analyzer1		
	E2.	Check Noise Floor		
	E3.	Set DUT to Compliance Mode11		
		E3.1. Windows-based Systems11		
		E3.2 Non-Windows-based Systems13		
	E4.	Connect Test Setup		
	E5.	Gather and Evaluate Data13		
F.	Revis	ion History14		

A. Test Applicability

This test is only applicable to systems with Type C Connector and support data speeds 5Gbps and above

- USB 3.2 Hosts End Product (This includes embedded hosts)
- USB 3.2 Hubs End Product
- DRD

B. Equipment List

No	Equipment Name	Vendor	P/N
1	Signals/Spectrum	Anritsu/Keysight/R&S	MS2830A
	Analyzer		/N9000B/FPL1007
2	RFI System Level Test	Luxshare-ICT	MEU-58P1F
	Fixture		
3	RF Cable 1m	Junkosha	MWX121-01000DMSDMS
4	RF Cable 0.5m	Junkosha	MWX121-00500DMSDMS
5	Shielding Box	Lab105	SHD6001A
6	AC Power Filter Module	SpeedTech	L08PT02-00001
7	Banana Plug Filter Module	SpeedTech	L08PT04-00001
	(DC Power Filter)		
8	USB Type C Filter Module	SpeedTech	L08PT03-00001
9	USB Type A Filter Module	SpeedTech	L08PT05-00001
10	Test Table	Luxshare-ICT	MEU-39P1F
11	5 in-lbs. torque wrench	Luxshare-ICT	MEW-40A11

Please contact Od.Liao@luxshare-ict.com for Luxshare and Lab105 parts.

B1. USB RFI System Level Test Fixture

B2. RF Cable Requirements

RF Cable should be rated for frequencies higher than 6GHz

B3. Shielding Box Requirements

The shielding box isolation level must be higher than 80dB for full test frequency range (500MHz to 6GHz) and inside dimensions must be large enough for a desktop computer. Below is recommend shielding box dimension and real item picture:

B4. Filter Modules

1. AC power filter

AC power filter support is 100V~220V, 50Hz to 60Hz

2. Banana plug filter (DC power filter)

3. USB Type C filter (USB signals)

Supports USB 3.2 Gen1/Gen2

4. USB Standard filter (USB signals)

Supports USB 3.2 Gen1/Gen2

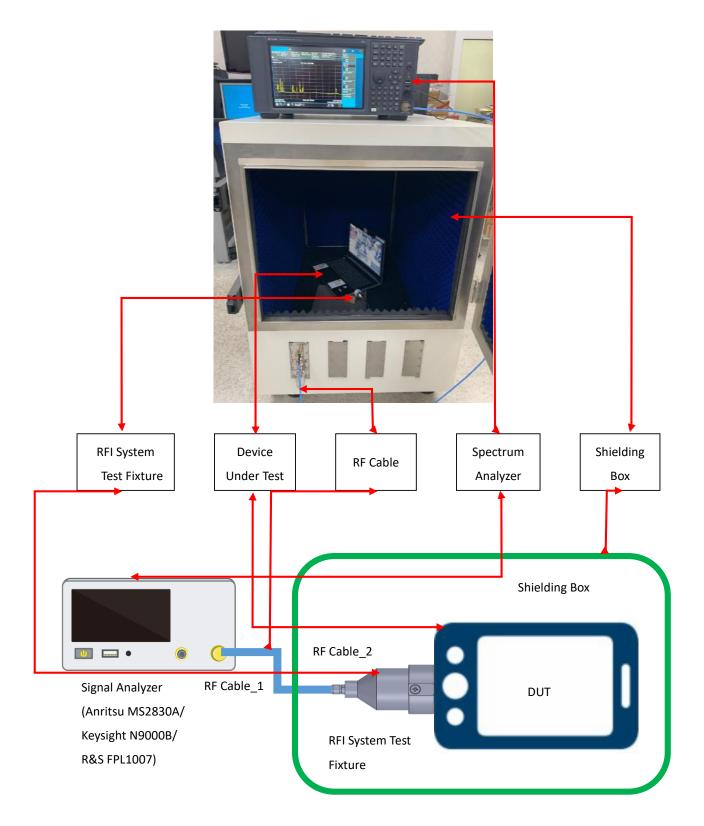
C. Signal/Spectrum Analyzer Test Configuration

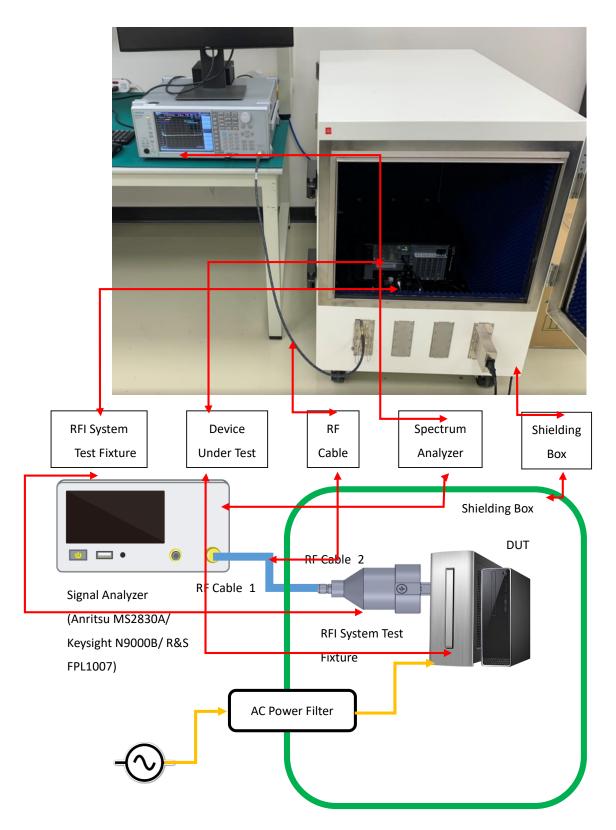
It is highly recommended to have the built-in preamplifier function option for the signal analyzer.

List of approved Signal/Spectrum Analyzers:

Anritsu MS2830A

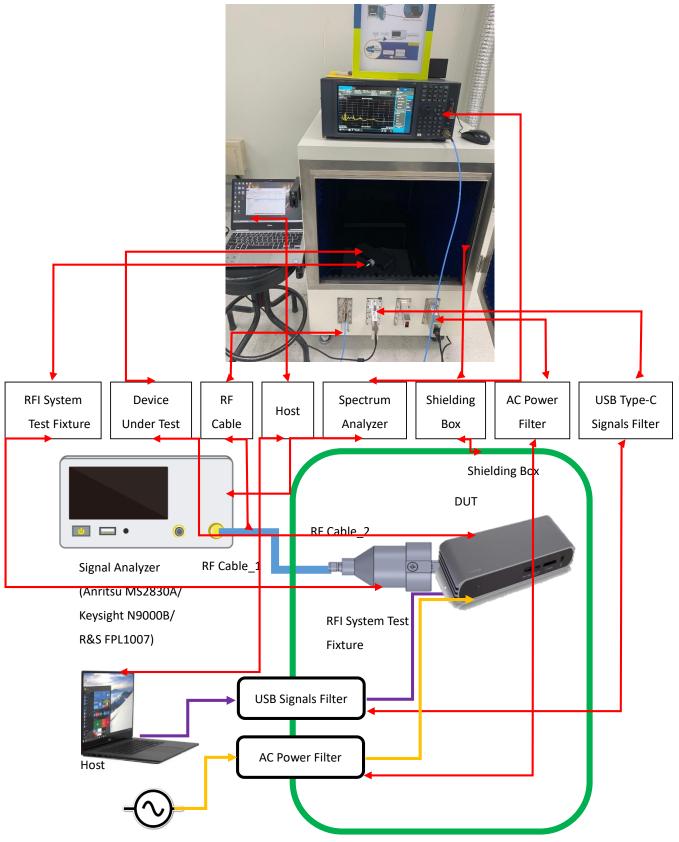
Keysight N9000B


Rohde & Schwarz FPL1007


Setting	ANRITSU	KEYSIGHT	ROHDE & SCHWARZ
Frequency	Frequency>	Frequency>	Frequency>
Range	Start: 500MHz	Start: 500MHz	Start: 500MHz
500MHz to	Stop: 6GHz	Stop: 6GHz	Stop: 6GHz
6GHz			
RBW:	BW>	BW>	A/D Bandwidth>
100KHz,	RBW: 100KHz	RBW: 100KHz	RBW: 100KHz
VBW: 100KHz	VBW: 100KHz	VBW: 100KHz	VBW: 100KHz
Average	Average type> Trace>	Trace> Detector>	Analysis> Trace#>
Detector	Detector> Detector: RMS	Detector: Average	Detector: RMS
		(log/RMS/V)	
Average	Storage count: 100	Avg. Hold number: 100	Average times: 100
times: 100			
Attenuation	AMPTD> Attenuation:	AMPTD> Attenuation: 0dB	Amplitude> Att:
	OdB		OdB
Trace type	Trace> Storage mode:	Trace> Trace type: Average	Analysis> Trace: Average
	Average		
Trigger	Trig: Free run (default)	Trig: Free run (default)	Trig: Free run (default)
source			
Pre-AMP	AMPTD> Signal path>	AMPTD> Signal path>	Amplitude> Preamp: on
	Internal Premap: Full	Internal Premap: Full	
	range (on)	range (on)	
De-	AMPTD> Offset>Setting	1. AMPTD> External	Transducer>dB>New
embedding	loss value> Enter	gam/offset> Setting	line>Import loss csv. file
RF cable loss		value	
		2. Recall> Correction	
Test	Shielding box	Shielding box	Shielding box
environment			

D. Test Setup

D1. Mobile Devices (Laptops/Notebooks/Smartphone) Note: DUT must be in airplane mode during testing



D2. DUT with AC power source

D3. Dock/Hub type with AC power source

*Note: Host does not need to be Known Good Host.

D4. Dock/Hubs

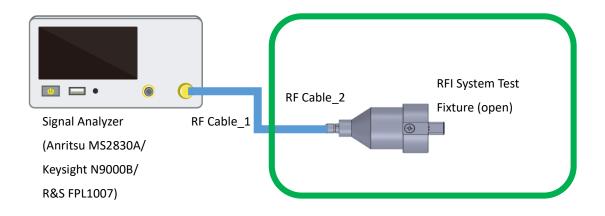
*Note: Host does not need to be Known Good Host.

E. Testing Procedure

Before testing, test operator needs to be able to identify port assignments on DUT.

This can be done by asking the customer for port assignments or attaching a USB 3.2 hub/device with Type C connector to each port and checking what port it enumerates under using Device Manager or USBView.

USBView

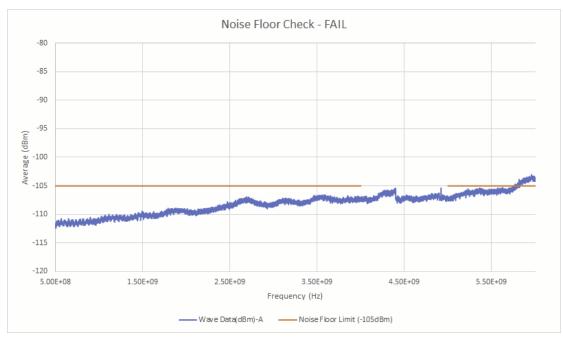

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/usbview

E1. Configure Signal Analyzer

Follow Section D settings for the analyzer being used.

E2. Check Noise Floor

Evaluate Noise floor using the setup diagram below. RFI Fixture should be attached to analyzer RFI Input and left open inside a closed Shielding Box.


Start sweep and export data as CSV. Make sure that Noise floor does not exceed -105 dBm by making a graph with the data and setting the limit line.

Steps to make graph:

- 1) Add two columns next to Wave Data: (1) Frequency and (2) Noise Floor Limit
- 2) Column for Noise Floor Limit should be -105 for all rows of Wave Data
- 3) Column for Frequency
 - a. First Wave Data Item should be 500 MHz (5E+8)
 - b. Last Wave Data Item should be 6 GHz (6E+9)
 - c. Select all rows from First to Last item in Frequency

- d. Use Fill >>> Series to automatically fill in the empty cells with equal sized steps of frequency from 500 MHz to 6 GHz
- 4) Select all three columns and make chart Scatter with Smooth Lines

Format graph and add labels as appropriate.

Below is an example of a failed Noise Floor measurement.

E3. Set DUT to Compliance Mode

Test operator needs to be able to put DUT into compliance mode and have PUT generate pattern CPO for the duration of the test.

E3.1. Windows-based Systems

xHSETT can be used on Windows-based Systems to enter compliance mode.

USB xHSETT Utility		
64-bit OS	https://usb.org/document-library/xhsett-x64	
32-bit OS	https://usb.org/document-library/xhsett-x32	

*Note: User Account Control must be turned off to use this tool.

Open xHSETT. Select **Host/Hub DSF Ports** under SuperSpeed. Select the corresponding Host Controller for the DUT and click **TEST.**

🛃 xHCI Electrical Test Tool	×
Hi-Speed O Device O Hub O Host Controller/System	Select Host Controller For Use In Testing
SuperSpeed • Host/Hub DSF Ports TEST	E xit

Enumerate Bus and Select Host.

SuperSpeed Test Modes	
SS Host/Hub Selection HOST: PCI bus 1, device 0, function 0	Controls Test Mode Port TX_COMPLIANCE_MODE 1 Status Window Enumeration Successful
Enumerate Bus	EXECUTE RETURN TO MAIN

In Controls, select **TX_COMPLIANCE_MODE** and the port number of the PUT and click execute. Make sure status windows says "Operation Successful".

SuperSpeed Test Modes	
SS Host/Hub Selection HOST: PCI bus 2, device 0, function 0	Controls Test Mode Port TX_COMPLIANCE_MODE 6 Status Window Operation Successful
Enumerate Bus	EXECUTE RETURN TO MAIN

PUT should now be generating CPO.

E3.2 Non-Windows-based Systems

Currently there are no known supported tools for putting a DUT into compliance mode.

If test operator cannot get help from vendor or customer to put DUT into compliance mode, it might be necessary to write a program to put PUT into TX_COMPLIANCE_MODE.

E4. Connect Test Setup

Follow the appropriate Test Setup in Section D to connect DUT. Be sure to read all notes.

E5. Gather and Evaluate Data

After connecting DUT and closing Shielding Box, start sweep.

Pass/Fail Criteria

Frequency Range	Pass	Fail
500 MHz to 4 GHz	Noise level <= -100 dBm	Noise level > -100 dBm
5 GHz to 6 GHz	Noise level <= -102 dBm	Noise level > -102 dBm

NOTE: PUT must be tested in both orientations and must Pass in both orientations (normal and flipped) for Frequency Range.

Evaluate data by adding limit lines to analyzer or export data as CSV to make a graph.

Steps to make graph:

- 1) Add two columns next to Wave Data: (1) Frequency and (2) Noise Limit
- 2) Column for Limit
 - a. If Frequency is less than 4 GHz, Noise Limit is -100 dBm
 - b. If Frequency is greater than 5 GHz, Noise Limit is -102 dBm
- 3) Column for Frequency
 - a. First Wave Data Item should be 500 MHz (5E+8)
 - b. Last Wave Data Item should be 6 GHz (6E+9)
 - c. Select all rows from First to Last item in Frequency
 - d. Use **Fill >>> Series** to automatically fill in the empty cells with equal sized steps of frequency from 500 MHz to 6 GHz
- 4) Select all three columns and make chart Scatter with Smooth Lines

F. Revision History

Revision	Date	Description	Author
			Joshua
1.0	8/21/2020	Initial Release	Talactac
		Improved Clarity, Fixed Formatting and added	
		sections "Optional Tools and Accessories",	
		Pass/Fail Criteria and "Test Procedure for	
		non-Windows based Operating Systems" and	Joshua
1.1	11/19/2020	updated equipment P/N	Talactac
		Added R&S as to the list of approved signal	
		analyzers with settings and config.	
		Added 4 filter modules.	Joshua
1.2	05/03/2021	Added Test Setups for other DUT Types	Talactac
		Clarified pass/fail criteria: added third	
		condition.	
		Added note to mobile devices test setup:	Joshua
1.3	05/26/2021	must be in airplane mode during test.	Talactac
		Changed set limit lines in the Analyzer for the	
		compliance test for pass/fail from >-100dBm	
		to = -100dBm at 500MHz to 4GHz and from >-	
		102dBm to = -102dBm at 5GHz to 6GHz	
		Clarified pass/fail criteria: Pass range include	
		= -100dBm at 500MHz to 4GHz, and =-	
1.4	08/17/2021	102dBm at 5GHz to 6GHz	Ngan Ho
		Improved Clarity, Fixed Formatting.	
		Added steps for Noise Floor measurement.	
		Added steps for making graph.	
1.5	07/20/2022	Adding setting for RF cable lost	Aaron Chan

For questions, please feel free to contact <u>techadmin@usb.org</u> for more information.