

Media Agnostic

Universal Serial Bus

Specification

Release 1.0a

July 29, 2015

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 2

Scope of This Release

This document is the Release 1.0 of this specification.

Contributors

Will Harris Advanced Micro Devices

Simon Black Atmel Corporation
Chris Kelly Atmel Corporation

Roel Peeters Atmel Corporation
Ananthateerta Ashwini Broadcom Corporation
Randal Erman Broadcom Corporation

Gang Lu Broadcom Corporation
Sandy (Alexander) MacInnis Broadcom Corporation

Murat Mese Broadcom Corporation
Payam Torab Broadcom Corporation
Freeman Wang Broadcom Corporation

Jing Wang Broadcom Corporation
Hui Xu Broadcom Corporation

Dan Ellis DisplayLink Ltd.
Richard Petrie DisplayLink Ltd.
Carlos Cordeiro Intel Corporation

Marek Dabek Intel Corporation
Kris Fleming Intel Corporation

John Howard Intel Corporation
Abdul Rahman Ismail Intel Corporation
Oren Kedem Intel Corporation

Maciej Kurczewski Intel Corporation
Elad Levy Intel Corporation

Guoqing Li Intel Corporation
Wojciech Omilian Intel Corporation
Venkatesh Rajendran Intel Corporation

Bahareh Sadeghi (Editor) Intel Corporation
Etan Shirron Intel Corporation

Solomon Trainin Intel Corporation
Rafal Wielicki Intel Corporation
Xiaowen Lu MCCI Corporation

Terry Moore MCCI Corporation
Chris Yokum MCCI Corporation

Chao-Chun Wang MediaTek Inc.
James Yee MediaTek Inc.
Randy Aull Microsoft Corporation

Constantine Elster Qualcomm Inc.
Xiaolong Huang Qualcomm Inc.

Ali Raissinia Qualcomm Inc.
Vamsi Samavedam Qualcomm Inc.
Lochan Verma Qualcomm Inc.

Xiaodong Wang Qualcomm Inc.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 3

Chiu Ngu Samsung Electronics Co.
Huai-Rong Shao Samsung Electronics Co.

Karthik Srinivasa Gopalan Samsung Electronics Co.
Dmitry Cherniavsky Silicon Image

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 4

Copyright © 2011 USB Implementers Forum, Inc. 1

All rights reserved. 2

INTELLECTUAL PROPERTY DISCLAIMER 3

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO 4
OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED 5
HEREBY. 6

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR 7
INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS RELATING TO IMPLEMENTATION OF 8
INFORMATION IN THIS SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT 9
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE THE INTELLECTUAL 10
PROPERTY RIGHTS OF OTHERS. 11

THIS SPECIFICATION IS PROVIDED “AS IS” AND WITH NO WARRANTIES, EXPRESS OR IMPLIED, 12
STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. USB-IF, ITS MEMBERS 13
AND THE AUTHORS OF THIS SPECIFICATION PROVIDE NO WARRANTY OF MERCHANTABILITY, NO 14
WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND 15
NO WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. 16

IN NO EVENT WILL USB-IF, MEMBERS OR THE AUTHORS BE LIABLE TO ANOTHER FOR THE COST OF 17
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR ANY 18
INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER CONTRACT, TORT, 19
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, WHETHER 20
OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. 21

 All product names are trademarks, registered trademarks , or service marks of their respective owners. 22

Please send comments via electronic mail to ma-usb-chair@usb.org 23

mailto:ma-usb-chair@usb.org

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 5

Table of Contents 1

1 INTRODUCTION ... 14 2
1.1 Motivation...14 3
1.2 Objective of the specification ..14 4
1.3 Scope of the document ...14 5
1.4 Document organization ..14 6

2 NORMATIVE REFERENCES ... 16 7

3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS.. 17 8
3.1 Definitions ..17 9
3.2 Acronyms and abbreviations ...18 10

4 ARCHITECTURAL OVERVIEW ... 19 11
4.1 Architectural elements ..19 12

4.1.1 MA USB host ...19 13
4.1.2 MA USB device ...20 14
4.1.3 MA USB hub ..21 15

4.2 USB topology...22 16
4.3 MA USB communication model ..23 17
4.4 MA USB addressing ...24 18

4.4.1 MA USB device address...25 19
4.4.2 Device handle ...25 20
4.4.3 Endpoint handle ...25 21
4.4.4 Container ID ...25 22

4.5 Media dependent functions ..26 23
4.5.1 Relation of MA USB addressing to network addressing ..26 24
4.5.2 MA USB PAL identification ...27 25

4.5.2.1 Identification in 802.11 mode ..27 26
4.5.2.2 Identification in IP mode..27 27

4.5.3 Network requirements...27 28
4.5.3.1 Requirements for 802.11 mode ..28 29
4.5.3.2 Requirements for IP mode ...28 30
4.5.3.3 Media specific protocol constants..28 31

4.5.4 Device discovery..28 32
4.5.4.1 Device discovery in 802.11 mode..28 33
4.5.4.2 Device discovery in IP mode ...28 34

4.5.5 Packetizat ion...28 35
4.5.5.1 Packetization in 802.11 mode ..28 36
4.5.5.2 Packetization in IP mode..28 37

5 DATA FLOW MODEL ... 29 38
5.1 Communicat ion flow ..29 39
5.2 Protocol overview..29 40

5.2.1 Packet exchange ...29 41
5.2.1.1 Management packet exchange ...29 42
5.2.1.2 Data packet exchange...30 43

5.2.2 Ping protocol...33 44
5.2.3 Data transfer..33 45

5.3 Transfer models ...34 46
5.4 IN t ransfers ...35 47

5.4.1 Transfer description...42 48
5.4.1.1 MA USB host PAL operation ..42 49
5.4.1.2 MA USB device PAL operation ..48 50

5.5 Protocol-managed OUT transfers ...53 51
5.5.1 MA USB device buffer management for OUT transfers ..57 52
5.5.2 Transfer description...59 53

5.5.2.1 MA USB host PAL operation ..60 54
5.5.2.2 MA USB device PAL operation ..65 55

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 6

5.6 Link-managed OUT transfers..69 1
5.6.1 Transfer description...69 2
5.6.2 Transfer mode selection..72 3

5.7 Control transfers ..73 4
5.7.1 Setup stage ..73 5
5.7.2 Data stage for control OUT transfers ...74 6
5.7.3 Data stage for control IN transfers ..74 7
5.7.4 Status stage..74 8

5.8 Bulk transfers ...74 9
5.9 Interrupt transfers ..75 10
5.10 Isochronous transfers ..75 11

5.10.1 Packetizat ion...76 12
5.10.1.1 Isochronous data blocks ...77 13
5.10.1.2 Isochronous read size blocks..81 14

5.10.2 Isochronous IN transfers...82 15
5.10.2.1 MA USB host requirements ...86 16
5.10.2.2 MA USB device requirements ...87 17
5.10.2.3 Application design guidelines ..87 18

5.10.3 Isochronous OUT transfers ..88 19
5.10.3.1 MA USB host requirements ...92 20
5.10.3.2 MA USB device requirements ...95 21
5.10.3.3 Application design guidelines ..95 22

5.11 Device notifications ..96 23
5.12 Reliab ility..96 24
5.13 Efficiency ..96 25

6 PROTOCOL LAYER... 97 26
6.1 Packet types ..97 27
6.2 Packet formats..97 28

6.2.1 Common header fields ..97 29
6.2.1.1 Version ...98 30
6.2.1.2 Flags ...98 31
6.2.1.3 Type and Subtype...98 32
6.2.1.4 Length ..101 33
6.2.1.5 EP Handle/Device Handle ...101 34
6.2.1.6 Device Address ..101 35
6.2.1.7 SSID ...101 36
6.2.1.8 Status Code ..101 37

6.3 Management packets...103 38
6.3.1 Common header fields ..103 39

6.3.1.1 Dialog Token..103 40
6.3.2 MA USB Capability Request (CapReq) ..103 41

6.3.2.1 Synchronization Capabilities descriptor ..104 42
6.3.2.2 Link Sleep Capability descriptor..105 43

6.3.3 MA USB Capability Response (CapResp)..105 44
6.3.3.1 Speed Capability descriptor ...107 45
6.3.3.2 P-managed OUT Capabilities descriptor ...108 46
6.3.3.3 Isochronous Capabilities descriptor ...108 47
6.3.3.4 Synchronization Capabilities descriptor ..109 48
6.3.3.5 Container ID Capability descriptor ..109 49
6.3.3.6 Link Sleep Capability descriptor..110 50

6.3.4 USB Device Handle Request (USBDevHandleReq)...110 51
6.3.5 USB Device Handle Response (USBDevHandleResp) ..111 52
6.3.6 Endpoint Handle Request (EPHandleReq) ..111 53
6.3.7 Endpoint Handle Response (EPHandleResp) ...112 54
6.3.8 Endpoint Activate Request (EPActivateReq) ...114 55
6.3.9 Endpoint Activate Response (EPActivateResp) ...114 56
6.3.10 Endpoint Inactivate Request (EPInactivateReq) ..115 57
6.3.11 Endpoint Inactivate Response (EPInactivateResp) ..115 58
6.3.12 Endpoint Reset Request (EPResetReq)..116 59
6.3.13 Endpoint Reset Response (EPResetResp) ...117 60

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 7

6.3.14 Clear Transfers Request (ClearTransfersReq) ..117 1
6.3.15 Clear Transfers Response (ClearTransfersResp)..118 2
6.3.16 Endpoint Handle Delete Request (EPHandleDeleteReq) ...119 3
6.3.17 Endpoint Handle Delete Response (EPHandleDeleteResp) ...119 4
6.3.18 MA USB Device Reset Request (DevResetReq) ...120 5
6.3.19 MA USB Device Reset Response (DevResetResp)...120 6
6.3.20 Modify EP0 Request (ModifyEP0Req) ...120 7
6.3.21 Modify EP0 Response (ModifyEP0Resp) ...120 8
6.3.22 Set USB Device Address Request (SetUSBDevAddrReq) ..121 9
6.3.23 Set USB Device Address Response (SetUSBDevAddrResp) ..121 10
6.3.24 Update Device Request (UpdateDevReq) ...122 11
6.3.25 Update Device Response (UpdateDevResp)...123 12
6.3.26 USB Device Disconnect Request (USBDevDisconnectReq) ..123 13
6.3.27 USB Device Disconnect Response (USBDevDisconnectResp) ..123 14
6.3.28 USB Suspend Request (USBSuspendReq) ...123 15
6.3.29 USB Suspend Response (USBSuspendResp) ...123 16
6.3.30 USB Resume Request (USBResumeReq) ...124 17
6.3.31 USB Resume Response (USBResumeResp) ..124 18
6.3.32 Remote Wake Request (RemoteWakeReq) ..124 19
6.3.33 Remote Wake Response (RemoteWakeResp) ..124 20
6.3.34 Ping Request (PingReq)..125 21
6.3.35 Ping Response (PingResp) ...125 22
6.3.36 MA USB Device Disconnect Request (DevDisconnectReq) ...125 23
6.3.37 MA USB Device Disconnect Response (DevDisconnectResp) ..125 24
6.3.38 MA USB device Initiated Disconnect Request (DevInitDisconnectReq)..125 25
6.3.39 MA USB device Initiated Disconnect Response (DevInitDisconnectResp) ...125 26
6.3.40 Synchronization Request (SynchReq)..125 27
6.3.41 Synchronization Response (SynchResp) ...126 28
6.3.42 Cancel Transfer Request (CancelTransferReq) ..126 29
6.3.43 Cancel Transfer Response (CancelTransferResp)..126 30
6.3.44 Endpoint Open Stream Request (EPOpenStreamReq) ..127 31
6.3.45 Endpoint Open Stream Response (EPOpenStreamResp) ...128 32
6.3.46 Endpoint Close Stream Request (EPCloseStreamReq) ...129 33
6.3.47 Endpoint Close Stream Response (EPCloseStreamResp) ..129 34
6.3.48 USB Device Reset Request (USBDevResetReq) ...129 35
6.3.49 USB Device Reset Response (USBDevResetResp) ..130 36
6.3.50 Device Notification Request (DevNotificationReq) ..130 37
6.3.51 Device Notification Response (DevNotificationResp) ...130 38
6.3.52 Endpoint Set Keep-Alive Request (EPSetKeepAliveReq) ...130 39
6.3.53 Endpoint Set Keep-Alive Response (EPSetKeepAliveResp) ..131 40
6.3.54 Get Port Bandwidth Request (GetPortBW Req) ...131 41
6.3.55 Get Port Bandwidth Response (GetPortBW Resp) ...132 42
6.3.56 Sleep Request (SleepReq) ..133 43
6.3.57 Sleep Response (SleepResp)..133 44
6.3.58 Wake Request (WakeReq) ...134 45
6.3.59 Wake Response (WakeResp)...134 46
6.3.60 Vendor Specific Request (VendorSpecificReq) ...134 47
6.3.61 Vendor Specific Response (VendorSpecificResp)...134 48

6.4 Control packets ..135 49
6.4.1 Transfer Setup Request (TransferSetupReq)...135 50
6.4.2 Transfer Setup Response (TransferSetupResp) ..135 51
6.4.3 Transfer Tear Down Confirmat ion (TransferTearDownConf) ..135 52

6.5 Data packets ...136 53
6.5.1 Common data header fields ..136 54

6.5.1.1 EPS...136 55
6.5.1.2 T-Flags ...137 56
6.5.1.3 Stream ID (non-isochronous data packets) ..137 57
6.5.1.4 Sequence Number ..137 58
6.5.1.5 Request ID..138 59

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 8

6.5.1.6 Remaining Size/Credit (non-isochronous data packets) ..138 1
6.5.1.7 Number of Headers (isochronous data packets) ..138 2
6.5.1.8 I-Flags (isochronous data packets)...138 3
6.5.1.9 Presentation Time (isochronous data packets)...138 4
6.5.1.10 Number of Segments (isochronous data packets) ..139 5
6.5.1.11 MA USB Timestamp (isochronous data packets)..139 6
6.5.1.12 Media Time/Transmission Delay (isochronous data packets) ...139 7

6.5.2 Transfer Request (TransferReq) ..140 8
6.5.3 Transfer Response (TransferResp) ...140 9
6.5.4 Transfer Acknowledgement (TransferAck) ..140 10
6.5.5 Isochronous Transfer Request (IsochTransferReq) ...141 11
6.5.6 Isochronous Transfer Response (IsochTransferResp) ...141 12

6.6 Clock synchronization ..141 13
6.6.1 Clock model..141 14
6.6.2 Synchronization..142 15

7 MA USB DEVICE FRAMEWORK ...144 16
7.1 Device states...144 17
7.2 EP handle states ...144 18

7.2.1 Active state..144 19
7.2.2 Halted state..144 20
7.2.3 Inactive state ...145 21
7.2.4 Unassigned state...145 22

7.3 Device set up ..146 23
7.3.1 Discovery mechanism ...146 24
7.3.2 USB device enumerat ion ..146 25

7.3.2.1 USB device handle allocation ..148 26
7.3.2.2 Endpoint handle allocation...149 27
7.3.2.3 Modification of EP0 parameters ..149 28
7.3.2.4 USB device address allocation...150 29
7.3.2.5 Update of USB device parameters ...150 30

7.3.3 Enumerat ion of a USB device downstream of an MA USB hub...150 31
7.3.4 Support of Stream Protocol ..152 32
7.3.5 USB device reset..152 33

8 MA USB HOST IMPLEMENTATION ..154 34
8.1 Session management ...154 35

8.1.1 Session states ..154 36
8.1.1.1 Session Down state ..154 37
8.1.1.2 Session Connecting state..154 38
8.1.1.3 Session Active state ...155 39
8.1.1.4 Session Inactive state ...155 40

8.1.2 Session setup...155 41
8.1.2.1 MA USB device reset ..156 42
8.1.2.2 Capability exchange ...157 43

8.1.3 Session tear down ..157 44
8.1.3.1 Implicit session tear down..157 45
8.1.3.2 Host initiated session tear down...158 46
8.1.3.3 Device initiated session tear down...159 47
8.1.3.4 USB device removal procedure ...160 48

8.2 Power management ...160 49
8.2.1 Transition to Session Inactive state ..161 50

8.2.1.1 Initiation by the MA USB host ..161 51
8.2.1.2 Initiation by the MA USB device ..162 52

8.2.2 Transition to Session Active state ...164 53
8.2.2.1 Initiation by the MA USB host ..164 54
8.2.2.2 Initiation by an MA USB device..165 55

9 MA USB HUB...168 56
9.1 MA USB hub enumerat ion ..168 57
9.2 MA USB hub session tear down ...168 58

9.2.1 Removal p rocedure for a USB device downstream of an MA USB hub ...168 59

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 9

9.3 MA USB hub power management..168 1

10 PROTOCOL CONS TANTS ...170 2

APPENDIX A – DISCOVERY INFORMATION PRIOR TO ESTABLIS HING A S ECURE CONNECTION171 3
A.1 User identification of a device ..171 4
A.2 Platform driver matching ...172 5

A.2.1 Driver Identification ...172 6
A.2.2 Configuration Descriptor Set ..172 7
A.2.3 Morphing devices ...173 8

APPENDIX B – WIGIG SPECIFIC REQUIREMENTS ...174 9
B.1 Recommended MAC and PHY features for MA USB products using WiGig Certified radios 174 10
B.2 W iGig MA USB Protocol Constants ...174 11
B.3 Synchronization in WiGig ...175 12
B.4 W iGig implementation of L-managed OUT transfer ..175 13

 14

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 10

List of Figures 1

 2
Figure 1—Build ing blocks of an MA USB host and relationship to existing USB infrastructure .. 19 3
Figure 2—Build ing blocks of an MA USB device and relationship to existing USB infrastructure .. 20 4
Figure 3—Build ing blocks of an MA USB hub ... 22 5
Figure 4—Example MA USB hub hosting multip le USB devices ... 22 6
Figure 5—MA USB Service Set and equivalent USB topology ... 23 7
Figure 6—MA USB communication model ... 23 8
Figure 7—MA USB Management and data channel latencies .. 24 9
Figure 8—Concurrent MA USB device and host operation in an IEEE 802.11 BSS .. 25 10
Figure 9—MA USB protocol hierarchy... 26 11
Figure 10—Network addressing in 802.11 and IP modes .. 27 12
Figure 11—Default t imings for management packet exchange... 30 13
Figure 12—Default t imings for data packet immediate exchange .. 32 14
Figure 13—Default t imings to keep an MA USB transfer alive ... 32 15
Figure 14—Taxonomy of MA USB transfers... 35 16
Figure 15—MA USB IN t ransfer.. 36 17
Figure 16—Data packets and header fields used for IN transfers ... 42 18
Figure 17—P-managed MA USB OUT transfers .. 54 19
Figure 18—Data packets and header fields used for p-managed OUT transfers .. 60 20
Figure 19—Link-managed OUT transfer .. 72 21
Figure 20—MA USB Control OUT and IN Transfers .. 73 22
Figure 21—MA USB isochronous data packet formats .. 77 23
Figure 22—Format of isochronous data packets with isochronous payload ... 78 24
Figure 23—Isochronous header formats .. 79 25
Figure 24—S-Flags field .. 79 26
Figure 25—Examples of packet izing isochronous segments ... 81 27
Figure 26—Format of Isochronous Transfer Request packets for IN transfers .. 81 28
Figure 27—Isochronous read size block formats ... 82 29
Figure 28—MA USB isochronous IN transfer ... 84 30
Figure 29—Continuous isochronous IN streaming using multip le levels of buffering ... 88 31
Figure 30—MA USB isochronous OUT transfer... 90 32
Figure 31—Example of buffer estimate for isochronous OUT t imed delivery .. 94 33
Figure 32—Example of buffer estimate for isochronous OUT ASAP delivery ... 94 34
Figure 33—Continuous isochronous OUT streaming using mult iple levels of buffering .. 96 35
Figure 34— Common header fo r MA USB packets .. 98 36
Figure 35—Flags field .. 98 37
Figure 36—EP Handle field ... 101 38
Figure 37—Common header for MA USB management packets ... 103 39
Figure 38—Common header for MA USB control packets ... 135 40
Figure 39—Common header for MA USB non-isochronus data packets.. 136 41
Figure 40—Common header for MA USB isochronus data packets .. 136 42
Figure 41—T-Flags field .. 137 43
Figure 42—I-Flags field ... 138 44
Figure 43—Presentation Time field format .. 139 45
Figure 44—MA USB clock model and distribution .. 141 46
Figure 45—MA USB Global Time (MGT) fo rmat ... 142 47
Figure 46—EP handle state diagram .. 144 48
Figure 47—Enumeration of an integrated USB device ... 148 49
Figure 48—Enumeration of a USB device downstream of an MA USB hub ... 151 50
Figure 49—Example of Open Stream Request and Response packet exchanges... 152 51
Figure 50—USB device reset .. 153 52
Figure 51—MA USB session state diagram ... 154 53
Figure 52—MA USB device session setup ... 156 54
Figure 53—Implicit session tear down .. 158 55
Figure 54—Host init iated session tear down .. 159 56
Figure 55—Device initiated session tear down .. 159 57

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 11

Figure 56—USB Device Removal Procedure .. 160 1
Figure 57—Transition to Session Inactive state initiated by the MA USB host .. 162 2
Figure 58—Transition to Session Inactive state initiated by an MA USB device.. 163 3
Figure 59—Transition to Session Active state initiated by the MA USB host ... 164 4
Figure 60—Transition to Session Active state initiated by an MA USB device (exp licit request)... 165 5
Figure 61—Transition to Session Active state initiated by an MA USB device (remote wake) ... 166 6
Figure 62—Transition to Session Active state initiated by an MA USB device (IN transfer) ... 167 7
Figure 63—Link-managed OUT transfer in W iGig implementation ... 176 8

 9

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 12

List of Tables 1

 2
Table 1—S-Flags subfields .. 79 3
Table 2—Timing parameters specific to the MA USB isochronous IN transfer model .. 86 4
Table 3—Timing parameters specific to the MA USB isochronous OUT transfer model ... 91 5
Table 4—Flags subfields .. 98 6
Table 5—Type and Subtype values for MA USB packet variants .. 98 7
Table 6—Status Code values ... 102 8
Table 7—MA USB Capability Request fields .. 104 9
Table 8—Format of MA Host Capability descriptors ... 104 10
Table 9—MA Host Capability Type values .. 104 11
Table 10—Synchronization Capabilit ies descriptor .. 104 12
Table 11—Link Sleep Capability descriptor... 105 13
Table 12—MA USB Capability Response fields ... 105 14
Table 13—Format of MA Device Capability descriptors... 106 15
Table 14—MA Device Capability Type values ... 106 16
Table 15—Speed Capability descriptor ... 107 17
Table 16—P-managed OUT Capabilities descriptor ... 108 18
Table 17—P-managed OUT Capability Bitmap fo rmat ... 108 19
Table 18—Isochronous Capabilit ies descriptor.. 108 20
Table 19—Synchronization Capabilit ies descriptor .. 109 21
Table 20—Container ID Capability descriptor... 109 22
Table 21—Link Sleep Capability descriptor... 110 23
Table 22—USB Device Handle Request fields .. 110 24
Table 23—USB Device Handle Response fields ... 111 25
Table 24—Endpoint Handle Request fields .. 112 26
Table 25—EP descriptor .. 112 27
Table 26—EP Handle Response fields .. 113 28
Table 27—MA USB EP descriptor format ... 113 29
Table 28—Endpoint Activate Request fields .. 114 30
Table 29—Endpoint Activate Response fields ... 115 31
Table 30—Endpoint Inactivate Request fields ... 115 32
Table 31—Endpoint Inactivate Response fields .. 116 33
Table 32—Endpoint Reset Request fields ... 116 34
Table 33—EP reset information block... 116 35
Table 34—Endpoint Reset Response fields .. 117 36
Table 35—Endpoint Clear Transfers Request fields ... 117 37
Table 36—Endpoint Clear Transfers Response fields .. 118 38
Table 37—Endpoint Handle Delete Request fields ... 119 39
Table 38—Endpoint Handle Delete Response fields .. 120 40
Table 39—Modify EP0 Request fields .. 120 41
Table 40—Modify EP0 Response fields.. 121 42
Table 41—Set USB Device Address Response fields ... 121 43
Table 42—Set USB Device Address Response fields ... 121 44
Table 43—Update Device Request fields .. 122 45
Table 44—Device descriptor ... 123 46
Table 45—Remote Wake Request fields ... 124 47
Table 46—Synchronization Request fields ... 125 48
Table 47—Cancel Transfer Request fields .. 126 49
Table 48—Cancel Transfer Response fields ... 127 50
Table 49—Endpoint Open Streams Request fields .. 127 51
Table 50—Endpoint Open Stream Response fields ... 128 52
Table 51—Stream ID interval block .. 128 53
Table 52—Endpoint Close Stream Request fields ... 129 54
Table 53—Device Notificat ion Request fields ... 130 55
Table 54—Endpoint Set Keep-Alive Request fields ... 130 56
Table 55—Endpoint Set Keep-Alive Response fields .. 131 57

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 13

Table 56— Get USB Port Bandwidth Request fields .. 131 1
Table 57— Get USB Port Bandwidth Response fields ... 132 2
Table 58—SleepReq fields... 133 3
Table 59—Vendor Specific Request fields ... 134 4
Table 60—Vendor Specific Response fields .. 134 5
Table 61—Transfer Setup Request fields .. 135 6
Table 62—EPS field values ... 136 7
Table 63—T-Flags subfields.. 137 8
Table 64—I-Flags subfields... 138 9
Table 65—Presentation Time subfields ... 139 10
Table 66—MA USB Global Time (MGT) subfields ... 142 11
Table 67—USB system management actions, events, and entities... 146 12
Table 68—MA USB protocol constants .. 170 13
Table 69—MA USB protocol variables ... 170 14
Table 70—Recommended 802.11ad MAC and PHY features for MA USB products.. 174 15
Table 71—MA USB protocol constants for WiGig... 175 16

 17

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 14

1 Introduction 1

1.1 Motivation 2

The motivation for the Media Agnostic (MA) Universal Serial Bus (USB) is to provide USB 3

connectivity over medium other than USB, for example, wireless or IP links, while making maximal use 4
of the existing USB infrastructure, present in the form of 5

 open application programming interfaces in every major operating system, 6

 USB class specifications by USB-IF device working groups, 7

 a wealth of open-source/OS specific drivers for USB classes, and 8

 vendor-specific device drivers for a multitude of USB vendor-specific devices. 9

For example, it is possible for a peripheral device vendor to reuse a device driver designed for high-10
speed USB 2.0 in conjunction with an MA USB device implementation that embeds a USB function 11
through a high-speed interface (i.e., without a physical USB connection to the function), and achieve 12

gigabit transfer rates. 13

1.2 Objective of the specification 14

This specification defines all protocol packets and associated behavior required to build interoperable 15
MA USB host and MA USB device implementations that would ultimately enable devices from 16

different vendors to interoperate in an open architecture while maintaining and leveraging the existing 17
USB infrastructure (device drivers, software interfaces, etc.). 18

Special care has been taken to keep the number of new concepts and abstractions to a minimum, and 19

instead build upon existing and proven mechanisms in USB wherever possible. 20

1.3 Scope of the document 21

This specification is primarily targeted to peripheral developers, operating system developers, and 22
system OEMs. It can be used for developing new products and applications. 23

The primary target of the current version of the specification is support of Wi-Fi and WiGig media. It is 24
expected that the future version(s) of this specification will address all the requirements for support of 25
other media. 26

1.4 Document organization 27

Chapters 1 through 5 provide an overview for all readers. They describe the architectural elements of the 28

MA USB protocol, namely the MA USB host and MA USB device, further architectural blocks within 29
those elements, data and management interfaces to USB infrastructure and network interface, and data 30
transfer models for all USB transfer types. 31

Chapters 6 through 9 describe the protocol packets and associated behavior in detail. 32

Chapter 6 serves as a reference for all MA USB packets (control and data). 33

Chapter 7 describes the MA USB device operation, including all control and data functions in support of 34
the USB device integrated into the MA USB device. Also defined in Chapter 7 are MA USB device 35
states, not to be confused with USB device states, which indicate the MA USB device availability to the 36

MA USB host. Many of the MA USB host functions are defined in the course of defining the device 37
framework. Chapter 8 defines the remaining functions, most importantly, starting an MA USB session, 38

and managing the MA USB session to each MA USB device. 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 15

Chapter 9 describes the MA USB hub, which is an MA USB device that integrates a USB hub. An MA 1
USB hub performs extra functions to enable enumeration and data transfer for USB devices connected 2

to its integrated hub. 3

All key parameters of the MA USB protocol are defined in Chapter 10. Parameters fundamental to 4

interoperability are defined as constants. All compliant implementations are required to have the same 5
setting for these parameters. Other parameters, labeled as protocol variables, are defined together with a 6
recommended setting. Implementations may choose different values for these parameters depending on 7

the application and design specifics. 8

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 16

2 Normative references 1

The following referenced documents are indispensable for the application of this standard. For dated 2
references, only the edition cited applies. For undated references, the latest edition of the referenced 3

document (including any amendments or corrigenda) applies. 4

[IEEE 802.11] IEEE Std 802.11™-2012--IEEE Standard for Information Technology--5
Telecommunications and information exchange between systems--Local and 6

metropolitan area networks--Specific requirements, Part 11: Wireless LAN 7
Medium Access Control (MAC) and Physical Layer (PHY) specifications 8

[USB 2.0] Universal Serial Bus Specification, Revision 2.0 9

[USB 3.1] Universal Serial Bus Specification, Revision 3.1 10

[WMC 1.1] CDC Subclass for Wireless Mobile Communication Devices, Revision 1.1 11

[OTG&EH3] USB On-The-Go and Embedded Host Supplement to the USB 3.0 Specification, 12
Revision 1.1 13

 14

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 17

3 Definitions, acronyms and abbreviations 1

3.1 Definitions 2

For the purposes of this standard, the following terms and definitions apply. See normative references 3

for terms that are not defined in this clause. 4

EP handle: A 16-bit number uniquely identifying a USB endpoint within an MA USB device. The 5
endpoint belongs to a USB device (including a USB hub) either integrated into the MA USB device or 6

connected through a wired USB connection to the hub integrated into the MA USB device. The 7
combination of MA USB device address and EP handle uniquely identifies a USB device endpoint 8

within an MA USB Service Set. 9

Universal Serial Bus (USB) address: A unique address in the form of a seven-bit value assigned by the 10
USB system software to the USB device. 11

USB Device Handle: A 16-bit number uniquely identifying a USB device behind an MA USB device; 12
also called device handle for short. 13

Media Agnostic Universal Serial Bus (MA USB): The Protocol Adaptation Layer (PAL) defined in 14
this specification, which enables connectivity between a USB host and one or more USB devices, 15
including USB hubs, over medium other than USB, including wireless and IP links. 16

MA USB device: An MA USB architectural element that integrates a USB device, and manages USB 17
transfers targeting the USB device over a network connection. The integrated device may be connected 18

through wired USB (USB cable, USB chip-to-chip interconnect, etc.) or other technologies, but through 19
the MA USB device, it is presented to the host system as a USB device compliant with Revision 2.0 or 20
3.1 of the USB specification. 21

MA USB device address: An 8-bit number uniquely identifying an MA USB device within an MA 22
USB Service Set. 23

MA USB hub: An MA USB device that integrates either a USB 2.0 hub or a USB 3.1 hub (which 24
combines a USB 2.0 hub and an Enhanced SuperSpeed hub). It provides physical downstream facing 25
USB ports to attach removable or non-removable USB devices. An MA USB hub performs all USB hub 26

functions for control and management of its downstream facing USB ports. It may or may not have a 27
physical upstream port, but to the USB host system it enumerates as a USB 2.0 hub or, if the integrated 28

device is a USB 3.1 hub, as a USB 2.0 hub and an Enhanced SuperSpeed hub. An MA USB hub is also 29
capable of scheduling and completing USB 2.0 or USB 3.1 transactions targeting USB devices 30
connected to the hub downstream ports. 31

MA USB host: An architectural element of the MA USB PAL that includes a physical link interface and 32
USB host logic as defined in USB Specifications. 33

MA USB Service Set (MSS): The collection of an MA USB host and all MA USB devices it manages. 34
Each MSS defines an independent addressing domain, i.e., an MA USB device address is unique within 35
the scope of the MSS to which the MA USB device belongs. 36

MA link: The end-to-end connection between an MA USB host and an MA USB device or an MA USB 37
hub. An MA link may consist of multiple network segments. 38

 39

 40

 41

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 18

3.2 Acronyms and abbreviations 1

ACK Acknowledgment 2
BSS Basic Service Set 3
DSAP Destination Service Access Point 4

DWORD Double Word 5
EP Endpoint 6

FS Full-Speed USB 7
GB Gibibyte (1,073,741,824 bytes) 8
HID Human Interface Device 9

HS High-Speed USB 10
HSIC High Speed Inter-Chip 11

IAD Interface Association Descriptor 12
KB Kibibyte (1,024 bytes) 13
LLC Logical Link Control layer 14

LS Low-Speed USB 15
MA USB Media Agnostic Universal Serial Bus 16

MAC Medium Access Control 17
MB Mebibyte (1,048,576 bytes) 18
MGT MA USB Global Time 19

MPDU MAC Protocol Data Unit 20
MSDU MAC Service Data Unit 21

MSS MA USB Service Set 22
MTU Maximum Transmission Unit 23
OS Operating System 24

PAL Protocol Adaptation Layer 25
PBSS Personal Basic Service Set 26
PDU Protocol Data Unit 27

PHY Physical layer 28
SAP Service Access Point 29

SNAP Subnetwork Access Protocol 30
SSAP Source Service Access Point 31
SSID Service Set Identifier 32

TID Traffic Identifier 33
USB Universal Serial Bus 34

USBDI USB Driver Interface (OS-specific) 35
WHCM Wireless Handset Control Module 36

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 19

4 Architectural overview 1

4.1 Architectural elements 2

MA USB protocol functions are asymmetrically split between a host element, responsible for creating 3

the topology and at the center of all data flows, and one or more MA USB devices representing 4
peripheral devices. The collection of an MA USB host and MA USB devices it manages is called an MA 5
USB Service Set (MSS). 6

4.1.1 MA USB host 7

An MA USB host performs USB host functions as defined by the USB 2.0 and 3.1 specifications, except 8

those that are specific to the USB medium, as well as extra functions to manage the MA USB devices 9
and MA link interface. Specifically, an MA USB host manages the 10

 MA USB service set and communication sessions to MA USB devices 11

 MA USB devices, including capability exchange with MA USB devices and configuring them 12

 Addition and removal of USB devices integrated or plugged into MA USB devices, including 13

configuring each USB device and its possible alternate interfaces 14

 USB transfers targeting each USB device, including flow control 15

MA USB host performs all USB transfers over the MA link interface, and in accordance with frame 16
formats and transmission rules of the MA link. 17

Figure 1 illustrates the basic building blocks of an MA USB host. The USB host logic block performs 18
USB host functions defined by the USB 2.0 and USB 3.1 specifications, except those that involve the 19

physical USB medium. The MA USB host PAL, defined in this specification, manages the MA USB 20
devices and transport of USB payload over the MA link. 21

MA link interface

MA USB host PAL

Class driver

(host side)

USB host logic

USBDI

MA USB host

USB host controller driver

USB root ports

Class driver

(host side)

Existing USB infrastructure

USB host logic

(including hub driver)

USB host controller

 22

Figure 1—Building blocks of an MA USB host and relationship to existing USB 23

infrastructure 24

Also shown in Figure 1 is how MA USB host building blocks fit into existing USB infrastructure. An 25

MA USB host provides the same abstraction of the USB bus that the USB driver in an Operating System 26
provides, plus possibly additional functions to control the MA link interface. As a result, existing 27
software drivers for various USB classes (Mass Storage, Human Interface Devices (HID), Audio 28

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 20

Device, etc.) can run over the MA USB protocol layer with no change. In particular, all MA USB 1
abstractions are strictly “PAL-to-PAL” and are not exposed to these drivers. 2

When defining the MA USB topology and applications, the term “MA USB host” is also used to refer to 3
the computing platform (e.g., a personal computer) that houses the MA USB host defined in this section, 4

as well as all class drivers and application software provided through the Operating System or USB 5
product vendors. 6

4.1.2 MA USB device 7

An MA USB device is the counterpart to the MA USB host that enables remote connectivity to one or 8
more peripheral devices. Specifically, an MA USB device manages the 9

 MA USB service set and communication sessions to the MA USB host 10

 Addition and removal of USB devices, integrated or plugged into the MA USB device, including 11

USB device reset and address assignment 12

MA USB device performs all USB transfers over the MA link interface, and in accordance with frame 13
formats and transmission rules of the MA link. 14

Figure 2 illustrates the basic building blocks of an MA USB device. The USB device logic block 15
performs USB device functions defined by the USB 2.0 or USB 3.1 specification, except those that 16

involve the physical USB medium. The MA USB device PAL, defined in this specification, manages the 17
transport of USB payload over the MA link interface. 18

NOTE —While this specification frequently refers to host and device PALs, it does not recognize PALs as valid 19
standalone elements. An MA USB host PAL or device PAL is assumed to be integrated with physical elements such 20
as a wireless radio and USB endpoints to define an MA USB host or MA USB device. The terms “host PAL” and 21
“device PAL” are used when the PAL distinction is important, for example, when specifying PAL-to-PAL timeout 22
values for MA USB transfer protocols. When the distinction is trivial, or when specifying a behavior for a physical 23
device with interface to an MA Link, the inclusive terms “host” or “device” is used. 24

MA link interface

MA USB device PAL

Class driver

(device side)

USB device logic

MA USB device

USB device controller

Class driver

(device side)

Existing USB infrastructure

USB device controller driver

USB device logic

 25

Figure 2—Building blocks of an MA USB device and relationship to existing USB 26

infrastructure 27

Also shown in Figure 2 is how MA USB device building blocks replace or complement the existing 28

USB infrastructure in a USB peripheral device. Similar to the MA USB host case, existing device-side 29
class drivers can run over the MA USB protocol layer with no change. Also similar to the MA USB host 30
case, all MA USB abstractions are strictly “PAL-to-PAL” and are not exposed to these drivers. 31

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 21

The interface between the USB device logic block and device-side class drivers is application-specific 1
and outside the scope of this specification. The interface between the MA USB device PAL and the USB 2

device logic is platform-specific. 3

An MA USB device manages, with some autonomy, an integrated USB device. The integrated device 4

may be removable or non-removable, and may be connected through wired USB (USB cable, USB chip-5
to-chip interconnect, etc.) or other technologies, but through the MA USB device, it is presented as a 6
USB device compliant with Revision 2.0 or 3.1 of the USB specification. It can belong to any USB 7

class, including the Hub class. The integrated USB device is said to operate “behind” the MA USB 8
device, and the MA USB device is said to “host” it, although many (but not all) USB host functions are 9

performed inside the MA USB host. In summary, a USB device integrated into an MA USB device (or 10
hosted by the MA USB device) may be logical or physical, and may be removable or non-removable. 11

In an MA USB device other than an MA USB hub, the MA USB protocol capabilities may be profiled 12

according to the function of the integrated USB device. For example, an MA USB HID device may 13
support the MA USB protocol functions pertaining to interrupt transfers and not isochronous or bulk 14

transfers. 15

When defining the MA USB topology and applications, the term “MA USB device” is also used to refer 16
to the computing platform (e.g., portable electronic device) that houses the MA USB device defined in 17

this section, as well as all device-side class drivers and application software required to implement a 18
peripheral device. 19

4.1.3 MA USB hub 20

An MA USB hub is an MA USB device that integrates a USB 2.0 hub or a USB 3.1 hub (which 21
combines a USB 2.0 hub and an Enhanced SuperSpeed hub). It provides physical downstream facing 22

USB ports to attach removable or non-removable USB devices. An MA USB hub performs all USB hub 23
functions for control and management of its downstream facing USB ports. It may or may not have a 24
physical upstream port, but to the USB host system it enumerates as a USB 2.0 hub, or, if the integrated 25

device is a USB 3.1 hub, as a USB 2.0 hub and an Enhanced SuperSpeed hub. As shown in Figure 3 an 26
MA USB hub also contains a logical entity, USB transaction engine, responsible for performing 27

transactions on a USB bus (equivalent functionalities of a USB controller, as requested by the MA USB 28
host). 29

In addition to MA USB device functions, an MA USB hub manages 30

 Attachment and removal of wired USB devices on downstream facing ports 31

 Scheduling and completion of USB transactions targeting USB devices connected to the 32

downstream facing USB ports 33

 USB address assignment 34

Additionally, an MA USB hub provides power to attached USB devices. 35

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 22

MA link interface

MA USB device PAL

USB transaction engine

USB hub emulator

USB

device

USB

device

MA USB hub

USB cable or chip-to-chip

interconnect (e.g., HSIC)

 1

Figure 3—Building blocks of an MA USB hub 2

An MA USB hub not only manages the USB transfers that target its integrated USB 2.0 or USB 3.1 hub, 3

but also manages the USB transfers targeting all USB devices downstream of the integrated hub. An 4
MA USB hub is the only type of MA USB device that integrates a USB hub, and is the only type of MA 5

USB device that manages transfers targeting multiple USB devices. 6

When defining the MA USB topology and applications, the term “MA USB hub” is also used to refer to 7
the computing platform that houses the MA USB hub defined in this section. An example of such a 8

platform is shown in Figure 4 where an MA USB hub hosts three USB devices, with two of them 9
physical and one logical, and one of them removable and two non-removable. 10

NOTE — Throughout this specification, the term MA USB device also refers to MA USB hubs, unless stated 11
otherwise. 12

NOTE — An MA USB hub is the only type of MA USB device that can manage USB transfers targeting multiple 13
USB devices. All other MA USB device types manage transfers to exactly one integrated USB device. 14

NOTE — An MA USB hub need not expose any physical downstream ports. 15

MA link interface USB transaction engine

USB hub emulator

Peripheral device

(removable)

Peripheral device

(non-removable)

MA USB hub

MA USB device PAL

USB cable HSICPhysical product

Peripheral device (using

a non-USB connection,

non-removable) E
m

u
la

te
d

 U
S

B
 c

o
n

n
e

c
tio

n

 16

Figure 4—Example MA USB hub hosting multiple USB devices 17

4.2 USB topology 18

From the host system perspective, each MA USB host instance introduces a separate virtual bus. The 19
MA USB host PAL introduces a USB host and root hub at Tier 1 of the USB hierarchy [USB 2.0]. The 20

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 23

USB device integrated into an MA USB device (including the physical or virtual hub integrated into an 1
MA USB hub) falls in Tier 2 of the hierarchy. USB devices behind an MA USB hub fall in Tier 3. 2

Figure 5 illustrates an example of an MA USB system and its equivalent USB topology. 3

(a) Example MA USB Service Set (MSS)

High-Speed

USB device D2

MA USB host

(b) Equivalent USB topology for the MSS

Host

USB

Device D1

USB 2.0

Hub H1

USB

Device D2

Tier 1

Tier 2

Tier 3Enhanced

SuperSpeed

USB device D3

MA USB hub

integrating a

USB 3.1 hub
MA USB device

integrating

USB device D1

Enhanced

SuperSpeed

Hub H2

USB

Device D3

Root hub

Virtual root hub ports

USB 3.1 hub integrated

into the MA USB hub

 4

Figure 5—MA USB Service Set and equivalent USB topology 5

4.3 MA USB communication model 6

The MA USB communication model assumes a logical separation of management and non-management 7
(i.e., control and data) packets. As shown in Figure 6, all management packets are assumed to be 8

exchanged over a single (logical) management channel, and all control and data packets are assumed to 9
be exchanged over one or more (logical) data channels. All channels are bidirectional. The physical 10

realization of management and data channels is implementation specific, but channels are expected to 11
meet specific timings, on top of which protocol operation details such as timeouts are defined. 12

NOTE — MA USB channels terminate on host and device PALs. The latency associated with each MA USB 13
channel comprises the latencies across all networking layers between the host and device PALs. 14

Host PAL

MA USB host

Device PAL

MA USB device

Management channel (PAL to PAL)

(management packets)

MA Link Interface MA Link Interface

Data channel(s) (PAL to PAL)

(control and data packets)

Physical link

 15

Figure 6—MA USB communication model 16

An MA USB management packet released to a management channel is expected to be received at the 17

target MA USB device or host PAL no later than aManagementChannelDelay after its release time. An 18
MA USB control or data packet released to a data channel is expected to be received at the target MA 19

USB device or host PAL no later than aDataChannelDelay after its release time. 20

NOTE — All MA USB protocol constant names start with the “a” prefix. 21

Figure 7 illustrates the MA USB management and data channel latencies. 22

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 24

MA link interface, e.g.,

(802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

MA USB host PAL

M
A

 U
S

B

d
e

v
ic

e

M
A

 U
S

B

h
o

s
t

P
h

y
s

ic
a

l

li
n

k
t1

MA link interface, e.g.,

(802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

MA USB device PAL

Management packet

released to the

management channel

Management packet

received through the

management channel

t1 ≤ aManagementChannelDelay

t2

Control or data

packet released to a

data channel

Control or data packet

received through a

data channel

t2 ≤ aDataChannelDelay

 1

Figure 7—MA USB Management and data channel latencies 2

4.4 MA USB addressing 3

At the center of the MA USB addressing scheme is the concept of the MA USB Service Set (MSS): A 4
MSS is a group representing an MA USB host and all MA USB devices under its control. Each MA 5

USB device manages the transfers targeting the USB device it integrates, and in the case of an MA USB 6
hub the transfers targeting the hub it integrates, as well as the transfers targeting all USB devices 7
downstream from the integrated hub. The bus-level addresses of all these USB devices are locally 8

assigned by the MA USB device, and are unique within the scope of that MA USB device. Thus, the 9
number of USB devices operating in an MA USB Service Set is practically limited by the number of 10

MA USB devices (including hubs) in the MSS, and the resources (computing power, airtime) available 11
to those MA USB devices and to the MA USB host. 12

Multiple MA USB elements (e.g., an MA USB device and an MA USB host, or two MA USB device 13

instances) may share a common MA link interface (e.g., a common wireless radio). In addition, the MA 14
USB architecture enables operation over a range of network technologies (e.g., IEEE 802.11 and 15

Internet Protocol) with different addressing and multiplexing schemes. Figure 8 shows an example of 16
concurrent operation in an IEEE 802.11 Basic Service Set (BSS), where a single network element is 17
operating as an MA USB device and an MA USB host at the same time, and using a common 802.11 18

radio. The received MA USB packets are delivered to the proper MA USB PAL instance (a host PAL 19
and a device PAL in this case) using the SSID and the Device Address fields in the packet. A similar 20

example is when a single network element runs two instances of the MA USB device PAL in parallel for 21
concurrent operation in two MA USB Service Sets. 22

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 25

MA USB device

MA USB address A2

MA USB

host

SS 1

IEEE 802.11

Basic Service Set

(BSS)

SS 2
IEEE 802.11 MAC

(a) Example of a MA USB dual-role element with

concurrent operation as a MA USB host and a MA

USB device over a common IEEE 802.11 radio

(b) Routing of MA USB packets to the

correct MA USB device or host PAL

instance inside the dual-role element

Concurrent

device and

host operation

Packet 1 (P1)

SSID = SS 1

MA USB Address = A1

Packet 2 (P2)

SSID = SS 2

MA USB Address = A2

Packet 3 (P3)

SSID = SS 1

MA USB Address = A1

Packet 4 (P4)

SSID = SS 2

MA USB Address = A2

P1 P2P3 P4

MA USB device

MA USB address A1

MA USB

host

MA USB device PAL

(operating in SS 1)

MA USB host PAL

(operating in SS 2)

 1

Figure 8—Concurrent MA USB device and host operation in an IEEE 802.11 BSS 2

4.4.1 MA USB device address 3

Within a MSS, each MA USB device is uniquely identified by an 8-bit MA USB address assigned by 4
the MA USB host. There is no structure to the MA USB device address. Address values of 0x00 5

(unassigned) and 0xFF (any device) are reserved for protocol operation. Thus, each MSS can include up 6
to 254 MA USB devices. 7

NOTE — Address value of 0x00 (unassigned) is not used in this version of specification. 8

There is no MA USB address assigned to the MA USB host. All MA USB packets are originated by or 9
targeted at the MA USB host, which makes including an MA USB host address field in MA USB 10

packets redundant; instead, a single bit in each MA USB packet indicates whether the packet is 11
originated by or targeted at the MA USB host. See Section 6.2.1.2 for details. 12

4.4.2 Device handle 13

Each USB device behind an MA USB device is uniquely identified by a locally-assigned 16-bit 14
identifier, referred to as the device handle. Each device handle is unique within the scope of an MA USB 15
device. Device handles are unstructured and carry no specific format. Device handle values of 0x0000 16

(unassigned) and 0xFFFF (any device handle) are reserved for protocol operation. 17

4.4.3 Endpoint handle 18

Within an MA USB device, each USB endpoint is uniquely identified by a locally-assigned 16-bit 19
identifier referred to as the endpoint (EP) handle. EP handles follow a specific format defined in Section 20
6.2.1.5. 21

4.4.4 Container ID 22

An MA USB device may be able to connect over USB 2.0 or 3.1 as well as MA links. It is also possible 23
that multiple different types of MA links are supported. To ensure that the MA USB device may be 24

detected as the same device regardless of whether it is connected over USB 2.0 or 3.1 link or an MA 25

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 26

link, MA USB devices which support connectivity over USB 2.0 or USB 3.1 in addition to MA links 1
shall support the Container ID descriptor as defined in [USB 3.1]. The same container ID shall be 2

provided by an MA USB device over all USB and MA links supported. 3

4.5 Media dependent functions 4

While the MA USB PAL functions are media agnostic, the end-to-end operation of MA USB relies on 5
functions of the network providing the connectivity between the MA USB host and the MA USB device. 6

These media specific functions are specified in this section. Additionally, throughout the specification 7
media specific descriptions are provided in the form of MEDIA DEPENDENT NOTEs. 8

The current version of this specification defines two modes of operation for MA USB, 9

 Operation over a non-extended 802.11 basic service set (802.11 mode): MA USB host and 10
device belong to the same 802.11 BSS, IBSS or PBSS. MA USB host and device PALs are direct 11

clients of the IEEE 802.2 LLC sublayer [IEEE 802.2]. All protocol packets are encapsulated 12
inside SNAP PDUs and presented to the 802.11 MAC SAP as 802.11 MSDUs. 13

 Operation over IP protocol suite (IP mode): MA USB host and device are separated by an IP 14

network. MA USB host and device PALs are direct clients of the TCP (UDP for isochronous 15
streams) transport layer. All protocol packets are carried inside IP datagrams and delivered 16

through TCP (UDP for isochronous streams) connections. 17

Figure 9 illustrates the two MA USB modes of operation. 18

Host PAL

MA USB host

Device PAL

MA USB device

Management channel (PAL to PAL)

(management packets)

Transport + Network

layer (TCP/UDP/IP)

LLC sublayer

MAC sublayer

PHY layer

Transport + Network

layer (TCP/UDP/IP)

LLC sublayer

MAC sublayer

PHY layer

Data channel(s) (PAL to PAL)

(control and data packets)

802.2

LLC

+

802.11

MAC/

PHY

in

native

mode

802.2

LLC

+

802.11

MAC/

PHY

in

native

mode

Physical link

 19

Figure 9—MA USB protocol hierarchy 20

4.5.1 Relation of MA USB addressing to network addressing 21

The MA USB protocol makes use of PAL-level device addresses that are independent of the addresses 22

used at lower network layers. Specifically, there is no dependence between the MA USB address 23
through which an MA USB PAL instance is reached, and the network address of the MA USB device or 24

host containing that PAL instance. 25

Figure 10 illustrates the MA USB addressing scheme and its relation to network-level addresses. At the 26
PAL level, each MA USB device PAL instance is uniquely identified by the MA USB device address 27

within a MSS, or by the (SSID, MA USB device Address) tuple within the underlying network 28
broadcast domain. At the network level, target addresses change to IP addresses in IP mode, or full LLC 29

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 27

addresses in 802.11 mode, where each full LLC address is the logical concatenation of an EUI-48 MAC 1
address and an LLC Source or Destination Service Access Point (LLC SSAP/DSAP). 2

MA USB PAL MA USB PAL

802.2 LLC sublayer

802.11 MAC sublayer

802.11 PHY layer

Transport + Network

layer (TCP/UDP/IP)

LLC sublayer

MAC sublayer

PHY layer

Address format:

LLC SSAP/DSAP::

EUI-48 MAC Address

Address format:

EUI-48 MAC Address

Address format:

SSID::

MA USB Device Address

Address format:

IPv4 or IPv6 address

Address format:

SSID::

MA USB Device Address

802.2

LLC SAP

802.11

MAC SAP

802.11 mode IP mode
 3

Figure 10—Network addressing in 802.11 and IP modes 4

An address resolution function inside the MA USB host PAL associates the MA USB device address of 5

each MA USB device PAL, and the network address through which the device PAL can be reached. 6
Similarly, an address resolution function inside each MA USB device PAL derives the network address 7
through which the MA USB host PAL can be reached. 8

The network-independent addressing scheme in MA USB makes it possible to continue the protocol 9
operation as the network address or even the network interface changes. The MA USB Ping protocol 10

(Section 5.2.2) enables an MA USB PAL instance to discover the network address through which a peer 11
MA USB PAL instance can be reached. 12

NOTE — While MA USB PAL operation may persist across network address or interface changes, MA USB 13
transfers may timeout as a result of network transients. Examples of network-level address changes are an 802.11 14
MAC address change in 802.11 mode as a result of radio switch (e.g., switching from 60GHz to 5GHz), or an IP 15
address change in IP mode resulting from dynamic address allocation. 16

4.5.2 MA USB PAL identification 17

4.5.2.1 Identification in 802.11 mode 18

Identification of MA USB protocol packets in 802.11 mode is out of scope of this specification. 19

4.5.2.2 Identification in IP mode 20

Packet identification in IP mode is based on TCP/UDP port numbers. The MA USB management 21
channel is established over a TCP connection dedicated to MA USB, and therefore all MA USB 22

management packets received through the TCP port associated with the management channel are 23
identified through the receive port number. MA USB control and data packets may be received through 24

the same dedicated TCP connection or other dedicated TCP connections (and for isochronous streams 25
through dedicated UDP connections). In each case, the receive port number is used to identify the MA 26
USB packets. 27

4.5.3 Network requirements 28

MA USB expects the network to provide secure connections (i.e., authentication, authorization, 29
confidentiality, and data integrity) for all communications between an MA USB host and the MA USB 30

devices and hubs in an MSS. In addition it is expected that the network will provide reliable and in-order 31
delivery for all MA USB packets other than isochronous data packets. When operating in 802.11 mode, 32

MA USB assumes controlled reliability over the MA USB link: Each dropped (lost) MAC-level 33

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 28

protocol data unit (MPDU) is retransmitted in a controlled manner based on MAC-level settings such as 1
MSDU lifetime. Reliability settings in the lower layers for MA USB packets are application and 2

implementation-dependent, and can range from no retransmission to practically unlimited number of 3
retransmissions. In addition, MA USB utilizes PAL-level retries to recover from link loss (including 4

MAC and PHY failures), which applies to a portion of or to an entire MA USB transfer, and is repeated 5
for a specified number of times that depends on the transfer mode. 6

4.5.3.1 Requirements for 802.11 mode 7

This specification does not introduce any network requirements for 802.11 mode. 8

4.5.3.2 Requirements for IP mode 9

MA USB operation in IP mode makes use of TCP and UDP transport protocols. Support for TCP 10

protocol is mandatory. For isochronous streams support for UDP protocol is mandatory. 11

4.5.3.3 Media specific protocol constants 12

Table 70 provides the list of MA USB protocol constants, including media dependent constants. The 13
values of the media dependent constants are out of scope of this specification and need to be specified 14
for each specific medium. 15

4.5.4 Device discovery 16

4.5.4.1 Device discovery in 802.11 mode 17

The discovery of MA USB capable devices in the 802.11 mode is out of scope of this specification. 18

4.5.4.2 Device discovery in IP mode 19

Discovery of MA USB enabled devices in the IP mode is outside the scope of the current version of this 20
specification. 21

4.5.5 Packetization 22

4.5.5.1 Packetization in 802.11 mode 23

When operating in 802.11 mode, each MA USB packet is carried as a single 802.11 MAC service data 24
unit (MSDU), i.e., there is no MA USB segmentation and reassembly function defined across MAC 25

service data units. In particular, MA USB packets are limited in size by the maximum MSDU size for 26
the particular 802.11 MAC and PHY that carry those packets. 27

4.5.5.2 Packetization in IP mode 28

When operating in IP mode, all MA USB packets other than isochronous data packets are delivered as 29

byte streams over TCP connections, and therefore are not constrained by the network MTU size. 30
Isochronous data packets are carried in UDP datagrams, and are limited in size by the payload available 31
to each UDP datagram. 32

 33

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 29

5 Data flow model 1

5.1 Communication flow 2

MA USB retains many of USB concepts such as endpoints, pipes and transfer types. Refer to [USB 2.0] 3

for a full description of these concepts. The basic data flow starts from a USBDI-level read or write 4
request over a pipe interface associated with a USB endpoint, which translates into one or more MA 5
USB transfers. Each MA USB transfer typically generates several MA USB protocol data units (PDUs), 6

or packets. 7

On the MA USB device side, each MA USB data packet corresponds to possibly several USB 8

transactions on a wired USB segment terminating on a target USB device. 9

5.2 Protocol overview 10

5.2.1 Packet exchange 11

5.2.1.1 Management packet exchange 12

MA USB devices are managed through MA USB packets of type 0 (Management type). All 13
management packets are transmitted over the management channel, and follow a request-response 14
format. For convenience, in the context of a request-response management packet exchange, the MA 15

USB PAL instance that is transmitting the request packet is referred to as the requesting PAL, and the 16
MA USB PAL instance that is expected to transmit the response packet is referred to as the responding 17

PAL. 18

NOTE — In certain cases a response packet may be unnecessary or optional. For example, a Synchronization 19
Request (SynchReq) packet (Section 6.3.40) may set the Response Required field to 0 to indicate an optional 20
response. 21

Unless otherwise specified, a responding PAL shall release the response packet to the management 22
channel within aManagementResponseTime from the moment it receives the corresponding request 23

packet over the management channel. 24

NOTE — MA USB PAL timings do not include management or data channel latencies; the equivalent timings for 25
an MA USB host or device (which in addition to a PAL instance include interfaces to management and data 26
channels) include management or data channel latencies as appropriate. For example, the above PAL timing 27
requirement is equivalent to the response packet appearing over the medium within aManagementResponseTime + 28
aManagementChannelDelay from the moment the corresponding request packet is received over the medium, or 29
within aManagementResponseTime + 2×aManagementChannelDelay from the moment the corresponding request 30
packet is released to the management channel. 31

Unless otherwise specified, if a requesting PAL does not receive a response packet by 32
aManagementRequestTimeout after it has successfully submitted the request packet to the management 33
channel, it shall retransmit the request packet by releasing another copy of the request packet to the 34

management channel, keeping all packet fields the same as those in the original request packet, except 35
the Retry field, which shall be set to1. If necessary, the requesting PAL shall repeat transmitting the 36

request packet for a number of times not exceeding aManagementRetries. If the corresponding response 37
packet is not received after aManagementRetries retries and the request packet is not a PingReq packet 38
(Section 6.3.34), the requesting PAL may start the Ping protocol (Section 5.2.2), and if the Ping protocol 39

is successful, the requesting PAL may attempt to transmit the request packet again up to the same 40
maximum number of times attempted before the Ping protocol. If the Ping protocol fails, or if the 41

requesting PAL decides not to exercise the Ping protocol, the requesting PAL shall transition to the 42
Session Down state (Section 8.1.1.1) and inform the lower layers of the session state transition. 43

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 30

NOTE — Number of retries does not include possible local retries before the request packet is successfully released 1
to the management channel. An example of a local retry is resubmitting the request packet to a local transmission 2
queue after observing the queue to be full. 3

MEDIA DEPENDENT NOTE — Section 5.2.4.2 of [IEEE 802.11] lists more possible reasons for local failures in 4
802.11 mode. 5

A responding PAL shall respond to a request packet that has the Retry field set to 1, even if it has 6
responded to an earlier instance of the request packet. The responding PAL is not required to repeat any 7
action in response to the duplicate request packet other than retransmitting the corresponding response 8

packet. 9

Figure 11 illustrates the timings related to exchange of management packets. 10

M
A

 U
S

B

d
e

v
ic

e
/h

o
s

t

M
A

 U
S

B

h
o

s
t/

d
e

v
ic

e
M

A
 l
in

k

t1

t1 ≤ aManagementChannelDelay

t3

t2
t2 ≤ aManagementResponseTime

aManagementRequestTimeout

aManagementRequestTimeout >

aManagementResponseTime + 2 × aManagementChannelDelay

M
a

n
a

g
e

m
e

n
t
c
h

a
n

n
e

l

t3 ≤ aManagementChannelDelay

Requesting MA USB PAL

(host or device PAL)

Responding MA USB PAL

(device or host PAL)

Request management

packet released to the

management channel

Request management

packet received through

the management channel

The latest time response

management packet can arrive

through the management channel

Response management

packet released to the

management channel

MA link interface

(e.g., 802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

MA link interface

(e.g., 802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

Request management packet

retried if response management

packet is not received

 11

Figure 11—Default timings for management packet exchange 12

5.2.1.2 Data packet exchange 13

MA USB transfers are executed through MA USB packets of type 2 (Data type). All data packets are 14
transmitted over one or more data channels. 15

MA USB transfers generally involve several data packets. The allowable latencies between these 16

packets, and the behavior associated with potential timeouts are more complex than a simple request-17
response management exchange; transfer timings and associated timeout behaviors are specified in 18

Sections 5.4, 5.5 and 5.10. 19

There are protocol conditions during a non-isochronous MA USB transfer where two data packets can 20
be identified as having a request-response relationship, with the MA USB PAL transmitting the request 21

packet (the requesting PAL) expecting an immediate response packet from the target MA USB PAL (the 22
responding PAL). In the absence of a timely response packet, the requesting PAL needs to take 23

corrective actions such as retransmitting the request packet or initiating the Ping protocol. These 24
protocol conditions, referred to as immediate exchanges, are described in Sections 5.4 and 5.5. The 25
default timings and retransmission behavior for immediate exchanges are described next. 26

NOTE — An example of a data packet pair that may form an immediate exchange is a Transfer Request 27
(TransferReq) and a Transfer Response (TransferResp) packet. Another example is a Transfer Response 28
(TransferResp) and a Transfer Acknowledgment (TransferAck) packet . Not all data packet exchanges are 29
immediate. See sections 5.4 and 5.5 for details. 30

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 31

Unless otherwise specified, a responding PAL in an immediate response exchange shall release the 1
response packet to the assigned data channel within aTransferResponseTime from the moment it 2

receives the corresponding request packet over the assigned data channel. 3

NOTE — MA USB PAL timings do not include management or data channel latencies; the equivalent timings for 4
an MA USB host or device (which in addition to a PAL instance include interfaces to management and data 5
channels) include management or data channel latencies as appropriate. For example, the above PAL timing 6
requirement is equivalent to the response packet appearing over the medium within aTransferResponseTime + 7
aDataChannelDelay from the moment the corresponding request packet is received over the medium, or within 8
aTransferResponseTime + 2×aDataChannelDelay from the moment the corresponding request packet is released to 9
the assigned data channel. 10

Unless otherwise specified, if a requesting PAL in an immediate exchange does not receive a response 11
packet by aTransferTimeout after it has successfully submitted the request packet to the assigned data 12
channel, it shall retransmit the request packet by releasing another copy of the request packet to the 13

assigned data channel, keeping all packet fields the same as those in the original request packet, except 14
the Retry field, which shall be set to 1. If necessary, the requesting PAL shall repeat transmitting the 15

request packet for a number of times not exceeding a protocol constant that depends on the transfer type, 16
specifically, aControlTransferRetries, aBulkTransferRetries and aInterruptTransferRetries for control, 17
bulk and interrupt transfers, respectively. If the corresponding response packet is not received after the 18

maximum number of retries, the requesting PAL shall start the Ping protocol (Section 5.2.2) to verify 19
and possibly re-establish network connectivity with the responding PAL, unless the requesting PAL is 20

an MA USB device PAL, in which case starting the Ping protocol is optional. If the Ping protocol is 21
successful the requesting PAL may still decide to fail the transfer and report the appropriate USBDI 22
error indicating the transfer failure to the application, or it may attempt to transmit the request packet 23

again up to the same maximum number of times attempted before the Ping protocol. If the Ping protocol 24
fails, the requesting PAL shall report the appropriate USBDI error indicating the transfer failure to the 25
application, move to Session Down state (Section 8.1.1.1), and inform the lower layers of the transition 26

of the session to the Session Down state. 27

NOTE — In certain cases data packets may carry updated field values when retried; the Retry field is set to 0 in 28
these packets. See Sections 5.4 and 5.5 for details. 29

NOTE — Number of retries does not include possible local retries before the request packet is successfully released 30
to a data channel. An example of a local retry is resubmitting the request packet to a local transmission queue after 31
observing the queue to be full. 32

NOTE — A requesting MA USB device PAL may choose not to exercise the Ping protocol and wait indefinitely for 33
a packet from the MA USB host PAL, or follow another implementation-dependent behavior. 34

NOTE — It is possible that a responding PAL in a transient or corrupted state fails to respond to a request data 35
packet but responds to a PingReq packet; a requesting PAL may or may not tie the status of an individual transfer to 36
the Ping protocol outcome. 37

NOTE — MA USB host and device PAL implementations should report transfer failures to the application in a 38
timely manner. 39

A responding PAL shall respond to a request packet that has the Retry field set to 1, even if it has 40

responded to an earlier instance of the request packet. The responding PAL is not required to repeat any 41
action in response to the duplicate request packet other than retransmitting the corresponding response 42
packet. 43

Figure 12 illustrates the immediate exchange default timings. 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 32

M
A

 U
S

B

d
e

v
ic

e
/h

o
s

t

M
A

 U
S

B

h
o

s
t/

d
e

v
ic

e
M

A
 l
in

k

t1

t1 ≤ aDataChannelDelay

t3

t2
t2 ≤ aTransferResponseTime

aTransferTimeout

aTransferTimeout >

aTransferResponseTime + 2 × aDataChannelDelay

D
a

ta
 c

h
a

n
n

e
l

t3 ≤ aDataChannelDelay

MA USB requesting PAL

(host or device PAL)

MA USB responding PAL

(device or host PAL)

Request data packet

released to the assigned

data channel

Request data packet

received through the

assigned data channel

The latest time response data

packet may arrive through the

assigned data channel

Response data packet

released to the assigned

data channel

MA link interface

(e.g., 802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

MA link interface

(e.g., 802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

Request data packet

retried if response data

packet is not received

 1

Figure 12—Default timings for data packet immediate exchange 2

In addition to immediate exchange, there are protocol conditions during a non-isochronous MA USB 3

transfer where a transmitting PAL is expected to transmit data packets faster than a minimum rate, or the 4
receiving PAL may take inquiring actions to verify the transfer is still alive. These protocol conditions 5

are described in Sections 5.4 and 5.5. 6

Unless otherwise specified, a transmitting PAL that is expected to keep a transfer alive shall release 7
successive data packets to the assigned data channel no more than aTransferRepeatTime apart. 8

Unless otherwise specified, a receiving PAL that expects a transfer to be kept alive shall start an 9
inquiring action such as releasing another transfer request packet to the assigned data channel if it does 10

not receive a new data packet by aTransferKeepAlive after it receives the last data packet over the 11
assigned data channel. 12

NOTE — The default timeout period of aTransferKeepAlive can dynamically increase to a multiple of 13
aTransferKeepAlive during an IN transfer. See Section 5.4 for details. 14

Figure 13 illustrates the default timings to keep an MA USB transfer alive. 15

M
A

 U
S

B

d
e

v
ic

e
/h

o
s

t

M
A

 U
S

B

h
o

s
t/

d
e

v
ic

e
M

A
 l
in

k

t1

t1 ≤ aDataChannelDelay

MA USB requesting PAL

(host or device PAL)

MA USB responding PAL

(device or host PAL)

The earliest time response data

packet may arrive through the

assigned data channel

Response data packet

released to the assigned

data channel

MA link interface

(e.g., 802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

MA link interface

(e.g., 802.11 MAC and PHY plus 802.2 LLC,

or an IP stack plus TCP/UDP transport)

Inquiring action taken

to verify that the

transfer is alive

t3

t3 ≤ aDataChannelDelay

Follow-on response data

packet released to the

assigned data channel

t2
t2 ≤ aTransferRepeatTime

The latest time follow-on response

data packet may arrive through the

assigned data channel

aTransferKeepAlive

aTransferKeepAlive >

aTransferRepeatTime + aDataChannelDelay

D
a

ta
 c

h
a

n
n

e
l

 16

Figure 13—Default timings to keep an MA USB transfer alive 17

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 33

5.2.2 Ping protocol 1

The Ping protocol enables an MA USB host or MA USB device to verify and possibly re-establish 2

connectivity with a target MA USB device or the MA USB host. The protocol involves exchange of two 3
management packets: A Ping Request (PingReq) packet (Section 6.3.34) and a Ping Response 4

(PingResp) packet (Section 6.3.35). Receiving a PingResp packet from a target MA USB device enables 5
the address resolution function of an MA USB host PAL to associate the MA USB device address of the 6
target MA USB device with a local and remote network address pair through which the target MA USB 7

device can be reached. Similarly, receiving a PingResp packet from the MA USB host enables the 8
address resolution function of an MA USB device PAL to identify the local and a remote network 9

address through which the MA USB host can be reached. 10

NOTE — The Ping protocol can be used to re-discover a peer MA USB PAL over a different network interface 11
without using a network-level discovery protocol. For example, an MA USB host PAL can transmit a PingReq 12
packet over different network interfaces (e.g., over different 802.11 radios in 802.11 mode operation) to target the 13
same MA USB device. Receiving a PingResp packet over any of the network interfaces enables the MA USB host 14
PAL to associate the target MA USB device address with a local network interface and a remote network address 15
through which the target MA USB device can be reached. 16

A PingReq packet transmitted by the MA USB host can target all MA USB devices in its Service Set by 17
setting the Device Address field (Section 6.2.1.6) in the PingReq packet to the broadcast address of 18

0xFF. Any MA USB device that receives a PingReq packet with the Device Address field set to its 19
device address or broadcast address and the SSID field matching the MA USB device Service Set shall 20
respond with a PingResp packet with the Device Address field set to the MA USB address of that 21

device. A PingReq packet transmitted by the MA USB device shall carry the device MA USB address in 22
the Device Address field. An MA USB host receiving a PingReq packet with the SSID field matching its 23

Service Set shall respond with a PingResp packet with the Device Address field set to the same value as 24
the Device Address field in the PingReq packet. An MA USB device shall not transmit a PingReq 25
packet with the Device Address field set to broadcast address. 26

NOTE — Broadcast management packets may be transmitted using network-level multicast or broadcast, which 27
may make them less reliable than unicast packets. 28

The Ping protocol packet exchange follows the same timings as other management packet exchanges 29
(Section 5.2.1.1); in particular, if a PingResp packet is not received within 30
aManagementRequestTimeout after releasing the last PingReq packet retry to the management channel, 31

the MA USB PAL transmitting the PingReq packet shall transition to the Session Down state (Section 32
8.1.1.1) and inform the lower layers of the session state transition. 33

A trigger for start of the Ping protocol shall result in a PingReq packet only if there is not another 34
PingReq packet pending a response. 35

5.2.3 Data transfer 36

Compared to USB transfers, which are defined using rigid packet sizes at the bus level, MA USB 37
transfers take a more flexible form: Each MA USB transfer carries a flexible number of bytes within the 38
byte stream made available through a USB pipe interface, to or from the remote USB endpoint (on an 39

MA USB device) that the pipe is associated with. Put differently, the bytes written to or read from a 40
USB pipe are made available through one or more MA USB transfers, executed sequentially to preserve 41

the byte stream order and integrity. 42

All MA USB transfers are initiated by the MA USB host. An MA USB IN transfer delivers USB 43
payload from a target USB endpoint to the pipe interface associated with that endpoint, and an MA USB 44

OUT transfer delivers USB payload from a pipe interface to the target USB endpoint that the pipe is 45
associated with. An MA USB IN transfer is not complete until all requested USB payload has been 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 34

placed in the receive buffer designated by the MA USB host PAL. An MA USB OUT transfer is not 1
complete until all transmitted USB payload is successfully delivered to the target USB endpoint. In 2

particular, successful delivery of MA USB packets over the network is not sufficient to declare an MA 3
USB transfer complete. 4

The starting point for MA USB transfers is a read or write request made through the USBDI interface at 5
the MA USB host. MA USB host services each read or write request through one or more MA USB 6
transfers. The number and size of each MA USB transfer is implementation-specific, and generally 7

depends on the buffer space available to the MA USB host, the buffer space available to the target MA 8
USB device, or both. Each MA USB transfer is identified by a Transfer Request ID or Request ID for 9

short. All MA USB packets belonging to the same MA USB transfer carry the same Request ID. 10
Concurrent MA USB transfers targeting different endpoints may use the same Request ID. 11

5.3 Transfer models 12

An MA USB transfer moves data between a local buffer residing in the MA USB host, which is fully 13
allocated to the transfer before the transfer is initiated, and a remote buffer residing in a target MA USB 14

device, which is managed (allocated, resized and released) by the MA USB device. Except for 15
isochronous transfers that allow data loss, MA USB transfers employ a sliding-window protocol to 16

ensure reliable delivery; the sliding-window protocol has been optimized based on a few assumptions, 17

 As a protocol running over modern data link or network layer technologies, MA USB expects 18
reliable and in-order data delivery by the MA link itself as part of the normal operation, but as a 19

transport layer protocol, it must be equipped to handle both unreliable and out-of-order data 20
reception in uncommon scenarios such as link loss or switching from one MA link interface to 21

another. 22

 MA USB can be expected to run over MA link technologies with large MTU values relative to 23

the target MA USB device buffer size, and learning the buffer size available to a transfer can 24
help the transmitter with packetizing decisions. 25

 To make better use of limited memory under concurrent transfers, devices should be able to 26

adjust the buffer size available to each transfer while the transfer is in progress. 27

Figure 14 shows the taxonomy of MA USB transfers. IN transfers do not need flow control, as a receive 28

buffer not smaller than the entire transfer size is assumed to be available on the host before the transfer 29
is initiated. All non-isochronous IN transfers follow the same protocol defined in Section 5.4. 30

OUT transfers generally require flow control, as the receive buffer on the target MA USB device is not 31
required to be as large as the transfer size. This specification defines two models for non-isochronous 32
OUT transfers, with the primary difference between the models being in how they achieve flow control. 33

The protocol-managed (p-managed) model uses protocol-level (MA USB) packets for flow control. 34
Support of the p-managed transfer model is mandatory for all MA USB hosts and devices. The link-35

managed (l-managed) model offloads the flow control function to the underlying link protocol by 36
carrying the transfer payload (targeting a single OUT endpoint) over a dedicated flow-controlled link-37
level connection. In this model, MA USB host does not make any assumptions about the memory 38

available to the transfer on the target MA USB device. Support for the l-managed transfer model is 39
optional for MA USB hosts and MA USB devices. 40

Isochronous transfers follow a different flow, and are described in Section 5.10. 41

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 35

Isochronous

transfers

Control, bulk and

interrupt transfers

Protocol-

managed

Link-

managed

MA USB transfers

IN OUTIN OUT

 1

Figure 14—Taxonomy of MA USB transfers 2

5.4 IN transfers 3

An MA USB IN data flow is a unidirectional stream of bytes delivered from a target USB IN endpoint 4
or a stream buffer within an Enhanced SuperSpeed bulk IN endpoint that supports the Enhanced 5

SuperSpeed Stream Protocol [USB 3.1] to the MA USB host. 6

NOTE — Throughout this specification the term “endpoint flow” refers to the unidirectional byte stream targeting 7
an endpoint, and the term “stream flow" refers to the unidirectional byte stream targeting a stream within an 8
Enhanced SuperSpeed bulk endpoint that supports the Enhanced SuperSpeed Stream Protocol. 9

The MA USB IN data flow is illustrated in Figure 15. The MA USB host PAL initiates an MA USB IN 10

transfer by transmitting a TransferReq packet (Section 6.5.2) to a target MA USB device. The MA USB 11
host PAL assigns a Request ID to each transfer request and associated TransferReq packet. Request ID 12
is reset to 0 at session initialization or upon any configuration event that returns the state of the endpoint 13

or stream flow to the initial state, and is incremented by 1 for each new transfer request, with 14
wraparound to 0 after reaching the maximum value of aMaxRequestID. 15

Each TransferReq packet includes a Remaining Size field that carries the number of remaining bytes the 16
MA USB host PAL expects to receive to complete the transfer. 17

Each TransferReq packet also includes a Sequence Number field that carries the sequence number value 18

the MA USB host is expecting to receive next. The sequence number is set to 0 upon any configuration 19
event that returns the state of the target endpoint or stream flow to the initial state. 20

NOTE — Configuration events that return the state of an endpoint or stream flow to the initial state are triggered in 21
response to various events at the MA USB host or device, and are normally communicated through appropriate 22
management packets. As a result, the time an endpoint or stream flow makes the transition to its initial state depends 23
on whether the event is viewed from the MA USB host or from the target MA USB device perspective. For 24
example, the MA USB host is assumed to have initialized a target endpoint flow when it transmits an 25
EPHandleDeleteReq or USBDevDisconnectReq packet that targets the endpoint; the target MA USB device on the 26
other hand, can be assumed to have initialized the endpoint flow when it transmits a corresponding response packet 27
to the MA USB host with a status code that indicates the endpoint state was reset (e.g. status code of SUCCESS). 28

 29

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 36

MA USB host PAL MA USB device PAL

Read request

Read size 30 KB
MA USB IN transfer

Request ID 0

Transfer size 30 KB

TransferResp(Request ID 0, Sequence No. 4,

Remaining Size 0 KB, Status Code

NO_ERROR, EOT 1, ARQ 0/1)

USBDI

Read response

Status OK

T
a

rg
e

t
U

S
B

e
n

d
p

o
in

t
o

r
s
tr

e
a

m

Data transfer complete with no error

TransferReq(Request ID 0, Sequence No. 0,

Remaining Size 30 KB) TransferResp(Request ID 0, Sequence No. 0,

Remaining Size 24 KB, Status Code

NO_ERROR, EOT 0, ARQ 0)

TransferResp(Request ID 0, Sequence No. 1,

Remaining Size 18 KB, Status Code

NO_ERROR, EOT 0, ARQ 1)

TransferResp(Request ID 0, Sequence No. 2,

Remaining Size 12 KB, Status Code

NO_ERROR, EOT 0, ARQ 0)

TransferResp(Request ID 0, Sequence No. 3,

Remaining Size 6 KB, Status Code

NO_ERROR. EOT 0, ARQ 0)

Read response

Status STALL

TransferResp(Request ID 1, Sequence No. 7,

Remaining Size 20 KB, Status Code

TRANSFER_EP_STALL, EOT 1, ARQ 0/1)

All TransferResp

packets with Status

Code set to

NO_ERROR are

carrying 6 KB of

USB payload

STALL

Data transfer complete with STALL error

TransferAck(Request ID 0, Sequence No. 1,

Status Code NO_ERROR)

TransferAck(Request ID 0, Sequence No. 4,

Status Code NO_ERROR)
Acknowledged data is removed from the

target MA USB device buffer

TransferAck(Request ID 1, Sequence No. 7,

Status Code TRANSFER_EP_STALL)

Read request

Read size 36 KB

TransferReq(Request ID 1, Sequence No. 4,

Remaining Size 36 KB)

MA USB IN transfer

Request ID 1

Transfer size 36 KB

TransferResp(Request ID 1, Sequence No. 5,

Remaining Size 30 KB, Status Code

NO_ERROR, EOT 0, ARQ 0)

TransferReq(Request ID 1, Sequence No. 6,

Remaining Size 30 KB, Retry 0) TransferResp(Request ID 1, Sequence No.

<reserved>, Remaining Size 30 KB, Status

Code TRANSFER_PENDING, EOT 0, ARQ 0)

TransferResp(Request ID 1, Sequence No. 6,

Remaining Size 24 KB, Status Code

NO_ERROR, EOT 0, ARQ 1)

No TransferResp packet received within

aTransferKeepAlive after the last TransferResp

packet; another TransferReq packet is issued

with possibly updated Sequence Number field

No data received from the target USB

endpoint or stream; no TransferResp

transmitted in this example

Data received from the target USB

endpoint or stream; transfer resumes

TransferResp packet expected within

aTransferTimeout after TransferReq

transmission; receiving Status Code of

TRANSFER_PENDING results in the

TransferReq retransmission not to be triggered.

TransferAck(Request ID 1, Sequence No. 6,

Status Code NO_ERROR)

MA Link Interface

First TransferResp packet expected within

aTransferTimeout after releasing the

TransferReq packet to the assigned data channel

MA Link Interface

MA USB device may ask for

acknowledgement by setting the ARQ

field to 1

A TransferReq packet with the Sequence

Number field set to 5 or higher may also serve as

the above TransferAck packet

USB Logic EP

 1

Figure 15—MA USB IN transfer 2

In response to a TransferReq packet, the target MA USB device shall transmit one or more TransferResp 3
packets (Section 6.5.3) to the MA USB host to transfer the USB payload from the target USB endpoint 4

or stream in the strict order it was received from the target endpoint or stream. Each TransferResp 5
packet carries the same EP Handle, Stream ID, and Request ID as in the TransferReq packet that 6

initiated the transfer. To enable the MA USB host to identify missing data packets, each TransferResp 7
packet carries a Sequence Number field, which is set to 0 at session initialization or upon any 8
configuration event that returns the state of the endpoint or stream flow to the initial state. The Sequence 9

Number value is incremented by 1 after each new (i.e., not retried) TransferResp packet, with 10
wraparound to 0 after reaching the maximum value of aMaxSequenceNumber. The Sequence Number 11

values keep increasing across successive transfers. 12

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 37

To avoid ambiguity in tracking the TransferResp packets pending completion, the MA USB device shall 1
have no more than (aMaxSequenceNumber +1)/2 (half the size of the Sequence Number space) 2

outstanding TransferResp packets. 3

In the absence of an active IN transfer, and if the target endpoint or stream has USB data to transmit, a 4

TransferReq packet and the first corresponding TransferResp packet form an immediate exchange with 5
timings and behavior defined in Section 5.2.1.2, except that a retried TransferReq packet may carry an 6
updated Sequence Number value, in which case it is transmitted with the Retry field set to 0. While an 7

MA USB IN transfer on a target endpoint or stream is in progress, the MA USB host may transmit 8
additional TransferReq packets to target the same endpoint or steam, with the value of the Request ID 9

field incremented by 1 for each new transfer request. The target MA USB device queues the received 10
TransferReq packets in a request buffer in the increasing order of Request ID values for subsequent 11
processing. Upon completion of an IN transfer, the target MA USB device shall immediately process the 12

next TransferReq packet in its request buffer if it is not empty, resulting in an immediate exchange with 13
timings and behavior defined in Section 5.2.1.2, except that a retried TransferReq packet may carry an 14

updated Sequence Number value and is transmitted with the Retry bit set to 0. 15

NOTE — A retried TransferReq packet for an active transfer may not change the size of the transfer. 16

NOTE — The target MA USB device may transmit a null TransferResp packet (a TransferResp packet with no 17
payload) with the Status Code field set to TRANSFER_PENDING in response to a TransferReq packet if the target 18
endpoint or stream has no USB payload to transmit, i.e., the MA USB device does not have to wait for the MA USB 19
host retrying a TransferReq packet before it can communicate the target endpoint or stream pending status. 20

The MA USB host shall not retry a TransferReq packet unless all previous transfer requests have been 21
completed, and the MA USB host has not received a corresponding TransferResp packet for more than 22
aTransferTimeout since the last time the MA USB host acknowledged the last TransferResp packet 23

belonging to the immediately preceding MA USB transfer. 24

To avoid ambiguity in tracking the outstanding TransferReq packets, the MA USB host shall have no 25

more than (aMaxRequestID +1)/2 (half the size of the Request ID space) outstanding TransferReq 26
packets for each target IN endpoint or stream. Also, the total number of outstanding transfers across all 27
IN and OUT endpoints and streams shall not exceed the number returned by the target MA USB device 28

in the Number of Outstanding Requests field in the CapResp packet (Section 6.3.3). 29

NOTE — MA USB devices with multiple endpoints or streams are recommended to use a shared buffer to store the 30
state information for all outstanding transfers, as the number of outstanding transfer on each target endpoint or 31
stream is decided by the MA USB host. 32

A TransferReq packet queued by the target MA USB device is not acknowledged unless it is invalid 33

(e.g., a gap is detected in the packet Request ID field), in which case the target MA USB device PAL 34
shall discard the invalid TransferReq packet, and shall return a null TransferResp packet, i.e., a 35
TransferResp packet with no payload, within aTransferResponseTime from the moment it received the 36

invalid TransferReq packet, with the TransferResp packet Request ID field set to the next Request ID 37
value the MA USB device is expecting, and the Status Code field set to MISSING_REQUEST_ID if the 38

received TransferReq packet is valid but shows a gap in its Request ID field, or INVALID_REQUEST 39
if the received TransferReq packet is invalid independent of the value of its Request ID field. In 40
response to a TransferResp packet with the Status Code field set to MISSING_REQUEST_ID or 41

INVALID_REQUEST, the MA USB host shall invalidate all outstanding TransferReq packets with 42
request ID fields set to values larger than indicated in the TransferResp packet and start transmitting new 43

TransferReq packets starting with the Request ID value in the TransferResp packet. 44

NOTE — These new TransferReq packets may carry updated information such as new values for the Remaining 45
Size and Sequence Number fields, and are not considered retransmissions. 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 38

NOTE — The target MA USB device may use the Sequence Number field in an incoming TransferReq packet to 1
update its internal state, even if there is a gap in the packet Request ID field. 2

NOTE — It is possible that a target MA USB device silently drops a valid incoming TransferReq packet if it cannot 3
admit the packet into its request buffer; this scenario is no different from the packet being lost over the medium, and 4
is recovered though a detected gap in subsequent TransferReq packets, or through an MA USB host timeout. 5

The target MA USB device fulfills an IN transfer request by transmitting one or more TransferResp 6
packets. The interval between the release times of two successive TransferResp packets belonging to the 7
same IN transfer to the assigned data channel shall not exceed aTransferRepeatTime, unless no data is 8

available from the target USB endpoint or stream, in which case the target MA USB device may indicate 9
a pending status and enter longer periods of inactivity as described later in this section. 10

NOTE — The above timing means that the interval between two successive TransferResp packets corresponding to 11
the same IN transfer appearing over the medium is not to exceed aTransferResponseTime + aDataChannelDelay as 12
long as there is USB payload to transmit. 13

For an active IN transfer involving multiple TransferResp packets, if the MA USB host PAL expects a 14
TransferResp packet and does not receive the packet within aTransferKeepAlive from the moment it 15
received the last TransferResp packet through the assigned data channel, it shall transmit a TransferReq 16

packet to the target MA USB device with the Request ID field set to the value identifying the IN 17
transfer, the Sequence Number field set to the value the MA USB host is expecting next, and the 18

Remaining Size field set to the remaining number of bytes expected to complete the transfer. This 19
TransferReq packet starts an immediate exchange with timings and behavior defined in Section 5.2.1.2, 20
except that a retried TransferReq packet may carry an updated Sequence Number value and is 21

transmitted with the Retry bit set to 0. 22

NOTE — A retried TransferReq packet for an active transfer may not change the size of the transfer. 23

An MA USB device that is experiencing delay in receiving data from a target USB endpoint or stream 24
shall indicate a pending status and transition to a longer timeout by transmitting a null TransferResp 25
packet, i.e., a TransferResp packet with no payload, with the Status Code field set to 26

TRANSFER_PENDING and optionally the ARQ field set to 1; the Sequence Number and Remaining 27
Size fields in the null TransferResp packet are set to aInvalidSequenceNumber and reserved, 28

respectively. If the ARQ field in the null TransferResp packet is set to 1, the packet starts an immediate 29
exchange with the MA USB host that requires the host to acknowledge the null TransferResp packet 30
through a TransferAck packet with the same Request ID and Status Code field values as those in the null 31

TransferResp packet; the timings and behavior for the immediate exchange are defined in Section 32
5.2.1.2. The first TransferResp packet with payload that follows a null TransferResp packet with Status 33

Code field set to TRANSFER_PENDING shall have the ARQ field set to 1, resulting in an immediate 34
exchange with the MA USB host, with timings and behavior defined in Section 5.2.1.2. 35

NOTE — The null TransferResp packet indicating a pending status can be transmitted as part of the flow of 36
TransferResp packets transmitted to the MA USB host (unsolicited), or in response to a TransferReq packet 37
(solicited). 38

NOTE — A TransferResp packet with payload (i.e., valid Sequence Number field value) and the Status Code field 39
set to NO_ERROR can be acknowledged by a TransferAck packet with the same Request ID value, the same 40
Sequence Number value, and the same Status Code value (NO_ERROR), or alternatively, by a TransferReq packet 41
(including a new outstanding transfer request) with the same or larger Request ID value, larger Sequence Number 42
value, and the same Status Code value (NO_ERROR). A TransferResp packet with the Status Code field set to any 43
value other than NO_ERROR (e.g., a null TransferResp packet with the Status Code field set to 44
TRANSFER_PENDING and the Sequence Number field set to aInvalidSequenceNumber) can be acknowledged 45
only by a TransferAck packet with the same Request ID value, the same Sequence Number value (unless the value 46
of the field in the TransferResp packet is set to aInvalidSequenceNumber, in which case the value of the Sequence 47
Number field in the TransferAck packet is also set to aInvalidSequenceNumber), and the same Status Code value. 48
Also see the rules for removing IN transfer data from the MA USB device buffer later in this section. 49

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 39

Once the MA USB host PAL receives a TransferResp packet with the Status Code field set to 1
TRANSFER_PENDING, it shall reset the TransferReq retry logic, and set the transfer timeout period to 2

K × aTransferKeepAlive, where K ≥ 0 is a per-transfer variable with the default value of 3
aDefaultKeepAliveDuration that the MA USB host establishes by responding to an EPSetKeepAliveReq 4

packet (Section 6.3.52) transmitted by the target MA USB device. The MA USB host PAL shall 5
maintain the extended timeout period as long as the target endpoint or stream is in pending state, and 6
shall change it to aTransferKeepAlive after receiving the first TransferResp packet with the Status Code 7

field set to a value other than TRANSFER_PENDING. 8

NOTE — The special value of K = 0 is reserved for infinite transfer timeout, meaning that the MA USB host PAL 9
will not have to poll the endpoint once it receives a null TransferResp packet with the Status Code field set to 10
TRANSFER_PENDING. 11

NOTE — The TransferReq packet that the MA USB host PAL transmits after not receiving a TransferResp packet 12
for the target endpoint or stream in pending state for K × aTransferKeepAlive starts an immediate exchange with 13
timings and behavior defined in Section 5.2.1.2. In particular, once the MA USB host transmits a TransferReq 14
packet, the period between successive retries of the packet in case the MA USB host PAL does not receive a 15
response packet stays at aTransferKeepAlive. Receiving a new TransferResp packet that repeats the 16
TRANSFER_PENDING Status Code value resets the transfer timeout period to K × aTransferKeepAlive. 17

NOTE — The target MA USB device may request a new value for the multiplicative factor K, with the intention of 18
establishing the factor for the target endpoint, specifically, for all IN transfers targeting the endpoint or streams 19
within the endpoint; however, the MA USB transfer to which a new value of K applies is decided by the MA USB 20
host PAL and can be an arbitrary transfer in the future, which makes K (and the transfer timeout period) transfer-21
dependent. 22

NOTE — Following communicating the pending status of the target endpoint or stream to the MA USB host, the 23
MA USB device does not have to wait for the MA USB host to retry a TransferReq packet before it can transmit a 24
TransferResp packet carrying payload. 25

NOTE — The pending status of one or more endpoints, does not prevent the MA USB host from communicating with other 26
endpoints on the MA USB device. The target MA USB device shall mark the last TransferResp packet 27

belonging to an IN transfer by setting the EoT field to 1, which results in an immediate exchange that 28
requires the MA USB host to acknowledge the packet through a TransferAck packet, or optionally, 29
through an outstanding TransferReq packet if the TransferResp packet has the Status Code field set to 30

NO_ERROR. If acknowledging by a TransferAck packet, the TransferAck packet shall have the same 31
values for the Request ID, Sequence Number and Status Code fields as the corresponding values in the 32

TransferResp packet. If the total data delivered to the MA USB host is less than the amount indicated in 33
the Remaining Size field of the TransferReq packet, then the TransferResp packet carrying EOT field set 34
to 1 shall have the Status Code field set to TRANSFER_SHORT_TRANSFER. 35

NOTE — The target MA USB device may also set the ARQ field to 1 when it sets the EoT field to 1; a 36
TransferResp packet with the EoT field or the ARQ field set to 1 results in an immediate exchange with the MA 37
USB host with timings and behavior defined in Section 5.2.1.2, except that the target MA USB device is generally 38
not required to retry the TransferResp packet if it does not receive an acknowledgement. An exception is the first 39
TransferResp packet with payload transmitted after the target endpoint or stream has no longer a pending status, 40
which has to be retried if needed. 41

A null TransferResp packet with the Status Code field set to TRANSFER_PENDING shall not have the 42
EoT field set to 1. 43

 If the target endpoint returns a STALL handshake during a transfer, the target MA USB device shall 44
proceed to deliver the entire payload it has received from the target endpoint or stream to the MA USB 45
host before concluding the transfer in error. Specifically, the target MA USB device shall set the Status 46

Code field to NO_ERROR in all TransferResp packets it transmits as part of the transfer, except the last 47
TransferResp packet, which shall have the Status Code field set to TRANSFER_EP_STALL, the EoT 48

field set to 1, and optionally the ARQ field set to1. The last TransferResp packet initiates an immediate 49

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 40

exchange with the MA USB host, requiring the host to acknowledge the TransferResp packet through a 1
TransferAck packet, with timings and behavior defined in Section 5.2.1.2. The TransferAck packet shall 2

have the same values for the Request ID, Sequence Number and Status Code fields as the corresponding 3
values in the TransferResp packet. The target MA USB device shall queue any new transfer request that 4

targets a stalled endpoint or stream for possible later processing. 5

NOTE — The last TransferResp packet belonging to an IN transfer that experiences a STALL condition has a 6
nonzero Remaining Size field, although the EoT field in the packet is set to1. 7

The MA USB host PAL may stop tracking the state of an IN transfer and release the associated 8
resources once it has acknowledged the last TransferResp packet belonging to the transfer, and the MA 9
USB host PAL does not receive a TransferResp packet for aMaxTransferLifetime since it last released 10

the acknowledgement packet to the last TransferResp packet to the assigned data channel. 11

NOTE — This condition is defined to ensure the target MA USB device has received the acknowledgement packet. 12

In response to a TransferResp packet with gap in the Sequence Number field, the MA USB host PAL 13
shall release to the assigned data channel a TransferReq packet with the Request ID field identifying the 14
transfer request the earliest missing Sequence Number value belongs to, the Sequence Number field set 15

to the earliest missing Sequence Number value, the Remaining Size field set to the remaining size of the 16
transfer identified by the Request ID field value, and the Status Code field set to NO_ERROR, within 17

aTransferResponseTime from the moment the MA USB host PAL receives the TransferResp packet. 18

NOTE — The target MA USB device may transmit multiple TransferResp packets belonging to successive IN 19
transfers, without waiting for the last TransferResp packet of each transfer to be acknowledged. A TransferReq 20
packet with the Sequence Number field set to N also acknowledges TransferResp packets with Sequence Number 21
values smaller than N, up to the first TransferResp packet with a nonzero Status Code value. 22

A target MA USB device shall not remove any transfer data associated with an MA USB IN transfer from 23

its buffer unless it receives one of the following packets, 24

 A TransferAck packet acknowledging all TransferResp packets with Sequence Number values less 25

than or equal to the value of the Sequence Number field in the packet in which case all 26
acknowledged data is removed from the MA USB device buffer. 27

 A TransferReq packet (including new outstanding transfer requests) acknowledge all TransferResp 28

packets with Sequence Number values less than the value of the Sequence Number field in the 29
packet, in which case all acknowledged data is removed from the MA USB device buffer. 30

 A DevResetReq packet (Section 6.3.18) or DevDisconnectReq packet (Section 6.3.36), in which 31
case all data for all endpoints and streams is removed from the MA USB device buffer. 32

 A ClearTransfersReq packet (Section 6.3.14), in which case all data related to corresponding 33
endpoint(s) is removed from the MA USB device buffer. 34

 A USBDevDisconnectReq packet (Section 6.3.26) for the target USB device, in which case all 35
data related to the target USB device is removed from the MA USB device buffer. 36

 A CancelTransferReq packet (Section 6.3.42), in which case all data related to the target request 37
is removed from the MA USB device buffer. 38

A target MA USB device that receives a CancelTransferReq packet (Section 6.3.42) should remove 39
from its buffer all the data corresponding to the transfer identified by the CancelTransferReq packet, 40
except for the data that is already received from the target endpoint or stream (and hence allocated a 41

sequence number) and has not been acknowledged by the host. The specific behavior of the MA USB 42
device and the MA USB host depends on the state of the transfer at the time that the CancelTransferReq 43

is processed by the MA USB device: 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 41

 If the transfer was cancelled before any data was moved from the USB device (i.e., the 1

Cancellation Status field in CancelTransferResp packet set to 1): The MA USB devices shall 2
respond to a TransferReq packet for the cancelled transfer with a TransferResp packet with EOT 3
set to 1, Status Code field set to TRANSFER_CANCELLED, the Remaining Size field set to 0, 4

and ARQ field set to 1. Additionally the MA USB device shall keep the state of the transfer until 5
it receives the TransferAck packet from the MA USB host. The MA USB host shall transmit the 6

TransferAck packet only after it has received all the TransferResp packets as well as the 7
CancelTransferResp packet related to the cancelled transfer. 8

 If the transfer was cancelled after some data was moved from the USB device (i.e., the 9

Cancellation Status field in CancelTransferResp packet set to 2): The MA USB device shall 10
transmit all the data received from the USB device to the MA USB host in TransferResp packets. 11

The last TransferResp packet of the transfer shall carry EOT field set to 1 with the Status Code 12
field set to TRANSFER_CANCELLED. The TransferResp packets other than the last in the 13
transfer may carry Status Code field set to TRANSFER_CANCELLED or SUCCESS. 14

Additionally the MA USB device shall keep the state of the transfer until it receives the 15
TransferAck packet from the MA USB host. The MA USB host shall transmit the TransferAck 16

packet only after it has received all the TransferResp packets as well as the CancelTransferResp 17
packet related to the cancelled transfer. 18

 If the transfer was completed (i.e., the Cancellation Status field in CancelTransferResp packet set 19

to 3): The MA USB device shall transmit all the data received from the USB device to the MA 20
USB host in TransferResp packets, with the Status Code field set to the appropriate values (the 21

same values carried if the transfer was not cancelled). The last TransferResp packet of the 22
transfer shall carry EOT field set to 1. The MA USB device shall keep the state of the transfer 23

until it receives the TransferAck packet from the MA USB host. The MA USB host shall 24
transmit the TransferAck packet only after it has received all the TransferResp packets as well as 25
the CancelTransferResp packet related to the cancelled transfer. 26

 If the transfer was not yet received (i.e., the Cancellation Status field in CancelTransferResp 27
packet set to 4): The MA USB device is not required to keep cancel information for a transfer it 28

has not yet received. If a TransferReq packet is received at the MA USB device, the MA USB 29
device shall respond to it with no required knowledge of whether the transfer was previously 30

cancelled. The MA USB host, following the receipt of the TransferResp packet, may either 31
retransmit the CancelTransferReq or wait for the completion of the transfer. 32

 If the transfer with RequestID was serviced as part of ClearTransfersReq processing without any 33

data being moved from the USB Device (i.e., the Cancellation Status field in 34
CancelTransferResp packet set to 5): The MA USB device is not required to keep the cancel 35

information for a transfer it already cleared, It shall generate CancelTransferResp without 36
generating TransferResp. This status indicates that the MA-USB device doesn’t expect 37
TransferAck from MA USB host. The MA USB host, following receipt of the 38

CancelTransferResp packet, shall not wait for TransferResp packets for this transfer. 39

A target MA USB device that receives a ClearTransfersReq packet (Section 6.3.14) should remove from 40

its buffer all the data corresponding to the transfers identified by the ClearTransfersReq packet (i.e., all 41
the data related to all the transfers with Request ID values preceding the value of Start Request ID field 42
in the ClearTransfersReq packet), except for the data that is already received from the target endpoint 43

(and hence allocated a sequence number) and has not been acknowledged by the host. The MA USB 44
device shall deliver all the data received from the target endpoint to the MA USB host through 45

TransferResp packets; if the transfer is cancelled before its completion (i.e., not all data related to the 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 42

transfer is received from the target endpoint), the last TransferResp packet carrying data related to the 1
transfer shall carry EOT field set to 1 with the Status Code field set to TRANSFER_CANCELLED. The 2

TransferResp packets related to transfers that are completed without cancellation shall not set the Status 3
Code field to TRANSFER_CANCELLED. 4

In addition, the MA USB device shall discard any TransferReq packet received for a cancelled transfer 5
(TransferReq packets carrying a Request ID value less than the value indicated in the Start Request ID 6
field in the ClearTransfersReq packet). The MA USB device shall respond to a ClearTransfersReq 7

packet with a ClearTransfersResp packet, only after all the TransferResp packets for the data already 8
received from cancelled transfers are generated. The MA USB host shall reset the Sequence Number 9

value to 0 before transmitting a TransferReq packet with Request ID value indicated in the Start Request 10
ID field in the ClearTransfersReq packet. 11

5.4.1 Transfer description 12

The transfer description in this section does not cover all scenarios resulting from interaction of different 13
events, and is provided to serve as an implementation guideline. The transfer description in Section 5.4 14
takes precedence over this description in case of a conflict. 15

The operation of the MA USB host PAL and a target MA USB device PAL is defined in terms of a set 16
of state variables and processes, where each process is a basic unit of execution. Processes do not 17

interrupt each other, meaning that a state variable is not modified during a process execution, unless 18
modified by the process itself. State variables used to describe the host operation are marked with an ‘R’ 19
(responder) subscript (e.g., SeqNumberR), and state variables used to describe the device operation are 20

marked with an ‘O’ (originator) subscript (e.g., SeqNumberO). An index notation is used for variables 21
that have a scope of a single MA USB transfer, e.g., RemSizeR[r] denotes a state variable belonging to an 22

MA USB transfer request with Request ID equal to r. 23

Figure 16 illustrates the data packets and header fields used to perform MA USB IN transfers. 24

RequestIDR

SeqNumberR

...

KeepAliveTimerR

TransferReqRetryCounterR

RequestIDO

SeqNumberO

...

ResponseTimerO

TransferRespRetryCounterO

MA USB host PAL MA USB device PAL

TransferReq(Request ID, Sequence Number,

Remaining Size)

TransferResp(Request ID, Sequence Number,

Remaining Size, Retry, EOT, ARQ, Status Code)

TransferAck(Request ID, Sequence Number,

Status Code)

 25

Figure 16—Data packets and header fields used for IN transfers 26

5.4.1.1 MA USB host PAL operation 27

The MA USB host operation is defined in terms of a series of state variables maintained in the context 28
of a single target endpoint or stream, 29

 RequestIDR (8 bits, unsigned): The Request ID value of the next original transfer request; 30

initialized to 0 at session initialization or upon any configuration event that returns the state of 31
the endpoint or stream flow to the initial state, and incremented by 1 when a new transfer request 32

is generated, with wraparound to 0 after reaching the maximum value of aMaxRequestID. 33

 ActiveRequestIDR (8 bits, unsigned): The Request ID field of the active transfer request, i.e., the 34

request expected to be served by the next original TransferResp packet with payload;; initialized 35

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 43

to 0 at session initialization or upon any configuration event that returns the state of the endpoint 1
or stream flow to the initial state, and incremented by 1 when the entire payload belonging to a 2

transfer has been received (not necessarily acknowledged), with wraparound to 0 after reaching 3
the maximum value of aMaxRequestID. 4

 EarliestRequestIDR (8 bits, unsigned): The Request ID value of the earliest transfer request 5
whose state needs to be tracked; initialized to 0 at session initialization or upon any configuration 6

event that returns the state of the endpoint or stream flow to the initial state, and incremented by 7
1 when it is determined that the acknowledgement for the entire payload belonging to the 8
transfer has been received by the target MA USB device PAL, with wraparound to 0 after 9

reaching the maximum value of aMaxRequestID. 10

 SeqNumberR (24 bits, unsigned): Expected value of the Sequence Number field of the next 11

original TransferResp packet to be received; initialized to 0 at session initialization or upon any 12
configuration event that returns the state of the endpoint or stream flow to the initial state, and 13
incremented by 1 when an original TransferResp packet is received and admitted to the receive 14

buffer, with wraparound to 0 after reaching the maximum value of aMaxSequenceNumber. 15

 KeepAliveTimerR (signed): A decrementing counter to track the elapsed time between successive 16

TransferResp packets belonging to the active transfer; set to aTransferKeepAlive each time the 17
MA USB host moves to processing a new transfer, and reset to aTransferKeepAlive or a transfer-18

dependent multiple of aTransferKeepAlive each time a TransferResp packet is received, with the 19
reset value depending on the transfer state and the Status Code value received in the 20
TransferResp packet; decremented by aTransferTimerTick at every transfer timer tick event. 21

 TransferReqRetryCounterR (unsigned): A decrementing counter to track the number of retries for 22
a TransferReq packet that requires an immediate exchange (Section 5.2.1.2); set to 23

TransferReqRetriesR when a new round of retries is to be attempted, and decremented by 1 after 24
each retry. 25

 TransferReqRetriesR (unsigned): The reload value of the TransferReqRetryCounterR counter, set 26
to aControlTransferRetries, aBulkTransferRetries or aInterruptTransferRetries for control, bulk 27

and interrupt transfers respectively. 28

The remaining state variables have a finer scope of a single MA USB transfer targeting the endpoint 29
or stream; specifically, for a given MA USB IN transfer with Request ID equal to r, 30

 RemSizeR[r] (32 bits, unsigned): The number of bytes expected to be received; set to the transfer 31
size in bytes at transfer initialization, and decremented throughout the transfer. 32

 TransferErrorR[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE upon 33
detecting an error in the transfer. 34

 TransferCompleteR[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE when it 35
is no longer necessary to track the state of the transfer. 36

 EndOfTransferDetectedR[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE 37
upon receiving the last TransferResp packet belonging to the transfer. 38

 TransferAcknowledgedR[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE 39

upon releasing a TransferReq or TransferAck packet to the assigned data channel that 40
acknowledges the last TransferResp packet belonging to the transfer. 41

 LastTransferSNR[r] (24 bits, unsigned): The value of the Sequence Number field in the 42
TransferResp packet that carries the last portion of the payload belonging to the transfer. 43

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 44

 TransferCompletionTimerR[r] (signed): A decrementing counter to verify the transfer 1

acknowledgement was received; set to aMaxTransferLifetime after the last TransferResp packet 2
belonging to the transfer was acknowledged, and decremented by aTransferTimerTick at every 3
transfer timer tick event. 4

 KR[r] (unsigned): A transfer-dependent multiplicative factor used to reload KeepAliveTimerR 5
when a TransferResp packet with the Status Code field set to TRANSFER_PENDING is 6

received. 7

NOTE — The target MA USB device may request a new value for the multiplicative factor KR[r], with the intention 8
of establishing the factor for the target endpoint, specifically for all IN transfers targeting the endpoint or streams 9
within the endpoint; however, the MA USB transfer to which a new value of KR[r] applies is decided by the MA 10
USB host and can be an arbitrary transfer in the future, which makes KR[r] transfer-dependent. 11

The MA USB host PAL operation is defined in terms of the processes described below. 12

Initialization process 13
Invoked on any configuration event intended to return the state of the endpoint or stream flow to the 14

initial state. 15
 16

I. Set RequestIDR = 0. 17

II. Set SeqNumberR = 0. 18

NOTE — The SeqNumberR variable keeps increasing across successive transfers. 19

Transfer initialization process (starting a new transfer) 20
Invoked every time a new transfer request is initiated. 21
 22

I. Select r = RequestIDR as the Request ID assigned to the transfer. 23
II. Initialize the following variables to manage the transfer, 24

(a) Set TransferErrorR[r] = FALSE. 25
(b) Set TransferCompleteR[r] = FALSE. 26
(c) Set EndOfTransferDetectedR[r] = FALSE. 27

(d) Set TransferAcknowledgedR[r] = FALSE. 28
(e) Set RemSizeR[r] = Transfer size in bytes, as indicated by the application. 29

III. Submit a TransferReq packet to the TransferReq transmission process with the Request ID 30
field set to r, the Sequence Number field set to SeqNumberR, and the Remaining Size field set 31
to RemSizeR[r]. 32

IV. If there is no active request, 33
(a) Set ActiveRequestIDR = RequestIDR. 34

(b) Set EarliestRequestIDR = RequestIDR. 35
(c) Set KeepAliveTimerR = aTransferTimeout. 36
(d) Set TransferReqRetryCounterR = TransferReqRetriesR. 37

V. Set RequestIDR = RequestIDR + 1. 38

NOTE — The difference between RequestIDR and EarliestRequestIDR does not exceed (aMaxRequestID + 1)/2 at 39
any point in time; the difference may be further limited by the total number of outstanding transfers that the target 40
MA USB device supports across all its endpoints and streams. 41

NOTE — The Status Code field in all outgoing TransferReq packets is set to NO_ERROR. 42

NOTE — Handling possible local transmission failures is implementation-dependent. 43

TransferReq transmission process 44
Invoked to release a TransferReq packet to the assigned data channel. 45

 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 45

I. Let SN denote the value of the Sequence Number field in the TransferReq packet. 1
II. Release the TransferReq packet to the assigned data channel. 2

III. If there are open transfer requests, 3
(a) For each open transfer request u in the interval EarliestRequestIDR ≤ u < 4

ActiveRequestIDR, and in increasing order of u, 5
(1) If EndOfTransferDetectedR[u] = TRUE and TransferErrorR[u] = FALSE and 6

LastTransferSNR[u] < SN, 7

(i) Set TransferAcknowledgedR[r] = TRUE. 8
(ii) Set TransferCompletionTimerR[u] = aMaxTransferLifetime. 9

(2) Otherwise, break the loop and exit the process. 10

 11

TransferResp reception process 12

Invoked upon reception of a TransferResp packet. 13
 14

I. Let r, SN, Retry, EndOfTransfer, AckRequest and Status respectively denote the values of the 15
Request ID, Sequence Number, Retry, EoT, ARQ and Status Code fields in the received 16
TransferResp packet. Let PayloadSize denote the size of the payload in the received 17

TransferResp packet. 18
II. If r < EarliestRequestIDR or r ≥ RequestIDR drop the packet. 19

III. Otherwise, if r > ActiveRequestIDR, 20
(a) If Status = INVALID_REQUEST or Status = MISSING_REQUEST_ID, 21

(1) Invalidate all outstanding transfer requests with Request ID values r to 22

RequestIDR – 1. 23
(2) Set RequestIDR = r. 24

(b) Otherwise, if SN = SeqNumberR, 25
(1) Submit a TransferAck packet to the TransferAck transmission process with 26

the Request ID field set to r, the Sequence Number field set to SN, and the 27

Status Code field set to MISSING_REQUEST_ID. 28
(c) Otherwise, run Step VI below (which effectively generates a response based on the 29

Sequence Number value in the TransferResp packet). 30
IV. Otherwise, if TransferCompleteR[r] = TRUE or TransferErrorR[r] = TRUE drop the packet. 31
V. Otherwise, if Status = TRANSFER_PENDING, 32

(a) Set KeepAliveTimerR = KR[r] × aTransferKeepAlive. 33
(b) Set TransferReqRetryCounterR[r] = TransferReqRetriesR. 34

(c) If AckRequest = 1, submit a TransferAck packet to the TransferAck transmission 35
process with the Request ID field set to r and the Status Code field set to 36
TRANSFR_PENDING. 37

NOTE — The value of the Sequence Number field in the above TransferAck packet is set to 38
aInvalidSequenceNumber. 39

NOTE — The KeepAliveTimerR variable is set to 0 when KR[r] = 0, which stops the MA USB host PAL from 40
polling the pending endpoint. 41

VI. Otherwise, 42
(a) Set KeepAliveTimerR = aTransferKeepAlive. 43

(b) Set TransferReqRetryCounterR[r] = TransferReqRetriesR 44
(c) If SN = SeqNumberR, 45

(1) If RemSizeR[r] ≥ PayloadSize, 46
(i) Admit the received payload into the host buffer. 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 46

(ii) Set SeqNumberR = SeqNumberR + 1. 1
(iii) Set RemSizeR[r] = RemSizeR[r] – PayloadSize. 2

(iv) If EndOfTransfer = 1, 3
(a) Set EndOfTransferDetectedR[r] = TRUE. 4

(b) Set LastTransferSNR[r] = SN. 5
(c) Set ActiveRequestIDR = ActiveRequestIDR + 1. 6
(d) If Status = NO_ERROR, 7

(1) Submit a TransferAck packet to the TransferAck 8
transmission process with the Request ID field set to r, 9

the Sequence Number field set to SN, and the Status 10
Code field set to Status (NO_ERROR), or alternatively, 11
initiate a new transfer, which will result in transmitting 12

a TransferReq packet serving as acknowledgement. 13
(2) If RemSizeR[r] > 0, set TransferErrorR[r] = TRUE. 14

NOTE — A short read is reported to the application with a suitable error code, but does not result in transmitting an 15
error code to the target MA USB device. 16

(e) Otherwise, 17

(1) Submit a TransferAck packet to the TransferAck 18
transmission process with the Request ID field set to r, 19
the Sequence Number field set to SN, and the Status 20

Code field set to Status, and set TransferErrorR[r] = 21
TRUE. 22

(f) Return the entire payload received for the transfer to the 23
application, together with a status code that matches the Status 24
and TransferErrorR[r]. 25

(v) Otherwise, if AckRequest = 1, 26
(a) Submit a TransferAck packet to the TransferAck transmission 27

process with the Request ID field set to r, the Sequence 28
Number field set to SN, and the Status Code field set to Status, 29
or alternatively, and only if Status = NO_ERROR, initiate a 30

new transfer, which will result in transmitting a TransferReq 31
packet serving as acknowledgement. 32

(2) Otherwise, 33
(i) Drop the TransferResp packet, or optionally admit up to RemSizeR[r] 34

bytes of the receive payload into the host buffer. 35

(ii) Submit a TransferAck packet to the TransferAck transmission process 36
with the Request ID field set to r, the Sequence Number field set to 37

SN, and the Status Code field set to TRANSFER_SIZE_ERROR. 38
(iii) Set TransferErrorR[r] = TRUE. 39

NOTE — The target MA USB device PAL response to a received TRANSFER_SIZE_ERROR is implementation-40
dependent; the MA USB host normally takes corrective actions such as clearing all outstanding transfers on the 41
endpoint or stream in this case. 42

(d) Otherwise, 43

(1) Drop the TransferResp packet. 44
(2) Submit a TransferReq packet to the TransferReq transmission process with the 45

Request ID field set to r, the Sequence Number field set to SeqNumberR, and 46
the Remaining Size field set to RemSizeR[r]. 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 47

TransferAck transmission process 1
Invoked to release a TransferAck packet to the assigned data channel. 2

 3
I. Let SN and Status respectively denote the value of the Sequence Number and Status Code 4

fields in the TransferAck packet. 5
I. Release the TransferAck packet to the assigned data channel. 6

II. If Status ≠ TRANSFER_PENDING, 7

(a) For each open transfer request u in the interval EarliestRequestIDR ≤ u < 8
ActiveRequestIDR, and in increasing order of u, 9

(1) If EndOfTransferDetectedR[u] = TRUE, 10
(i) If TransferErrorR[u] = FALSE and LastTransferSNR[u] ≤ SN, or 11

TransferErrorR[u] = TRUE and u = r, 12

(a) Set TransferAcknowledgedR[r] = TRUE. 13
(b) Set TransferCompletionTimerR[u] = aMaxTransferLifetime. 14

(ii) Otherwise, break the loop, 15
(2) Otherwise, break the loop. 16

Timer process 17

Invoked at every transfer timer tick event, as long as there are open transfer requests. 18
 19

I. For each open transfer request u in the interval EarliestRequestIDR ≤ u < ActiveRequestIDR, 20
and in increasing order of u, 21
(a) If TransferAcknowledgedR[u] = TRUE, 22

(1) Set TransferCompletionTimerR[u] = TransferCompletionTimerR[u] – 23
aTransferTimerTick. 24

(2) If TransferCompletionTimerR[u] ≤ 0, set TransferCompleteR[u] = TRUE. 25
(3) Otherwise, set EarliestRequestIDR = u and break the loop (go to Step II). 26

(b) Otherwise, set EarliestRequestIDR = u and break the loop (go to Step II). 27

II. If KeepAliveTimerR >0, 28
(a) Set KeepAliveTimerR = KeepAliveTimerR – aTransferTimerTick. 29

(b) If KeepAliveTimerR ≤ 0, 30
(1) If TransferReqRetryCounterR > 0, 31

(i) Submit a TransferReq packet to the appropriate transmission process 32

with the Request ID field set to r and the Sequence Number field set to 33
SeqNumberR. 34

(ii) 35
(iii) Set KeepAliveTimerR = aTransferKeepAlive. Set 36

TransferReqRetryCounterR = TransferReqRetryCounterR – 1. 37

(2) Otherwise, 38
(i) Start the Ping protocol (Section 5.2.2). 39

(ii) If the Ping protocol is successful, optionally, 40
(a) Set KeepAliveTimerR = aTransferKeepAlive. 41
(b) Set TransferReqRetryCounterR = TransferReqRetriesR. 42

(c) Quit the Timer process and wait for the next transfer timer tick 43
event. 44

(iii) If the Ping protocol fails, or if the optional path in the previous step is 45
not followed, 46

(a) Set TransferErrorR[ActiveRequestIDR] = TRUE. 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 48

(b) Indicate a transfer timeout error to the application, and wait for 1
a corrective action. 2

NOTE — The Status Code field in all outgoing TransferReq packets is set to NO_ERROR; also the Retry field in all 3
these packets is set to 0, as they may include updated Sequence Number values . 4

NOTE — The MA USB host moves the session state to Session Down state (Section 8.1.1.1) after Ping protocol 5
failure, which may result in a configuration event that returns the state of all endpoint and stream flows on the target 6
MA USB device to the initial state. Also, regardless of the Ping protocol outcome, the MA USB host cannot proceed 7
to the next IN transfer request if the current transfer fails as a result of timeout, unless a corrective action such as 8
clearing all outstanding transfer requests and restarting the endpoint takes place. The above transfer-oriented 9
description does not capture broader configuration events applied to the target endpoint or stream, or to the MA 10
USB device. 11

5.4.1.2 MA USB device PAL operation 12

The MA USB device operation is defined in terms of a series of state variables maintained in the context 13

of a single target endpoint or stream, 14

 RequestIDO (8 bits, unsigned): Expected Request ID value of the next original transfer request; 15

initialized to 0 at session initialization or upon any configuration event that returns the state of 16
the endpoint or stream flow to the initial state, and incremented by 1when a new transfer request 17

is accepted, with wraparound to 0 after reaching the maximum value of aMaxRequestID. 18

 ActiveRequestIDO (8 bits, unsigned): The Request ID value of the active transfer request, i.e., the 19

request served by the next original TransferResp packet with payload; initialized to 0 at session 20
initialization or upon any configuration event that returns the state of the endpoint or stream flow 21
to the initial state, and incremented by 1 when the entire payload belonging to a transfer has been 22

transmitted (not necessarily acknowledged), with wraparound to 0 after reaching the maximum 23
value of aMaxRequestID. 24

 EarliestRequestIDO (8 bits, unsigned): The Request ID value of the earliest transfer request 25
whose state needs to be tracked; initialized to 0 at session initialization or upon any configuration 26

event that returns the state of the endpoint or stream flow to the initial state, and incremented by 27
1 when the entire payload belonging to the transfer has been acknowledged, with wraparound to 28
0 after reaching the maximum value of aMaxRequestID. 29

 SeqNumberO (24 bits, unsigned): The value to be placed into the Sequence Number field of the 30
next original TransferResp packet that the device transmits; initialized to 0 at session 31

initialization or upon any configuration event that returns the state of the endpoint or stream flow 32
to the initial state, and incremented by 1 after each original TransferResp packet transmission, 33
with wraparound to 0 after reaching the maximum value of aMaxSequenceNumber. 34

 EarliestUnacknowledgedO (24 bits, unsigned): The value of the Sequence Number field of the 35
earliest transmitted but unacknowledged TransferResp packet; initialized to 0 at session 36

initialization or upon any configuration event that returns the state of the endpoint or stream flow 37
to the initial state, and incremented throughout the transfer as described below, with wraparound 38

to 0 after reaching the maximum value of aMaxSequenceNumber. 39

 KeepAliveTimerO (signed): A decrementing counter to track the elapsed time between successive 40

TransferResp packets belonging to the active transfer; set to aTransferRepeatTime every time a 41
TransferResp packet belonging to the active transfer is released to the assigned data channel, as 42
well as every time a new transfer becomes active and decremented by aTransferTimerTick at 43

every transfer timer tick event. 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 49

 ResponseTimerO (signed): A decrementing counter to track the response time for a TransferResp 1

packet that requires an immediate exchange (Section 5.2.1.2); set to aTransferTimeout every 2
time a TransferResp packet that requires an immediate exchange is released to the assigned data 3
channel, and decremented by aTransferTimerTick at every transfer timer tick event. 4

 TransferRespRetryCounterO (unsigned): A decrementing counter to track the retries of a 5
TransferResp packet that requires an immediate exchange (Section 5.2.1.2); set to 6

TransferRespRetriesO when a new round of retries is to be attempted, and decremented by 1 after 7
each retry. 8

 TransferRespRetriesO (unsigned): The reload value of the TransferRespRetryCounterO counter, 9

set to aControlTransferRetries, aBulkTransferRetries or aInterruptTransferRetries for control, 10
bulk and interrupt transfers, respectively. 11

 DelayedO (boolean): Indicates if the rate of TransferResp packet transmission for the active 12
transfer has fallen below a minimum rate; initialized to FALSE at session initialization or upon 13

any configuration event that returns the state of the endpoint or stream flow to the initial state, 14
and also when a new transfer request becomes active, and set to TRUE if the interval between 15

two successive TransferResp packets belonging to the active transfer exceeds 16
aTransferRepeatTime. 17

The remaining state variables have a finer scope of a single MA USB transfer targeting the endpoint 18

or stream; specifically, for a given MA USB IN transfer with Request ID equal to r, 19

 RemSizeO[r] (32 bits, unsigned): The number of bytes that the MA USB host can accept for the 20

transfer; set to the transfer size in bytes at transfer initialization, and decremented throughout the 21
transfer. 22

 TransferErrorO[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE upon 23
detecting an error in the transfer. 24

 TransferCompleteO[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE when 25

it is no longer necessary to track the state of the transfer. 26

 EndOfTransferDetectedO[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE 27

upon releasing the last TransferResp packet belonging to the transfer to the assigned data 28
channel. 29

 LastTransferSNO[r] (24 bits, unsigned): The value of the Sequence Number field in the 30
TransferResp packet that carries the last portion of the payload belonging to the transfer. 31

The MA USB device PAL operation is defined in terms of the processes described below. 32

Initialization process 33
Invoked on any configuration event intended to return the state of the endpoint or stream flow to the 34

initial state. 35
 36

I. Set RequestIDO = 0. 37
II. Set ActiveRequestIDO = 0. 38

III. Set EarliestRequestIDO = 0. 39

IV. Set SeqNumberO = 0. 40
V. Set EarliestUnacknowledgedO = 0. 41

VI. Set DelayedO = FALSE. 42

NOTE — The SeqNumberO and EarliestUnacknowledgedO variables keep increasing across successive transfers. 43

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 50

TransferReq reception process 1
Invoked upon reception of a TransferReq packet. 2

 3
I. Let r, SN and RemSize respectively denote the value of the Request ID, Sequence Number 4

and Remaining Size fields in the received TransferReq packet. 5
II. If EarliestRequestIDO – [(aMaxRequestID + 1)/2] ≤ r < EarliestRequestIDO, or 6

EarliestUnacknowledgedO – [(aMaxSequenceNumber + 1)/2] ≤ SN < 7

EarliestUnacknowledgedO, or SeqNumberO < SN < SeqNumberO + [(aMaxSequenceNumber 8
+ 1)/2], 9

(a) Drop the TransferReq packet. 10
(b) Submit a null TransferResp packet with no payload to the TransferResp transmission 11

process with the Request ID field set to RequestIDO, the Retry, EoT and ARQ fields 12

set to 0, and the Status Code field set to INVALID_REQUEST. 13

NOTE — The value of the Sequence Number field in a null TransferResp packet is set to aInvalidSequenceNumber. 14

III. Otherwise, if r > RequestIDO, 15
(a) Drop the TransferReq packet. 16
(b) Submit a null TransferResp packet with no payload to the TransferResp transmission 17

process with the Request ID field set to RequestIDO, the Retry, EoT and ARQ fields 18
set to 0, and the Status Code field set to MISSING_REQUEST_ID. 19

NOTE — The value of the Sequence Number field in a null TransferResp packet is set to aInvalidSequenceNumber. 20

IV. Otherwise, 21
(a) Set EarliestUnacknowledgedO = SN. 22

(b) For each open transfer request u in the interval EarliestRequestIDO ≤ u < 23
ActiveRequestIDO, and in increasing order of u, 24
(1) If EndOfTransferDetectedO[u] = TRUE and TransferErrorO[u] = FALSE, 25

(i) If LastTransferSNO[u] < SN, set TransferCompleteO[u] = TRUE. 26
(ii) Otherwise, set EarliestRequestIDO = u, and break the loop. 27

(2) Otherwise, set EarliestRequestIDO = u, and break the loop. 28
(c) If r = ActiveRequestIDO, 29

(1) If DelayedO = TRUE, submit a null TransferResp packet with no payload to 30

the TransferResp transmission process with the Request ID field set to r, the 31
Remaining Size field reserved, the Retry field set to 0, the EoT field set to 0, 32

the ARQ field set to 0 or optionally set to 1, and the Status Code field set to 33
TRANSFER_PENDING. 34

NOTE — The value of the Sequence Number field in a null TransferResp packet with the Status Code field set to 35
TRANSFER_PENDING is set to aInvalidSequenceNumber. 36

(a) If r = RequestIDO, 37
(1) Create a new transfer with Request ID value r. 38

(2) Set TransferErrorO[r] = FALSE. 39
(2) Set TransferCompleteO[r] = FALSE. 40

(3) Set EndOfTransferDetectedO[r] = FALSE. 41
(4) Set RemSizeO[r] = RemSize. 42
(5) Set LastTransferSNO[r] = 0. 43

(6) Set RequestIDO = RequestIDO + 1. 44

TransferResp transmission process 45

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 51

Invoked to release a TransferResp packet to the assigned data channel, as long as SeqNumberO < 1
EarliestUnacknowledgedO + [(aMaxSequenceNumber + 1)/2]. 2

 3
I. Let EndOfTransfer and AckRequest respectively denote the values of the EoT and ARQ 4

fields in the TransferResp packet. 5
II. Release the TransferResp packet to the assigned data channel. 6

III. If EndOfTransfer = 1 or AckRequest = 1, and ResponseTimerO ≤ 0, 7

(a) Set ResponseTimerO = aTransferTimeout. 8
(b) Set TransferRespRetryCounterO = TransferRespRetriesO. 9

TransferResp generation process 10
Invoked to generate TransferResp packets as long as there is an active transfer request. 11
 12

I. While ActiveRequestIDO < RequestIDO, 13
(a) Set r = ActiveRequestIDO. 14

(b) Let PayloadSize (implementation-dependent) denote the payload size for the next 15
TransferResp packet to be generated, with 0 < PayloadSize ≤ RemSizeO[r]. 16

(c) Define boolean variables EndOfTransfer and AckRequest, initialized to 0. 17

(d) Define a variable Status, initialized to NO_ERROR. 18
(e) If RemSizeO[r] = PayloadSize, or if RemSizeO[r] > PayloadSize and no more data is 19

going to be available as a result of an error, 20
(1) Set EndOfTransfer = 1, and optionally set AckRequest = 1. 21
(2) If TransferErrorO[r] = 1, set Status to an appropriate error code. 22

(f) Optionally, set AckRequest = 1. 23
(g) Set RemSizeO[r] = RemSizeO[r] – PayloadSize. 24

(h) Submit a TransferResp packet to the TransferResp transmission process, with the 25
Request ID field set to r, the Sequence Number field set to SeqNumberO, the 26
Remaining Size field set to RemSizeO[r], the Retry field set to 0, the EoT field set to 27

EndOfTransfer, the ARQ field set to AckRequest, and the Status Code field set to 28
Status. 29

(i) Set SeqNumberO = SeqNumberO + 1. 30
(j) If EndOfTransfer = 1, 31

(1) If TransferErrorO[r] = 0, set ActiveRequestIDO = ActiveRequestIDO + 1. 32

(2) Otherwise, stop the process and wait for corrective action. 33

NOTE — Example of a corrective action is the MA USB host clearing all transfers and restarting the endpoint. 34

NOTE — The payload of a transmitted TransferResp packet is not released from the MA USB device memory until 35
it is acknowledged by the MA USB host. 36

TransferAck reception process 37

Invoked upon reception of a TransferAck packet. 38
 39

I. Let r, SN and Status respectively denote the value of the Request ID, Sequence Number and 40

Status Code fields in the received TransferAck packet. 41
II. If r > RequestIDO or EarliestRequestIDO – [(aMaxRequestID + 1)/2] ≤ r < 42

EarliestRequestIDO drop the TransferAck packet. 43
III. If Status = TRANSFER_PENDING, 44

(a) If r ≠ ActiveRequestIDO, drop the TransferAck packet. 45

(b) Otherwise, possibly start power saving measures, understanding that the MA USB 46
host will inquire about the status of the transfer based on an extended timeout. 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 52

NOTE — See the definition of KR[r] and the extended timeout in the MA USB host PAL operation (Section 1
5.4.1.1). 2

NOTE — The value of the Sequence Number field in a TransferAck packet with the Status Code field set to 3
TRANSFER_PENDING is set to aInvalidSequenceNumber. 4

IV. Otherwise, if EarliestUnacknowledgedO – [(aMaxSequenceNumber + 1)/2] ≤ SN < 5

EarliestUnacknowledgedO, or SeqNumberO < SN < SeqNumberO + [(aMaxSequenceNumber 6
+ 1)/2], drop the TransferAck packet. 7

V. Otherwise, 8
VI. if EarliestUnacknowledgedO ≤ SN < SeqNumberO, 9

(a) Set EarliestUnacknowledgedO = SN + 1. 10

(b) For each open transfer request u in the interval EarliestRequestIDO ≤ u < 11
ActiveRequestIDO, and in increasing order of u, 12

(1) If EndOfTransferDetectedO[u] = TRUE, 13
(i) If TransferErrorO[u] = FALSE and LastTransferSNO[u] < SN, or 14

TransferErrorO[u] = TRUE and u = r, 15

(a) Set TransferCompleteO[u] = TRUE. 16
(ii) Otherwise, set EarliestRequestIDO = u and break the loop. 17

(2) Otherwise, set EarliestRequestIDO = u and break the loop. 18

Timer process 19
Invoked at every transfer timer tick event, as long as there is an active transfer request. 20

 21
I. If KeepAliveTimerO > 0, 22

(a) Set KeepAliveTimerO = KeepAliveTimerO – aTransferTimerTick. 23
(b) If KeepAliveTimerO ≤ 0, 24

(1) Set DelayedO = TRUE. 25

II. Optionally, if ResponseTimerO > 0, 26
(a) Set ResponseTimerO = ResponseTimerO – aTransferTimerTick. 27
(b) If ResponseTimerO ≤ 0, 28

(1) If TransferRespRetryCounterO > 0, 29
(i) Submit the earliest TransferResp packet that requires 30

acknowledgement to the TransferResp transmission process, with all 31
packet fields the same, except the Retry field, which is set to 1. 32

(ii) Set ResponseTimerO = aTransferTimeout. 33

(iii) Set TransferRespRetryCounterO = TransferRespRetryCounterO – 1. 34
(2) Otherwise, wait indefinitely for corrective actions, or optionally, 35

(i) Start the Ping protocol (Section 5.2.2). 36
(ii) If the Ping protocol is successful, optionally, 37

(a) Set ResponseTimerO = aTransferTimeout. 38

(b) Set TransferRespRetryCounterO = TransferRespRetriesO. 39
(c) Quit the Timer process and wait for the next transfer timer tick 40

event. 41
(iii) If the Ping protocol fails, or if the optional path in the previous step is 42

not followed, 43

(a) Set TransferErrorO[ActiveRequestIDO] = TRUE. 44
(b) Indicate a transfer timeout error to the application, and wait for 45

a corrective action. 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 53

5.5 Protocol-managed OUT transfers 1

An MA USB OUT data flow is a unidirectional stream of bytes delivered to a target USB OUT endpoint 2
or a stream buffer within an Enhanced SuperSpeed bulk OUT endpoint that supports the Enhanced 3
SuperSpeed Stream Protocol [USB 3.1] from the MA USB host. 4

NOTE — Throughout this specification the term “endpoint flow” refers to the unidirectional byte stream targeting 5
an endpoint, and the term “stream flow" refers to the unidirectional byte stream targeting a stream within an 6
Enhanced SuperSpeed bulk endpoint that supports the Enhanced SuperSpeed Stream Protocol. 7

The MA USB host data flow is illustrated in Figure 17. The MA USB host PAL initiates an MA USB 8
OUT transfer by transmitting a TransferReq packet (Section 6.5.2) to a target MA USB device, which 9

also carries some payload belonging to the transfer; remaining payload is transferred through additional 10
TransferReq packets. All TransferReq packets belonging to the transfer, except possibly the last 11
TransferReq packet, shall include a multiple of maximum packet size of data supported by the target 12

endpoint, where the maximum packet size is defined by the wMaxPacketSize field of the endpoint 13
descriptor. The MA USB host assigns a request ID to each transfer request and all associated 14

TransferReq packets. Request ID is reset to 0 at session initialization or upon any configuration event 15
that returns the state of the endpoint or stream flow to the initial state, and is incremented by 1 for each 16
new transfer request, with wraparound to 0 after reaching the maximum value of aMaxRequestID. To 17

avoid ambiguity in tracking the outstanding TransferReq packets, the MA USB host shall have no more 18
than (aMaxRequestID +1)/2 (half the size of the Request ID space) outstanding TransferReq packets for 19

each target OUT endpoint or stream. Also, the total number of outstanding transfers across all IN and 20
OUT endpoints and streams shall not exceed the number returned by the target MA USB device in the 21
Number of Outstanding Requests field in the CapResp packet (Section 6.3.3). 22

NOTE — MA USB devices with multiple endpoints or streams are recommended to use a shared buffer to store the 23
state information for all outstanding transfers, as the number of outstanding transfer on each target endpoint or 24
stream is decided by the MA USB host. 25

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 54

MA USB host PAL MA USB device PAL

Write request

Write size 30 KB
MA USB OUT transfer

Request ID 0

Transfer size 30 KB

TransferResp(Request ID 0, Sequence No. 6,

Status Code NO_ERROR, credit 18 KB, EoT 1)Write response

Status OK

Data transfer complete with no error

TransferReq(Request ID 0, Sequence No. 0,

Remaining Size 24 KB, ARQ 0)

TransferReq(Request ID 0, Sequence No. 1,

Remaining Size 18 KB, ARQ 1)

TransferReq(Request ID 0, Sequence No. 2,

Remaining Size 12 KB, ARQ 0)

TransferReq(Request ID 0, Sequence No. 3,

Remaining Size 6 KB, ARQ 0)

The MA USB host PAL is aware of the

credit available for the OUT transfer via the

EPHandleResp packet; the credit identifies

the amount of data the MA USB host PAL

may transmit to the device.

Credit = 30 KB

All TransferReq

packets are

carrying 6 KB of

USB payload

TransferResp(Request ID 0, Sequence No. 1,

Status Code NO_ERROR, credit 24 KB)Credit = 24 KB

TransferReq(Request ID 0, Sequence No. 4,

Remaining Size 0 KB, ARQ 1)
TransferResp(Request ID 0, Sequence No.4,

Status Code NO_ERROR, credit 12 KB)Credit = 12 KB

Write request

Write size 12 KB
MA USB OUT transfer

Request ID 1

Transfer size 12 KB

TransferReq(Request ID 1, Sequence No. 5,

Remaining Size 6 KB, ARQ 0)

TransferReq(Request ID 1, Sequence No. 6,

Remaining Size 0 KB, ARQ 1)

Credit = 18 KB

TransferResp(Request ID 1, Sequence No. 6,

Status Code NO_ERROR, credit 30 KB, EoT 1)Write response

Status OK

Data transfer complete with no error

Credit = 30 KB

TransferResp(Request ID 1, Sequence No.6,

Status Code NO_ERROR, credit 18 KB)
Credit = 18 KB

TransferAck(Request ID 0, Sequence No. 4)

TransferAck(Request ID 1, Sequence No. 6)

USBDI

T
a

rg
e

t
U

S
B

e
n

d
p

o
in

t
o

r
s
tr

e
a

m

MA Link Interface MA Link Interface USB Logic EP

 1

Figure 17—P-managed MA USB OUT transfers 2

To complete an MA USB OUT transfer, the MA USB host PAL transmits one or more TransferReq 3
packets (Section 6.5.2) to the target MA USB device PAL to transfer the USB payload to the target USB 4

endpoint or stream in the strict order it is available in the host system. Each TransferReq packet carries 5
the same EP Handle, Stream ID, and Request ID as in the TransferReq packet that initiated the transfer. 6

To enable the MA USB device PAL to identify missing data packets, each TransferReq packet carries a 7
Sequence Number field, which is set to 0 at session initialization or upon any configuration event that 8
returns the state of the endpoint or stream flow to the initial state. The Sequence Number value is 9

incremented by 1 after each new (i.e., not retried) TransferReq packet, with wraparound to 0 after 10
reaching the maximum value of aMaxSequenceNumber. Sequence Number values keep increasing 11

across successive transfers. 12

NOTE — Configuration events that return the state of an endpoint or stream flow to the initial state are triggered in 13
response to various events at the MA USB host or device, and are normally communicated through appropriate 14
management packets. As a result, the time an endpoint or stream flow makes the transition to its initial state depends 15

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 55

on whether the event is viewed from the MA USB host or from the target MA USB device perspective. For 1
example, the MA USB host is assumed to have initialized a target endpoint flow when it transmits an 2
EPHandleDeleteReq or USBDevDisconnectReq packet that targets the endpoint; the target MA USB device on the 3
other hand, can be assumed to have initialized the endpoint flow when it transmits a corresponding response packet 4
to the MA USB host with a status code that indicates the endpoint state was reset (e.g. status code of SUCCESS). 5

To avoid ambiguity in tracking the TransferResp packets pending completion, the MA USB host PAL 6
shall have no more than (aMaxSequenceNumber +1)/2 (half the size of the Sequence Number space) 7
outstanding TransferReq packets. 8

Each TransferReq packet includes a Remaining Size field that carries the number of remaining bytes the 9
host expects to transmit to complete the transfer. 10

While an MA USB OUT transfer on a target endpoint or stream is in progress, the MA USB host PAL 11
may transmit additional TransferReq packets to target the same endpoint or steam, with the value of the 12
Request ID field incremented by 1 for each new transfer request. The target MA USB device queues the 13

received TransferReq packets in the increasing order of Request ID and Sequence Number values for 14
subsequent processing. 15

In response to a TransferReq packet with an unexpected Request ID value, or a TransferReq packet that 16
is invalid independent of its Request ID and Sequence Number values, the target MA USB device PAL 17
shall discard the TransferReq packet, and release to the assigned data channel a TransferResp packet 18

within aTransferResponseTime from the moment it receives the invalid TransferReq packet, with the 19
TransferResp packet Request ID and Sequence Number fields set to the Request ID and Sequence 20

Number values of the last TransferReq packet received in order, and the Status Code field set to 21
MISSING_REQUEST_ID if the received TransferReq packet is valid but shows a gap in its Request ID 22
field, or INVALID_REQUEST if the received TransferReq packet is invalid independent of the value of 23

its Request ID field. In response to a TransferResp packet with the Status Code field set to 24
MISSING_REQUEST_ID or INVALID_REQUEST, the MA USB host PAL shall invalidate all 25

outstanding TransferReq packets and start transmitting new TransferReq packets starting with the 26
Request ID and Sequence Number values in the TransferResp packet. 27

NOTE — A retried TransferReq packet for an active transfer may not carry a different payload size, and may not 28
change the size of the transfer. 29

NOTE — It is possible that a target MA USB device silently drops a valid incoming TransferReq packet if it cannot 30
admit the packet into its buffer; this scenario is no different from the packet being lost over the medium, and is 31
recovered though a detected gap in subsequent TransferReq packets, or through an MA USB host timeout. 32

In response to a valid TransferReq packet with the ARQ field set to 1, the target MA USB device PAL 33
shall release a TransferResp packet to the assigned data channel with the Request ID and Sequence 34

Number fields set to the Request ID and Sequence Number values the last TransferReq packet the MA 35
USB device PAL has received in order. A TransferReq packet with the ARQ field set to 1, and the 36

resulting TransferResp packet form an immediate exchange with timings and behavior defined in 37
Section 5.2.1.2. A TransferResp packet acknowledges receipt of all TransferReq packets up to and 38
including the Request ID and Sequence Number fields in the TransferResp packet. 39

NOTE — The acknowledged TransferReq packets may belong to multiple transfer requests with successive Request 40
ID values; however, at least one TransferResp packet is transmitted for each transfer request to indicate the transfer 41
conclusion. 42

The target MA USB device PAL shall deliver all received USB payload to the target endpoint or stream 43
in the strict order of Sequence Number value, and transfer requests shall be completed in strict order of 44

Request ID value. To notify the MA USB host PAL of the completion of the transfer on the target USB 45
endpoint or stream, the MA USB device PAL shall transmit a TransferResp packet with the Request ID 46
field identifying the completed transfer, the Sequence Number field set to the latest Sequence Number 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 56

value received by the device PAL, updated Credit field, the EoT field set to 1, and the Status Code field 1
set accordingly. 2

NOTE — The time a TransferResp packet with EoT field set to 1 is transmitted and the value of the Request ID 3
field in that packet are independent of other packet exchanges for subsequent transfers. 4

The MA USB host PAL shall acknowledge the receipt of a valid TransferResp packet with the EoT field 5

set to 1 by transmitting a TransferAck packet to the MA USB device PAL with the Request ID, 6
Sequence Number and Status Code fields set to the same values as those in the TransferResp packet. 7

The TransferResp and TransferAck packets form an immediate exchange with timings and behavior 8
defined in Section 5.2.1.2. 9

In response to a valid TransferReq packet with gap in the Sequence Number value, the target MA USB 10

device PAL shall release a TransferResp packet to the assigned data channel within 11
aTransferResponseTime from the moment the MA USB device PAL receives the TransferReq packet, 12

with the Request ID and Sequence Number fields set to the Request ID and Sequence Number values 13
the MA USB device PAL is expecting next, and the Status Code field set to 14
MISSING_SEQUENCE_NUMBER. 15

If the target endpoint returns a STALL handshake during a transfer, the target MA USB device shall 16
transmit a TransferResp packet to the MA USB host, with the Request ID field set to the Request ID 17

value of the transfer a STALL handshake was returned for and Sequence Number field set to the 18
Sequence Number value of the last TransferReq packet received in order, the EoT field is set to1, and 19
the Status Code field set to TRANSFER_EP_STALL. Receiving a TransferResp packet with the Status 20

Code field set to TRANSFER_EP_STALL results in completion of the transfer on the MA USB host. 21
The MA USB device shall discard but acknowledge any subsequent data received for the transfer that 22

experienced the STALL condition. Furthermore, until the MA USB host clears the STALL condition 23
and the target EP handle returns to the Active state, the target MA USB device shall buffer and 24
acknowledge each TransferReq packet received that does not belong to the transfer request that 25

experienced the STALL condition by transmitting a TransferResp packet with the Status Code field set 26
to INVALID_EP_HANDLE_STATE. The MA USB host shall not remove any unacknowledged data 27

associated with an endpoint in STALL condition. 28

NOTE — Once the STALL condition is experienced, any TransferReq packet received results in transmitting a 29
TransferResp packet with the Status Code field set to INVALID_EP_HANDLE_STATE. 30

If the MA USB device PAL receives a CancelTransferReq packet corresponding to an active transfer, it 31
should discard all the data corresponding to the transfer identified in the CancelTransferReq packet, 32
however it shall keep account of the sequence numbers of the TransferReq packets received. The 33

specific behavior of the MA USB device and the MA USB host depends on the state of the transfer at 34
the time that the CancelTransferReq is processed at the MA USB device: 35

 If the transfer was cancelled before any data was moved to the USB device (i.e., the Cancellation 36
Status field in CancelTransferResp packet set to 1): The MA USB devices shall respond to a 37

TransferReq packet for the cancelled transfer with a TransferResp packet with EOT set to 1, 38
Status Code field set to TRANSFER_CANCELLED, and Sequence Number field set to 39
aInvalidSequenceNumber. Additionally the MA USB device shall keep the state of the transfer 40

until it receives the TransferAck packet from the MA USB host. The MA USB host shall 41
transmit the TransferAck packet only after it has received all the TransferResp packets as well as 42

the CancelTransferResp packet related to the cancelled transfer. 43

 If the transfer was cancelled after some data was moved to the USB device (i.e., the Cancellation 44

Status field in CancelTransferResp packet set to 2): The MA USB devices shall transmit a 45
TransferResp packet with EOT set to 1, Status Code field set to TRANSFER_CANCELLED. 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 57

Additionally the MA USB device shall keep the state of the transfer until it receives the 1
TransferAck packet from the MA USB host. The MA USB host shall transmit the TransferAck 2

packet only after it has received all the TransferResp packets as well as the CancelTransferResp 3
packet related to the cancelled transfer. 4

 If the transfer was completed (i.e., the Cancellation Status field in CancelTransferResp packet set 5
to 3): The MA USB devices shall transmit a TransferResp packet with EOT set to 1, Status Code 6

field set to the appropriate value (the same value carried if the transfer was not cancelled). The 7
MA USB device shall keep the state of the transfer until it receives the TransferAck packet from 8
the MA USB host. The MA USB host shall transmit the TransferAck packet only after it has 9

received all the TransferResp packets as well as the CancelTransferResp packet related to the 10
cancelled transfer. 11

 If the transfer was not yet received (i.e., the Cancellation Status field in CancelTransferResp 12
packet set to 4): The MA USB device is not required to keep cancel information for a transfer it 13
has not yet received. If a TransferReq packet is received at the MA USB device, the MA USB 14

device shall respond to it with no required knowledge of whether the transfer was previously 15
cancelled. The MA USB host, following receipt of the CancelTransferResp packet, may either 16

retransmit the CancelTransferReq or wait for the completion of the transfer. 17

 If the transfer with RequestID was serviced as part of ClearTransfersReq processing without any 18

data being moved to the USB Device (i.e., the Cancellation Status field in CancelTransferResp 19
packet set to 5): The MA USB device is not required to keep the cancel information for a transfer 20
it already cleared, It shall generate CancelTransferResp without generating TransferResp. This 21

status indicates that the MA-USB device doesn’t expect TransferAck from MA USB host. The 22
MA USB host, following receipt of the CancelTransferResp packet, shall not wait for 23

TransferResp packets for this transfer. 24

If the MA USB device PAL receives a ClearTransfersReq packet corresponding to an endpoint with 25
active transfers, it should discard all the data corresponding to the endpoint identified in the 26

ClearTransfersReq packet, however it shall keep account of the sequence numbers of the TransferReq 27
packets received. If the MA USB device receives a TransferReq packet for a cancelled transfer 28

(TransferReq packets carrying a Request ID value less than the value indicated in the Start Request ID 29
field in the ClearTransfersReq packet) and it has not yet delivered any data related to the transfer to the 30
device, it shall discard the TransferReq packet, otherwise it shall respond with a TransferResp packet; if 31

the transfer is cancelled before its completion (i.e., not all data related to the transfer is delivered to the 32
target endpoint), the last TransferResp packet related to the transfer shall carry EOT field set to 1 with 33

the Status Code field set to TRANSFER_CANCELLED. The Status Code field shall not be set to 34
TRANSFER_CANCELLED if the transfer is completed. The MA USB host shall not remove the data 35
for any unacknowledged TransferReq packets of a cancelled transfer before receiving the 36

ClearTransfersResp packet. The MA USB host shall reset the Sequence Number value to 0 before 37
transmitting a TransferReq packet with Request ID value indicated in the Start Request ID field in the 38

ClearTransfersReq packet. 39

5.5.1 MA USB device buffer management for OUT transfers 40

The buffer space on the MA USB device is limited and variable for different implementations. In order 41

to ensure efficient use of the medium, the OUT transfer protocol utilizes a credit-based end-to-end flow 42
control to meter the flow of data from the MA USB host to the MA USB device to what can be 43
successfully accepted into the MA USB device buffer. 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 58

The MA USB device PAL is responsible for managing its buffer space; it is required to inform the MA 1
USB host PAL of its available buffer space for each USB endpoint behind the MA USB device PAL. 2

The MA USB device PAL notifies the MA USB host PAL of the available buffer space for each 3
endpoint by use of credits. The credits are the number of bytes of data that the MA USB device PAL is 4

ready to accept into its buffer at the time that the credit information was submitted by the MA USB 5
device PAL for transmission. In order to allow devices flexibility in managing the local buffer, an MA 6
USB device will report to the MA USB host the Credit Consumption Unit (CCU) for each endpoint; 7

CCU is the unit by which the MA USB host shall keep track of the buffer space available on the MA 8
USB device. An MA USB device may allow the MA USB host to not strictly follow the credit 9

advertised for the target endpoint by setting the Elastic Buffer Capability field in the MA USB 10
Capability Response (CapResp) packet to 1. If the MA USB device supports the Elastic Buffer 11
Capability, it may return a negative credit value if the memory currently consumed for target endpoint 12

exceeds the credit advertised for the endpoint. The MA USB device additionally may choose to report a 13
DROPPED_PACKET status every time it has to drop an incoming TransferReq packet because of buffer 14

shortage. 15

The MA USB device delivers the initial credit for an endpoint to the MA USB host using the Buffer 16
Size field in the EPHandleResp packet. Credits are allocated at the MA USB device PAL for each 17

endpoint. Note that in case of an Enhanced SuperSpeed bulk OUT endpoint that supports Enhanced 18
SuperSpeed Stream Protocol [USB 3.1], the allocated credits are the total available for all the streams. 19

The counter used to track credits for each endpoint is initialized to the value of the Buffer Size field in 20
the EPHandleResp packet at any configuration event intended to return the state of an endpoint to the 21
initial state. 22

Credits are de-allocated when a deliverable TransferReq packet arrives and its data payload is accepted 23
into the buffer. The MA USB device PAL uses the Sequence Number value in the TransferReq packet to 24

determine whether the payload in the TransferReq packet is deliverable to the target endpoint. The data 25
associated with a TransferReq packet targeted to an endpoint is deliverable if the data for all preceding 26
TransferReq packets targeted to the endpoint has successfully been accepted. If the TransferReq packet 27

has the Retry field set to 1 and the associated data has already been accepted by the MA USB device 28
PAL, the data is dropped. 29

Credits are allocated when data is removed from the buffer. A target MA USB device PAL shall not 30
remove any transfer data associated with an MA USB OUT transfer from its buffer unless it has 31
successfully transmitted the data to the target endpoint or it receives one of the following packets: 32

 A DevResetReq packet (Section 6.3.18) or DevDisconnectReq packet (Section 6.3.36), in which 33
case all the data for all endpoints and streams is removed from the MA USB device buffer. 34

 A ClearTransfersReq packet (Section 6.3.14), in which case all data related to corresponding 35
endpoint(s) is removed from the MA USB device buffer. 36

 A USBDevDisconnectReq packet (Section 6.3.26) for the target USB device, in which case all 37
data related to the target USB device is removed from the MA USB device buffer. 38

 A CancelTransferReq packet (Section 6.3.42), in which case all data related to the target request is 39
removed from the MA USB device buffer. 40

The MA USB device PAL may modify the buffer space allocated to each endpoint at any time. 41

MA USB device shall provide credits for each of the endpoints in multiples of Credit Consumption Unit 42
of that endpoint. The credits are delivered to MA USB host PAL using the following mechanisms: 43

 In Buffer size field in the EPHandleResp packet. 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 59

 The MA USB device may update the credit by retransmitting the latest TransferResp packet 1

which had the EoT field set to 1, and including an updated value for the credit in the Credit field. 2

 The MA USB device may reduce the credit by retransmitting the latest TransferResp packet 3
which had the EoT field set to 1, and including the reduced value for the credit in the Credit 4

field. If the Elastic Buffer Capability bit in the CapResp packet is set to 0 then the local 5
accounting for this credit allocation using the TransferResp packet is applied only after reception 6

of the matching TransferAck packet. 7

The MA USB device PAL should attempt to reduce the overhead of transmitting TransferResp packets 8
while ensuring the MA USB host does not stall waiting for credits. 9

The MA USB host PAL is able to compute the amount of credit available for a given endpoint at any 10
given time by computing the difference between the last credit value and its associated Sequence 11

Number value received from the MA USB device PAL and the amount of unacknowledged data 12
transmitted. (Note that in case of retransmissions, the retransmitted data does not count toward 13
unacknowledged data.) The MA USB host shall set its local counter for tracking credits on an endpoint 14

to the value of the Credit field in a received TransferResp or EPHandleResp packet. 15

The MA USB host shall accurately track credits available and used during data streaming. Credits are 16

consumed (released) when the TransferResp packet associated with those credits is received. 17

The MA USB host shall account for consumed credits in multiples of Credit Consumption Unit of that 18
endpoint. 19

NOTE — For example if an MA USB device reports a Credit Consumption Unit of 512 bytes for a particular 20
endpoint, the MA USB host will always account for used credits for that endpoint in units of 512 regardless of the 21
number of bytes transmitted; i.e., an MA USB payload of 2064 byte accounts for 5 Credit Consumption Units of 512 22
bytes. 23

If the Elastic Buffer Capability field in the CapResp packet is set to 0, the MA USB host PAL shall not 24

transmit TransferReq packets targeted for an endpoint unless it has credits for transmitting data to that 25
endpoint. Moreover, it shall limit the amount of data transmission to the target endpoint to the credit 26
available for that endpoint. 27

5.5.2 Transfer description 28

The transfer description in this section does not cover all scenarios resulting from interaction of different 29

events, and is provided to serve as an implementation guideline. The transfer description in Section 5.5 30
takes precedence over this description in case of a conflict. 31

Similar to IN transfers, the operation of the MA USB host PAL and a target MA USB device PAL is 32

defined in terms of a set of state variables and processes, where each process is a basic unit of execution. 33
Processes do not interrupt each other, meaning that a state variable is not modified during a process 34
execution, unless it is modified by the process itself. State variables used to describe the device 35

operation are marked with an ‘R’ (responder) subscript (e.g., SeqNumberR), and variables used to 36
describe the host operation are marked with an ‘O’ (originator) subscript (e.g., SeqNumberO). An index 37

notation is used for variables that have a scope of a single MA USB transfer request, e.g., RemSizeR[r] 38
denotes a state variable belonging to an MA USB transfer request with Request ID equal to r. 39

Figure 18 illustrates the data packets and header fields used to perform MA USB OUT transfers. 40

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 60

RequestIDO

SeqNumberO

...

KeepAliveTimerO
TransferReqRetryCounterO

RequestIDR

SeqNumberR

...

ResponseTimerR

TransferRespRetryCounterR

MA USB host PAL MA USB device PAL

TransferReq(Request ID, Sequence Number,

Remaining Size, Retry, ARQ)

TransferResp(Request ID, Sequence Number,

Credit, Retry, EOT, Status Code)

TransferAck(Request ID, Sequence Number,

Status Code)

 1

Figure 18—Data packets and header fields used for p-managed OUT transfers 2

5.5.2.1 MA USB host PAL operation 3

The MA USB host operation is defined in terms of a series of state variables maintained in the context 4

of a single target endpoint or stream, 5

 RequestIDO (8 bits, unsigned): The Request ID value of the next original transfer request; 6

initialized to 0 at session initialization or upon any configuration event that returns the state of 7
the endpoint or stream flow to the initial state, and incremented by 1 when a new transfer request 8
is generated, with wraparound to 0 after reaching the maximum value of aMaxRequestID. 9

 ActiveRequestIDO (8 bits, unsigned): The Request ID field of the active transfer request, i.e., the 10
request expected to be served by the next original TransferReq packet; initialized to 0 at session 11

initialization or upon any configuration event that returns the state of the endpoint or stream flow 12
to the initial state, and incremented by 1 when the entire payload belonging to the transfer has 13
been transmitted (not necessarily acknowledged), with wraparound to 0 after reaching the 14

maximum value of aMaxRequestID. 15

 EarliestRequestIDO (8 bits, unsigned): The Request ID value of the earliest transfer request 16

whose state needs to be tracked; initialized to 0 at session initialization or upon any configuration 17
event that returns the state of the endpoint or stream flow to the initial state, and incremented by 18

1 when it is determined that the acknowledgement to the transfer completion has been received 19
by the target MA USB device PAL, with wraparound to 0 after reaching the maximum value of 20
aMaxRequestID. 21

 SeqNumberO (24 bits, unsigned): The Sequence Number value to be placed into the next original 22
TransferReq packet that the host transmits; initialized to 0 at session initialization or upon any 23

configuration event that returns the state of the endpoint or stream flow to the initial state, and 24
incremented by 1 when an original TransferReq packet is transmitted, with wraparound to 0 after 25

reaching the maximum value of aMaxSequenceNumber. 26

 EarliestUnacknowledgedO (24 bits, unsigned): The Sequence Number value of the earliest 27
transmitted but unacknowledged TransferReq packet; initialized to 0 at session initialization or 28

upon any configuration event that returns the state of the endpoint or stream flow to the initial 29
state, and incremented throughout the transfer as described below, with wraparound to 0 after 30

reaching the maximum value of aMaxSequenceNumber. 31

 TransferReqRetriesO (unsigned): The reload value of the TransferReqRetryCounterO[] counters, 32

set to aControlTransferRetries, aBulkTransferRetries or aInterruptTransferRetries for control, 33
bulk and interrupt transfers respectively. 34

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 61

 RxBufSizeO (25 bits, signed): The size (in bytes) of the target MA USB device buffer available to 1

transfers based on the most recent TransferResp packet received. An RxBufSizeO value of 0 or 2
negative suggests that the MA USB device may not be able to accept more TransferReq packets, 3
or may drop some of the already transmitted TransferReq packets assuming no change in the free 4

buffer available to transfers since the received TransferResp packet was. 5

The remaining state variables have a finer scope of a single MA USB transfer targeting the endpoint 6

or stream; specifically, for a given MA USB OUT transfer with Request ID equal to r, 7

 RemSizeO[r] (32 bits, unsigned): The number of bytes that the MA USB host needs to transmit to 8
complete the transfer; set to the transfer size (in bytes) at transfer initialization, and decremented 9

throughout the transfer. 10

 TransferErrorO[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE upon 11

detecting an error in the transfer. 12

 TransferCompleteO[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE when 13

it is no longer necessary to track the state of the transfer. 14

 TransferAcknowledgedO[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE 15

upon releasing a TransferAck packet to the assigned data channel that acknowledges the 16
TransferResp packet that indicated the completion of the transfer on the target endpoint or 17

stream. 18

 ResponseTimerO[r] (signed): A decrementing counter to track the response time for a 19
TransferReq packet that requires an immediate exchange (Section 5.2.1.2); set to 20

aTransferTimeout every time a TransferReq packet that requires an immediate exchange is 21
released to the assigned data channel, and decremented by aTransferTimerTick at every transfer 22

timer tick event. 23

 TransferReqRetryCounterO[r] (unsigned): A decrementing counter to track the number of retries 24

for a TransferReq packet belonging to the transfer that requires an immediate exchange (Section 25
5.2.1.2); set to TransferReqRetriesR when a new round of retries is to be attempted, and 26
decremented by 1 after each retry. 27

 AckTransferSNO[r] (24 bits, unsigned): The value of the Sequence Number field in the last 28
TransferReq packet that belongs to the transfer and has the ARQ field set to 1. 29

NOTE — The last TransferReq packet for a transfer that has the ARQ field set to 1 can be different from the 30
TransferReq packet that carries the last portion of the payload belonging to the transfer. Also, setting the ARQ field 31
to 1 in a TransferReq packet (including a retransmitted packet) cancels the immediate exchan ge associated with any 32
earlier TransferReq packet with the ARQ field set to 1and belonging to the same transfer, i.e., for each transfer 33
request, there can be only one TransferReq packet that is waiting for acknowledgement. 34

The MA USB host PAL operation is defined in terms of the processes described below. 35

Initialization process 36
Invoked on any configuration event intended to return the state of the endpoint or stream flow to the 37

initial state. 38
 39

I. Set RequestIDO = 0. 40

II. Set SeqNumberO = 0. 41
III. Set EarliestUnacknowledgedO = 0. 42

IV. Set RxBufSizeO = Initial size of the target MA USB device buffer available to transfers as 43
specified in Section 5.5. 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 62

NOTE — The SeqNumberO and EarliestUnacknowledgedO variables keep increasing across successive transfers. 1

Transfer initialization process (starting a new transfer) 2

Invoked every time a new transfer request is initiated. 3
 4

I. Select r = RequestIDO as the Request ID assigned to the transfer. 5
II. Initialize the following variables to manage the transfer, 6

(a) Set TransferErrorO[r] = FALSE. 7

(b) Set TransferCompleteO[r] = FALSE. 8
(c) Set EndOfTransferDetectedO[r] = FALSE. 9

(d) Set TransferAcknowledgedO[r] = FALSE. 10
(e) Set ResponseTimerO[r] = –1. 11
(f) Set RemSizeO[r] = Transfer size in bytes, as indicated by the application. 12

III. If there is no active request, 13
(a) Set ActiveRequestIDO = RequestIDO. 14

(b) Set EarliestRequestIDO = RequestIDO. 15
IV. Set RequestIDO = RequestIDO + 1. 16

NOTE — The difference between RequestIDO and EarliestRequestIDO does not exceed (aMaxRequestID + 1)/2 at 17
any point in time; the difference may be further limited by the total number of outstanding transfers that the target 18
MA USB device supports across all its endpoints and streams. 19

NOTE — The Status Code field in all outgoing TransferReq packets is set to NO_ERROR. 20

NOTE — Handling of possible local transmission failures is implementation-dependent. 21

TransferReq generation process 22
Invoked to generate TransferReq packets as long as there is a transfer request. 23

 24
I. While ActiveRequestIDO < RequestIDO, 25

(a) Set r = ActiveRequestIDO. 26
(b) Let PayloadSize (implementation-dependent) denote the payload size for the next 27

TransferReq packet to be generated, with 0 < PayloadSize ≤ RemSizeO[r]. 28

(c) Set RemSizeO[r] = RemSizeO[r] – PayloadSize. 29
(d) Submit a TransferReq packet to the TransferReq transmission process, with the 30

Request ID field set to r, the Sequence Number field set to SeqNumberO, the 31
Remaining Size field set to RemSizeO[r], the Retry field set to 0, and the ARQ field 32
set to 0 or 1. 33

(e) Set SeqNumberO = SeqNumberO + 1. 34
(f) Set RemSizeO[r] = RemSizeO[r] – PayloadSize. 35

(g) If RemSizeO[r] = 0, set ActiveRequestIDO = ActiveRequestIDO + 1. 36

NOTE — Transfer payload is not removed from the MA USB host memory until an acknowledgement is received 37
that indicates the completion of the transfer on the target endpoint or stream. 38

TransferReq transmission process 39
Invoked to release a TransferReq packet to the assigned data channel. 40

 41

I. Let r, SN and AckRequest respectively denote the values of the Request ID, Sequence 42
Number and ARQ fields in the TransferReq packet. Let PayloadSize denote the payload size 43

in the TransferReq packet. 44

II. If PayloadSize/CCUnit×CCUnit ≤ RxBufSizeO[r], and SeqNumberO < 45

EarliestUnacknowledgedO + [(aMaxSequenceNumber + 1)/2], 46
(a) Release the TransferReq packet to the assigned data channel 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 63

(b) Set RxBufSizeO = RxBufSizeO – PayloadSize/CCUnit×CCUnit 1

(c) If AckRequest = 1, 2
(1) Set AckTransferSNO[r] = SN. 3
(2) Set ResponseTimerO[r] = aTransferTimeout. 4

(3) Set TransferReqRetryCounterO[r] = TransferReqRetriesO. 5
III. Otherwise, try to transmit the packet at a later time (flow control event). 6

NOTE — CCUnit is the target endpoint credit consumption unit, as indicated by the Credit Consumption Unit 7
(CCU) field in the EPHandleResp packet returning the EP handle of the target endpoint (Section 7.3.2.2). 8

NOTE — If the target MA USB device PAL indicates support for Elastic Buffer Capability, the MA USB host may 9
still proceed with transmitting a TransferReq packet with RxBufSizeO <PayloadSize/CCUnit×CCUnit. 10
Implementations must balance the trade-off between aggressive transmission and possible packet loss as a result of 11
buffer overrun at the target MA USB device. 12

TransferResp reception process 13
Invoked at the reception of a TransferResp packet. 14
 15

I. Let r, SN, Credit, EndOfTransfer and Status respectively denote the values of the Request ID, 16
Sequence Number, Credit, EoT, and Status Code fields of the TransferResp packet. 17

II. If EarliestRequestIDO – [(aMaxRequestID + 1)/2] ≤ r < EarliestRequestIDO, or r > 18
RequestIDO drop the packet. 19

III. Otherwise, if SN < EarliestUnacknowledgedO or SN ≥ SeqNumberO, drop the packet. 20

IV. Otherwise, if TransferCompleteO[r] = TRUE drop the packet. 21
V. Otherwise, 22

(a) If EndOfTransfer = 1, 23
(1) Submit a TransferAck packet to the TransferAck transmission process with 24

the Request ID field set to r, the Sequence Number field set to SN, and the 25

Status Code field set to Status. 26
(b) If Status = SUCCESS, 27

(1) Set EarliestUnacknowledgedO = SN + 1. 28
(c) If Status = MISSINNG_SEQUENCE_NUMBER or DROPPED_PACKET, 29

(1) Set EarliestUnacknowledgedO = SN. 30

(2) Rewind the TransferReq packet transmission sequence so that the next 31
TransferReq packet to be transmitted will be the one with Sequence Number 32

value SN (the target MA USB device has dropped this TransferReq packet, 33
and has dropped or will drop all TransferReq packets that have been 34
transmitted after this packet). 35

(d) For each open transfer request u in the interval EarliestRequestIDO ≤ u ≤ r and in the 36
increasing order of u, 37

(1) If ResponseTimerO[u] > 0 and AckTransferSNO[u] < 38
EarliestUnacknowledgedO, 39

(i) Set ResponseTimerO = 0. 40

(2) Otherwise, break the loop. 41

(e) Set RxBufSizeO = Credit – Sum of PayloadSize/CCUnit×CCUnit for all transmitted 42

and unacknowledged TransferReq packets, i.e., TransferReq packets with Sequence 43
Number values EarliestUnacknowledgedO to SeqNumberO – 1. 44

NOTE — At this point the target MA USB device has dropped or will drop any outstanding TransferReq packets 45
with Sequence Number larger than SN. The MA USB host should attempt to stop transmission of any TransferReq 46
packets queued for transmission, and depending on the outcome of the cancellation, it may choose to ignore up to 47
SeqNumberO – 1 – SN follow-on TransferResp packets from the target MA USB device reporting a 48

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 64

MISSING_SEQUENCE_NUMBER status, except possibly to use these packets to update its estimate of the target 1
MA USB device available buffer. This optional behavior is not reflected in the transfer description. 2

NOTE — A DROPPED_PACKET status indicates that a TransferReq packet was received but could not be admitted 3
into local buffer; the MA USB host PAL may use this additional knowledge to pace its transmission rate. 4

(1) If Status equals any of the non-recoverable transfer errors, 5

(i) Set TransferErrorO[r] = TRUE. 6

TransferAck transmission process 7

Invoked to release a TransferAck packet to the assigned data channel. 8
 9

I. Let r and SN respectively denote the values of the Request ID and Sequence Number fields 10

of the received packet. 11
II. Release the TransferAck packet to the assigned data channel. 12

III. For each open transfer request u in the interval EarliestRequestIDO ≤ u ≤ r, 13
(a) Set TransferAcknowledgedO[r] = TRUE. 14
(b) Set TransferCompletionTimerO[u] = aMaxTransferLifetime. 15

Timer process 16
Invoked at every transfer timer tick event, as long as there is an active transfer request. 17

 18

I. For each open transfer request u in the interval EarliestRequestIDR ≤ u < ActiveRequestIDR, 19
and in increasing order of u, 20

(a) If TransferAcknowledgedO[u] = TRUE, 21
(1) Set TransferCompletionTimerO[u] = TransferCompletionTimerO[u] – 22

aTransferTimerTick. 23
(2) If TransferCompletionTimerO[u] ≤ 0, set TransferCompleteO[u] = TRUE. 24
(3) Otherwise, set EarliestRequestIDO = u and break the loop (go to Step II). 25

(b) Otherwise, set EarliestRequestIDO = u and break the loop (go to Step II). 26
II. For each open transfer request u in the interval EarliestRequestIDO ≤ u ≤ r, and in the 27

increasing order of u, 28

(a) If ResponseTimerO[u] > 0, 29
(1) Set ResponseTimerO[u] = ResponseTimerO[u] – aTransferTimerTick. 30

(2) If ResponseTimerO[u] ≤ 0, 31
(i) If TransferReqRetryCounterO[u] > 0, 32

(a) Submit the TransferReq packet that requires acknowledgement 33

to the TransferReq transmission process, with all packet fields 34
the same, except the Retry field, which is set to 1. 35

(b) Set ResponseTimerO[u] = aTransferTimeout. 36
(c) Set TransferReqRetryCounterO[u] = 37

TransferReqRetryCounterO[u] – 1. 38

(ii) Otherwise, 39
(a) Start the Ping protocol (Section 5.2.2). 40

(b) If the Ping protocol is successful, optionally, 41
(1) Set ResponseTimerO[u] = aTransferTimeout. 42
(2) Set TransferReqRetryCounterO[u] = 43

TransferReqRetriesO. 44
(3) Quit the Timer process and wait for the next transfer 45

timer tick event. 46
(c) If the Ping protocol fails, 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 65

(1) Set TransferErrorO[u] = TRUE. 1
(2) Indicate a transfer timeout error to the application, and 2

wait for a corrective action. 3

5.5.2.2 MA USB device PAL operation 4

The MA USB device operation is defined in terms of a series of state variables maintained in the context 5
of a single target endpoint or stream, 6

 RequestIDR (8 bits, unsigned): The Request ID value of the next original transfer request; 7
initialized to 0 at session initialization or upon any configuration event that returns the state of 8

the endpoint or stream flow to the initial state, and incremented by 1 when a new transfer request 9
is accepted, with wraparound to 0 after reaching the maximum value of aMaxRequestID. 10

 EarliestRequestIDR (8 bits, unsigned): The Request ID value of the earliest transfer request 11

whose state needs to be tracked; initialized to 0 at session initialization or upon any configuration 12
event that returns the state of the endpoint or stream flow to the initial state, and incremented by 13

1 when the transfer completion on the target endpoint or stream has been acknowledged, with 14
wraparound to 0 after reaching the maximum value of aMaxRequestID. 15

 SeqNumberR (24 bits, unsigned): Expected value of the Sequence Number field of the next 16
original TransferReq packet to be received; initialized to 0 at session initialization or upon any 17

configuration event that returns the state of the endpoint or stream flow to the initial state, and 18
incremented by 1 every time an original TransferReq packet is received and successfully 19
admitted to the receive buffer, with wraparound to 0 after reaching the maximum value of 20

aMaxSequenceNumber. 21

 ResponseTimerR (signed): A decrementing counter to track the response time for a TransferResp 22

packet that requires an immediate exchange (Section 5.2.1.2); set to aTransferTimeout every 23
time a TransferResp packet that requires an immediate exchange is released to the assigned data 24
channel, and decremented by aTransferTimerTick at every transfer timer tick event. 25

 TransferRespRetryCounterR (unsigned): A decrementing counter to track the retries of a 26
TransferResp packet that requires an immediate exchange (Section 5.2.1.2); set to 27

TransferRespRetriesO when a new round of retries is to be attempted, and decremented by 1 after 28
each retry. 29

 TransferRespRetriesR (unsigned): The reload value of the TransferRespRetryCounterR counter, 30
set to aControlTransferRetries, aBulkTransferRetries or aInterruptTransferRetries for control, 31

bulk and interrupt transfers, respectively. 32

 RxBufSizeR (32 bits, unsigned): Size (in bytes) of the receive buffer available to the target 33
endpoint or stream. 34

 OccupancyR (unsigned): Size (in bytes) of the payload accepted into the receive buffer. 35

The remaining state variables have a finer scope of a single MA USB transfer targeting the endpoint or 36

stream; specifically, for a given MA USB OUT transfer with Request ID equal to r, 37

 RemSizeR[r] (32 bits, unsigned): The number of bytes expected to be received; set to the value of 38

the Remaining Size field in the first TransferReq packet belonging to the transfer, and 39
decremented throughout the transfer. 40

 TransferErrorR[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE upon 41
detecting an error in the transfer. 42

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 66

 TransferCompleteR[r] (boolean): Set to FALSE at transfer initialization, and set to TRUE when it 1

is no longer necessary to track the state of the transfer. 2

 EndOfTransferDetectedR[r]: A boolean variable initialized to FALSE at transfer initialization, 3
and set to TRUE when the transfer payload has been delivered to the target endpoint or stream, 4

with or without error. 5

The MA USB device PAL operation is defined in terms of the processes described below. 6

Initialization process 7
Invoked on any configuration event intended to return the state of an endpoint or stream flow to the 8
initial state. 9

 10
I. Set RequestIDR = 0. 11

II. Set EarliestRequestIDR = 0. 12
III. Set SeqNumberR = 0. 13
IV. Set OccupancyR = 0. 14

V. Set RxBufSizeR = Initial value of the receive buffer size. 15

NOTE — The SeqNumberR variable keep increasing across successive transfers. 16

TransferReq reception process 17
Invoked upon reception of a TransferReq packet. 18
 19

I. Let r, SN, RemSize, and AckRequest respectively denote the values of the Request ID, 20
Sequence Number, Remaining Size, and ARQ fields in the received TransferReq packet. Let 21

PayloadSize denote the size of the payload in the TransferReq packet. 22
II. If r < EarliestRequestIDR, drop the packet and submit a TransferResp packet to the 23

TransferResp transmission process with the Request ID field set to ActiveRequestIDR, the 24

Sequence Number field set to SeqNumberR – 1, the Credit field set to RxBufSizeR – 25
OccupancyR, the Retry and EoT fields set to 0, and the Status Code field set to 26

INVALID_REQUEST. 27
III. Otherwise, if r > RequestIDR, drop the packet and submit a TransferResp packet to the 28

TransferResp transmission process with the Request ID field set to ActiveRequestIDR, the 29

Sequence Number field set to SeqNumberR – 1, the Credit field set to RxBufSizeR – 30
OccupancyR, the Retry and EoT fields set to 0, and the Status Code field set to 31

MISSING_REQUEST_ID. 32
IV. Otherwise, if SN > SeqNumberR, drop the packet and submit a TransferResp packet to the 33

TransferResp transmission process with the Request ID field set to ActiveRequestIDR, the 34

Sequence Number field set to SeqNumberR – 1, the Credit field set to RxBufSizeR – 35
OccupancyR, the Retry and EoT fields set to 0, and the Status Code field set to 36

MISSING_SEQUENCE_NUMBER. 37
V. Otherwise, if SN < SeqNumberR, drop the packet. 38

VI. Otherwise, if r = RequestIDR and there is an active transfer request, and RemSizeR[r–1] > 0, 39

drop the packet and submit a TransferResp packet to the TransferResp transmission process 40
with the Request ID field set to ActiveRequestIDR, the Sequence Number field set to 41

SeqNumberR – 1, the Credit field set to RxBufSizeR – OccupancyR, the Retry and EoT fields 42
set to 0, and the Status Code field set to INVALID_REQUEST. 43

VII. Otherwise, 44

(a) Optionally, invoke the buffer size change process. 45

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 67

(b) If PayloadSize + OccupancyR ≤ RxBufSizeR, or if the Elastic Buffer (Section 5.5.1) 1
capability is supported, 2

(1) If r = RequestIDR, 3
(i) Create a new transfer with Request ID value r. 4

(ii) Set TransferErrorR[r] = FALSE. 5
(iii) Set TransferCompleteR[r] = FALSE. 6
(iv) Set EndOfTransferDetectedR[r] = FALSE. 7

(v) Set RequestIDR = RequestIDR +1. 8
(2) Set SeqNumberR = SeqNumberR + 1. 9

(3) Set OccupancyR = OccupancyR + PayloadSize. 10
(4) If AckRequest = 1, or OccupancyR > RxBufSizeR, or optionally, 11

(i) Submit a TransferResp packet to the TransferResp transmission 12

process with the Request ID field set to ActiveRequestIDR, the 13
Sequence Number field set to SeqNumberR – 1, the Credit field set to 14

RxBufSizeR – OccupancyR, the Retry and EoT fields set to 0, and the 15
Status Code field set to NO_ERROR. 16

(c) Otherwise, 17

(1) Drop the TransferReq packet. 18
(2) Submit a TransferResp packet to the TransferResp transmission process with 19

the Request ID field set to r, the Sequence Number field set to SeqNumberR – 20
1, the Credit field set to RxBufSizeR – OccupancyR, the Retry and EoT fields 21
set to 0, and the Status Code field set to DROPPED_PACKET if the Drop 22

Notification (Section 6.3.3.2) capability is supported, and set to 23
MISSING_SEQUENCE_NUMBER otherwise. 24

TransferResp transmission process 25
Invoked to release a TransferResp packet to the assigned data channel. 26
 27

I. Let EndOfTransfer denote the value of the EoT fields in the TransferResp packet. 28
II. Release the TransferResp packet to the assigned data channel. 29

III. If EndOfTransfer = 1, and ResponseTimerR ≤ 0, 30
(a) Set ResponseTimerR = aTransferTimeout. 31
(b) Set TransferRespRetryCounterR = TransferRespRetriesR. 32

TransferAck reception process 33
Invoked upon receiving a TransferAck packet. 34

 35
I. Let r denote the value of the Request ID field in the received TransferAck packet. 36

II. If r < EarliestRequestIDR or r > RequestIDR, drop the TransferAck packet. 37

III. Otherwise, 38
(a) For each open transfer request u in the interval EarliestRequestIDR ≤ u ≤ r, and in 39

increasing order of u, set TransferCompleteR[u] = TRUE. 40

Payload delivery process 41
Invoked to deliver the transfer payload to the target endpoint or stream. 42

 43
I. Attempt to deliver the payload to the target endpoint or stream. 44

Payload delivery confirmation process 45
Invoked to indicate successful or failed completion of payload delivery for transfer request r to the target 46
endpoint or stream. 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 68

 1
I. If payload delivery has failed, or optionally, 2

(a) Set EndOfTransferDetectedR[r] = TRUE. 3
(b) Submit a TransferResp packet to the TransferResp transmission process with the 4

Request ID field set to r, the Sequence Number field set to SeqNumberR – 1, the 5
Credit field set to RxBufSizeR – OccupancyR, the Retry field set to 0, the Retry field 6
set to 0, the EoT field set to 1, and the Status Code field set to NO_ERROR or 7

appropriate error code. 8

NOTE — A TransferResp packet with the Request ID field set to r and the EoT field set to 1 indicates successful or 9
failed delivery of the payload belonging to transfer r to the target endpoint or stream, as well as successful delivery 10
of the payload belonging to all past transfer requests . 11

Buffer size change process 12

Invoked to change the buffer size available to the target endpoint or stream. 13
 14

I. Change the receive buffer size, and 15

(a) Set RxBufSizeR to the new buffer size value. 16
(b) Optionally, submit a TransferResp packet to the TransferResp transmission process 17

with the Request ID field set to ActiveRequestIDR, the Sequence Number field set to 18
SeqNumberR – 1, the Credit field set to RxBufSizeR – OccupancyR, the Retry and EoT 19
fields set to 0, and the Status Code field set to NO_ERROR. 20

NOTE — The buffer used by a transfer that has completed delivery to the target endpoint or stream cannot be 21
assumed to be available before receiving the MA USB host PAL acknowledgement to the delivery completion. 22

Timer process 23

Invoked at every transfer time event, as long as there is an active transfer request. 24
 25

I. If ResponseTimerR > 0, 26
(a) Set ResponseTimerR = ResponseTimerR – aTransferTimerTick. 27
(b) If ResponseTimerR ≤0, 28

(1) If TransferRespRetryCounterR > 0, 29
(i) Submit the earliest TransferResp packet that requires 30

acknowledgement to the TransferResp transmission process with all 31
packet fields the same, except possibly the Sequence Number field, 32
which is set to SeqNumberR – 1, and the Credit field, which is set to 33

RxBufSizeR – OccupancyR. 34
(ii) Set ResponseTimerR = aTransferTimeout. 35

(iii) Set TransferRespRetryCounterR = TransferRespRetryCounterR – 1. 36
(2) Otherwise, wait indefinitely for corrective actions, or optionally, 37

(i) Start the Ping protocol (Section 5.2.2). 38

(ii) If the Ping protocol is successful, optionally, 39
(a) Set ResponseTimerR = aTransferTimeout. 40

(b) Set TransferRespRetryCounterR = TransferRespRetriesR. 41
(c) Quit the Timer process and wait for the next transfer timer tick 42

event. 43

(iii) If the Ping protocol fails, or if the optional path in the previous step is 44
not followed, 45

(a) Set TransferErrorR[EarliestRequestIDR] = TRUE. 46
(b) Indicate a transfer timeout error to the application, and wait for 47

a corrective action. 48

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 69

5.6 Link-managed OUT transfers 1

The link-managed (l-managed) transfer model assumes a connection-oriented operation with end-to-end 2
flow control between the target USB endpoint and the MA USB host PAL. It simplifies the transfer 3
protocol by relying on link-level flow control. 4

A complete l-managed transfer consists of three phases, 5

 Set up phase, when link resources are set up and allocated to the transfer 6

 Data phase, when data flows between the client buffer on the host system and the target USB 7
endpoint 8

 Tear down phase, when the link resources allocated to the transfer are released 9

MA USB host normally follows the same model for all transfers targeting a given USB endpoint as long 10

as the endpoint is active. For example, to write to a bulk OUT endpoint on a continuous basis, the MA 11
USB host may set up the required link resources to support a link-managed transfer once, use the 12
established flow-controlled connection to transfer data to the target endpoint as long as the endpoint is 13

active, and tear down the connection only after the target USB endpoint is not operational. Alternatively, 14
the MA USB host may frequently release the link resources allocated to a transfer and allocate them to a 15

different transfer targeting a different endpoint on a time-shared basis, making the set up and tear down 16
phases more frequent. 17

5.6.1 Transfer description 18

The MA USB host starts the set up phase of an l-managed OUT transfer by sending a Transfer Setup 19
Request (TransferSetupReq) packet (Section 6.4.1) to the target MA USB device over the control or any 20
available data channel, indicating the EP handle the host will be writing to, as well as the link-specific 21

context for the flow-controlled connection it will be setting up for data transfer. MA USB host then sets 22
up the flow-controlled connection required for the transfer. The connection set up may require 23

participation of the target MA USB device (e.g., receive buffer size negotiation), which is already aware 24
of the set up through the TransferSetupReq packet. In the event the connection set up fails, MA USB 25
host may retry setting up the connection for a number of times, or may attempt to set up another 26

connection using a new link-specific context. MA USB host shall share the connection context with the 27
MA USB device through a TransferReq packet before starting any new connection set up. If no 28

connection can be secured to support the transfer, MA USB host shall release any local or link-layer 29
resources allocated to the transfer, and return the appropriate USBDI error to the application to indicate 30
the transfer failure. No action by the target MA USB device is required in this case. If the connection set 31

up is successful, the target MA USB device programs local resources to direct the OUT transfer payload 32
arriving over the established connection to the target endpoint, and sends a Transfer Setup Response 33

(TransferSetupResp) packet (Section 6.4.2) to the MA USB host, completing the set up phase. 34

If the MA USB host does not receive a TransferSetupResp packet by aTransferTimeout after the 35
connection has been established from the MA USB host perspective, the MA USB host shall send 36

another TransferSetupReq packet with the packet Retry bit set to 1, and repeat this step for a maximum 37
of aTransferSetupRetries times. The parameter aTransferSetupRetries does not include the number of 38

possible local retries before a TransferSetupReq packet is successfully submitted for transmission. 39

The MA USB host starts the data phase of the transfer by sending one or more TransferReq packets 40
(Section 6.5.2) to the target MA USB device over the established connection. There is no restriction on 41

the TransferReq packets transmission rate; the underlying assumption behind the transfer model is that 42
TransferReq packets will be flow-controlled at the link layer if the target endpoint follows a slower pace 43

than the link-level transfer rate. With the exception of the last TransferReq packet (which does not have 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 70

a payload size restriction), the payload size for each TransferReq packet belonging to a transfer is a 1
multiple of the maximum packet size the target endpoint supports, i.e., a multiple of the 2

wMaxPacketSize field of the target endpoint descriptor. All TransferReq packets belonging to the same 3
transfer carry the same number for the Request ID field. Request ID is selected by the MA USB host and 4

shall be unique within the scope of a target endpoint. The MA USB host may send other TransferReq 5
packets with different Request IDs before it has received all required TransferResp packet for a given 6
Request ID. The Request ID used for each new transfer shall be strictly increasing, with no gaps. The 7

MA USB host shall not have more than one pending transfer using the same Request ID and targeting 8
the same endpoint. To enable the MA USB device to identify missing data packets, each TransferReq 9

packet carries a sequence number, which is set to zero in the first TransferReq packet for a given 10
transfer, and is incremented by one in every subsequent TransferReq packet. In addition, each 11
TransferReq packet carries in its Transfer Size field the number of remaining bytes for the transfer 12

assuming the payload in the packet is successfully processed by the MA USB device. 13

The target MA USB device shall send a Transfer Response (TransferResp) packet (Section 6.5.3) to the 14

MA USB host once one of the following conditions occurs, 15

 The payload in the final TransferReq packet belonging to a transfer (as marked by Remaining 16

Size field set to zero) is successfully delivered to the target endpoint: In this case, the target MA 17
USB device shall send a TransferResp packet with the Request ID and Sequence Number fields 18
set to the same values as those in the final TransferReq packet, the Remaining Size field set to 0, 19

and the Status field set to SUCCESS. 20

 Delivering the payload in any of the TransferReq packets belonging to a transfer to the target 21

endpoint faces a locally non-recoverable error: In this case, the target MA USB device shall send 22
a TransferResp packet with the Request ID and Sequence Number fields set to the same values 23
as those in the TransferReq packet whose payload experienced the error, the Remaining Size 24

field set to the transfer size minus the number of bytes successfully delivered to the endpoint, 25
and the Status field set to an appropriate error code from the list in Table 6. 26

The interval between when the final TransferReq packet is received by the target MA USB device and 27
when the corresponding TransferResp packet appears over the link on the MA USB device side shall not 28
exceed aTransferKeepAlive. If the MA USB host does not receive a TransferResp packet by 29

aTransferKeepAlive after it has successfully submitted the final TransferReq packet for a transfer for 30
transmission, it shall attempt to solicit a TransferResp packet by sending another TransferReq packet 31

with all packet fields set to the same values as those in the final TransferReq packet for the transfer, 32
except for the Retry bit, which is set to 1. If necessary, the MA USB host shall repeat sending the 33
TransferReq packet for a maximum number of times equal to aControlTransferRetries for control 34

transfers, aBulkTransferRetries for bulk transfers and aInterruptTransferRetries for interrupt transfers. 35
The number of retries does not include the number of possible local retries before a TransferReq packet 36

is successfully submitted for transmission. If no TransferResp packet is received after the maximum 37
number of retries allowable for the transfer type, the MA USB host shall return the appropriate USBDI 38
error to the application indicating the transfer failure, and shall start the tear down phase of the transfer. 39

From the MA USB host perspective, an OUT transfer is complete when one of the following conditions 40
occurs, 41

 MA USB host receives a TransferResp packet with the Status field set to a value other than 42
SUCCESS: In this case, MA USB host shall return to the application a status code that indicates 43

failure of the write request that prompted the MA USB transfer, as well as the reason for the 44
failure. MA USB host may also return the number of bytes confirmed to be delivered to the 45
target endpoint. 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 71

 MA USB host receives a TransferResp packet with the Status field set to SUCCESS and the 1

Remaining Size field set to zero: In this case, if the final TransferReq packet associated with the 2
transfer has not been sent, or the Sequence Number in the TransferResp packet does not equal 3
the Sequence Number in the final TransferReq packet, the MA USB host shall return to the 4

application a status code that indicates failure of the write request that prompted the MA USB 5
transfer, as well as the reason for the failure. The MA USB host may additionally return the 6

number of bytes that were confirmed to be delivered to the target endpoint. If the final 7
TransferReq packet associated with the transfer has been sent, and the Sequence Number in the 8
TransferResp packet equals the Sequence Number in the final TransferReq packet, the MA USB 9

host shall assume the OUT transfer is complete with no error. Once all OUT transfers serving a 10
common application- level write request are complete with no error, the MA USB host shall 11

return a status code to the application that indicates the success of the write request. 12

At any point during the set up or data phase of an l-managed transfer, the MA USB host may start the 13
tear down phase by tearing down the lower-layer link resources set up in support of the transfer, and 14

sending a Transfer Tear Down Confirmation (TransferTearDownConf) packet (Section 6.4.3) to the 15
target MA USB device on the control channel. The TransferTearDownConf packet is not retried at the 16

PAL level. It is simply a confirmation that the MA USB host will not send more TransferReq packets on 17
the target endpoint following the packet. A target MA USB device that detects releasing of lower-layer 18
link resources associated with an l-managed transfer on a target endpoint, or receives a 19

TransferTearDownConf packet for an l-managed transfer on a target endpoint, shall stop sending 20
TransferResp packets for any pending transfer requests, and shall silently discard all transfer requests 21

associated with the target endpoint. 22

Figure 19 illustrates the three phases of l-managed OUT transfers. In the scenario shown in the figure, 23
the first OUT transfer (which completes with no error) goes through set up and data phases, and the 24

second transfer (which experiences a STALL error) goes through data and tear down phases. 25

 26

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 72

MA USB host PAL MA USB device PAL

Write request

Pipe interface p

Write buffer B1

Write size S0

MA USB OUT transfer

Request Id r

Transfer size S0

TransferSetupReq(MA USB EP Handle

ep, Connection ID id)

TransferResp(Request Id 1, Sequence No. 4,

EoT 1, Status Code SUCCESS)Write response

Status OK

Data transfer phase complete with no error; MA

USB host keeps the allocated link resources in

place in anticipation of more transfers

TransferSetupResp

(MA USB EP Handle ep, Connection ID id)

Acknowledgement for

data delivery over the air

(not shown)

TransferReq(Request Id r, Sequence No. 0,

Remaining Size S1≤S0)

TransferReq(Request Id r, Sequence No. 1,

Remaining Size S2≤S1)

TransferReq(Request Id r, Sequence No. 2,

Remaining Size S3≤S2)

TransferReq(Request Id r, Sequence No. 3,

Remaining Size S4≤S3)

TransferReq(Request Id r, Sequence No. 4,

Remaining Size S5=0)

Write request

Pipe interface p

Write buffer B2

Write size T0

Write response

Status STALL

TransferReq(Request Id r+1, Sequence No. 5,

Remaining Size T1≤T0)

MA USB OUT transfer

Request Id r+1

Transfer size T0

TransferResp(Request Id r+1, Sequence No. 5,

Status Code STALL)

TransferTearDownConf(MA USB EP Handle

ep, Connection ID id)

S
e

t u
p

 p
h

a
s
e

D
a

ta
 p

h
a

s
e

 (m
a

y
 c

o
n

tin
u

e
 a

c
ro

s
s
 m

u
ltip

le
 tra

n
s
fe

rs
)

T
e

a
r d

o
w

n
 p

h
a

s
e

MA USB host flow-controlled

NRDY

USB endpoint

flow-controlled

ERDY

STALL

USB data flow

resumes

Flow-controlled connection set up

(normally requires participation of both sides)

Flow-controlled connection tear down

(may or may not require participation of both sides)

Data transfer phase complete with STALL error;

MA USB host PAL chooses to release the

resources (it may also keep them in place in

anticipation of more transfers)

Link-level flow control; MA USB device cannot

accept more TransferReq packets (when the flow

control event is cleared is not shown in the picture)

TransferAck(Request Id r)

USBDI MA Link Interface MA Link Interface USB Logic EP

 1

Figure 19—Link-managed OUT transfer 2

5.6.2 Transfer mode selection 3

When targeting a non-isochronous OUT endpoint, the exercised transfer mode is decided by the MA 4
USB host. If the target endpoint indicates support for l-managed transfer mode in its MA USB EP 5
descriptor (Section 6.3.7), the MA USB host may choose to exercise either the p-managed or l-managed 6

transfer mode when targeting the endpoint. The MA USB host may switch from one transfer mode to 7
another. Specifically, successful set up of an l-managed transfer indicates switch to l-managed mode, 8

and successful tear down of an l-managed transfer indicates switch to p-managed mode. Note an l-9

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 73

managed transfer set up may be unsuccessful due to resource limitations, even if the target endpoint has 1
indicated support for l-managed transfer mode. 2

5.7 Control transfers 3

MA USB control transfers are used for USB command and status operations. As such, MA USB control 4

transfers are defined in relation to USB control transfers specified in [USB 2.0] and [USB 3.1]. 5

A USB control transfer comprises three stages, 6

1. Setup stage, during which the USB host transmits to the USB device the USB setup data. The 7
USB setup data is an eight-byte payload. 8

2. Data stage, which may be an IN or an OUT data stream or non-existent 9

3. Status stage, which is a separate identifiable bus event where the device acknowledges the 10
completion of the command to the host. 11

MA USB control transfers (Figure 20) manage the three stages of the USB control transfer using the 12
mechanisms defined in the following sections. 13

MA USB host PAL MA USB device PAL

Control Read request

Read size 3 KB

MA USB Control IN transfer

Request Id 2

Transfer size 3 KB

USBDI

Control Read response

Status OK

MA Link Interface USB Logic EP

Data transfer complete with no error

TransferReq(Request Id 2, Sequence No. 0,

Setup-Data[In, Size 3KB]) TransferResp(Request Id 2, Sequence No. 0,

Status Code SUCCESS, EOT TRUE, Payload)

TransferAck(Request Id 2, Sequence No. 0)

Reception of TransferAck packets result

in the acknowledged data to be

removed from MA USB device buffer.

Control Write request

Write size 4 KB MA USB Control OUT transfer

Request Id 1

Transfer size 4 KB

Control Write response

Status OK

Data transfer complete with no error

TransferReq(Request Id 1, Sequence No. 0,

Setup_Data[OUT, Size 4 KB], Payload)

TransferResp(Request Id 1, Sequence No. 0,

Status Code SUCCESS, EOT TRUE)

TransferAck(Request Id 1, Sequence No. 0)

MA Link Interface

 14

Figure 20—MA USB Control OUT and IN Transfers 15

5.7.1 Setup stage 16

An MA USB device shall have a buffer space of at least aMinControlTransferBufferSize bytes available 17
for the first control transfer targeting the default control endpoint (endpoint 0) of each USB device 18

behind the MA USB device. The first eight bytes of the buffer space is used for the setup data, and the 19
remaining bytes are used for a control OUT transfer (data stage). 20

Each MA USB control transfer is initiated through a control TransferReq packet, which 21

 Carries a Request ID field with a new value. 22

 Carries a Sequence Number field set to zero. The sequence numbers at both the MA USB host 23

and MA USB device re-initialize at the beginning of each control transfer request. 24

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 74

 (For control IN and OUT transfers) includes the 8 bytes of setup data as payload. 1

 (For control OUT transfers) includes as many bytes of the control write data that the target MA 2
USB device can accept. 3

A device shall transmit a TransferResp packet to the start of a new control transfer. For control OUT 4

transfers, the TransferResp packet shall include the Credit field for subsequent data TransferReq packets 5
and initialize its expected sequence number to 1. 6

5.7.2 Data stage for control OUT transfers 7

The data stage of control OUT transfers follows the MA USB p-managed OUT (Section 5.5) or l-8
managed OUT (Section 5.6) data transfer model. 9

As described in the Setup stage, the control TransferReq packet for control OUT transfers carries as 10
many bytes of the control write data that the target MA USB device can accept. If the size of the OUT 11

data is larger than what the MA USB device can accept, then the host increments the sequence number 12
counter and continues with TransferReq for OUT transfers following the transmission of the control 13
TransferReq packet. On receipt of the Setup TransferReq packet, the target MA USB device observes 14

from the setup data that the control transfer is a control write, and initializes its expected sequence 15
number to 1, so that it is prepared to accept and handle the subsequent OUT TransferReq packets 16

utilizing the bulk OUT transfer model. 17

NOTE — A control transfer with no data is treated as an OUT transfer with 0 bytes of control write data. 18

5.7.3 Data stage for control IN transfers 19

The data stage of control IN transfers follows the MA USB IN data transfer model (Section 5.4). 20

The MA USB host sets its expected sequence number to 0 after transmission of the control TransferReq 21
packet. On receipt of the control TransferReq packet, the target MA USB device observes from the setup 22

data that it is a control read, and initializes its sequence number to 0 and continues with the IN transfer 23
with transmitting TransferResp packets with the IN data. 24

5.7.4 Status stage 25

The results of the USB control transfer status stage are delivered to the host encoded in the last 26
TransferResp packet associated with the data stage of the control transfer. For a control IN transfer, the 27

status stage result is included in the last TransferResp packet carrying payload. For a control OUT 28
transfer, the status stage result is included in the TransferResp packet with the EoT field set to 1. Note 29

that there is no explicit signaling required for status stage. If the control transfer completes without an 30
error, then the SUCCESS (NO_ERROR) status in the TransferResp packet with EoT field set to 1 31
indicates the successful completion of the control transfer. Similarly, in case of a STALL response, the 32

error is propagated to the application using similar mechanisms as with bulk transfers. 33

NOTE — Control endpoints shall not support functional STALL as defined in [USB 2.0] and [USB 3.1]. The 34
STALL condition lasts until the receipt of the next control transfer. 35

5.8 Bulk transfers 36

Bulk transfers are used for time insensitive communication (usually large bursty data) between the host 37

and the device. MA USB IN transfers (Section 5.4) and MA USB OUT transfers (Sections 5.5 and 5.6) 38
are used for transport of USB IN and OUT bulk transfers, respectively. 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 75

5.9 Interrupt transfers 1

Interrupt transfers are generally non periodic transfers which require bounded latency. In a USB 2
interrupt IN transfer the host regularly polls the device. In MA USB however, interrupt IN transfers use 3
the MA USB IN transfer defined in Section 5.4, where the host issues a transfer request and waits for the 4

response from the device. The behavior of the MA USB host and the MA USB device in case of a 5
pending response is also described in Section 5.4. 6

Similarly, Interrupt OUT transfers use MA USB OUT transfers defined in Sections 5.5 and 5.6. 7

5.10 Isochronous transfers 8

MA USB isochronous transfers serve the same purpose as USB isochronous transfers: They support data 9

streams that (1) require periodic delivery, and (2) are tolerant to occasional data losses. The USB 10
isochronous operation is defined in [USB 2.0] and [USB 3.1] and is an inseparable companion to the 11

MA USB isochronous operation defined in this section. 12

MA USB isochronous transfers do not follow the transfer models defined for other transfer types; they 13
use a time-based delivery model that is defined in this section. The basic unit of transfer in MA USB 14

isochronous operation is an isochronous segment (or segment for short), defined as the data generated or 15
consumed by a target isochronous endpoint over a period of time equal to the Service Interval (SI) 16

associated with that endpoint. The Service Interval associated with an FS isochronous endpoint is a 17
power of two multiple of 1 millisecond, ranging from 1 millisecond to 32,768 milliseconds. The Service 18
Interval associated with an HS or Enhanced SuperSpeed isochronous endpoint is a power of two 19

multiple of 125 μs ranging from 125 μs to 4096 milliseconds. Each isochronous segment is normally 20
(not always) associated with a presentation time, which points to the beginning of the Service Interval 21

during which the segment was received from the target isochronous IN endpoint, or the Service Interval 22
during which the segment is to be delivered to the target isochronous OUT endpoint. 23

NOTE — Some Operating System implementations refer to isochronous segments as isochronous packets. 24

The size of an isochronous transfer is specified by the application, and can span consecutive target 25
Service Intervals. The size of each segment depends on the isochronous endpoint attributes and the 26

amount of data available at the time of transfer. For example, an application- level read request for 4 27
segments, which targets an Enhanced SuperSpeed isochronous IN endpoint with a Service Interval of 4 28
milliseconds (bInterval = 6), maximum USB packet size of 1024 bytes (wMaxPacketSize =1024), up to 29

three packet bursts in each Service Interval (bmAttributes = 2), and up to 16 USB packets in each burst 30
(bMaxBurst =15) should secure enough buffer to receive up to 48 KB (1024 * 3 * 16 bytes) for each 31

segment, or up to 192 KB in total. The target endpoint in this example may not generate the maximum 32
of 48 KB over each target SI, resulting in isochronous segments that are smaller than 48 KB, and an MA 33
USB isochronous transfer size of less than 192 KB. 34

NOTE — The bmAttributes and bMaxBurst parameters belong to the Enhanced SuperSpeed Endpoint Companion 35
descriptor in this example. 36

The MA USB isochronous transfer model has been designed with the following observations, 37

 Isochronous segments can see a wide variation in size (zero bytes to 48 KB for an Enhanced 38
SuperSpeed endpoint) 39

 Different links to different MA USB devices can have different MTU values, even if they 40
employ the same technology (native Wi-Fi, native WiGig, IP, etc.) 41

 Acknowledging isochronous data packets at the MA USB protocol level is generally difficult or 42
inefficient over half-duplex links such as native Wi-Fi and WiGig 43

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 76

 Isochronous data packets may be delivered out-of-order with some network technologies and 1

link protocol choices 2

 Application-level data units are generally not aligned with USB isochronous packets, nor are 3
they fully contained within an isochronous segment (the collective isochronous payload 4

delivered over a Service Interval); a single application- level data unit may span multiple USB 5
isochronous packets or even multiple isochronous segments 6

There is no protocol-level retransmission defined for MA USB isochronous data packets. The 7
underlying link is expected to provide a reasonable reliability with the understanding that isochronous 8
applications are tolerant to data loss. It is recommended to implement some level of reliability in the 9

form of limited retransmissions at the network layer to support isochronous applications. 10

5.10.1 Packetization 11

MA USB isochronous transfers make use of two data packet subtypes: Isochronous Transfer Request 12
(IsochTransferReq) packet, which is used to initiate an IN or OUT transfer, and also to carry 13
isochronous payload for OUT transfers, and Isochronous Transfer Response (IsochTransferResp), which 14

is used to provide transfer status updates and also to carry isochronous payload for IN transfers. 15

Each MA USB isochronous transfer may use multiple isochronous data packets to carry one or more 16

isochronous segments. Some isochronous segments may experience fragmentation as a result of 17
packetization. Conversely, small isochronous segments belonging to the same transfer may be carried 18
inside the same isochronous data packet for transport efficiency. A complete or partial isochronous 19

segment carried inside an isochronous data packet is referred to as an isochronous data block, or data 20
block for short. To be able to identify and reassemble the fragments of an isochronous segment, and also 21

to be able to pack multiple isochronous segments in each isochronous data packet, each isochronous data 22
packet with payload also carries a set of isochronous headers associated with the data blocks in the 23
packet. The format of isochronous data blocks and associated isochronous headers is defined in Section 24

5.10.1.1. For isochronous IN transfers, the MA USB host needs to specify the isochronous transfer size 25
in the form of a series of maximum segment length values, where each value in the series indicates the 26

size of the largest isochronous segment that the MA USB host can accept during one or more 27
consecutive target Service Intervals. Maximum segment length values are defined in the form of a series 28
of isochronous read size (IRS) blocks, where each block defines the maximum acceptable segment 29

length for a number of consecutive target Service Intervals. The format of IRS block is defined in 30
Section 5.10.1.2. 31

Figure 21 illustrates the isochronous data packet formats for isochronous IN and OUT transfers. 32

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 77

 1

Figure 21—MA USB isochronous data packet formats 2

5.10.1.1 Isochronous data blocks 3

Figure 22 illustrates the format of isochronous data packets with isochronous payload. At the beginning 4
of the packet are isochronous headers, placed one after another with the Segment Number field (defined 5
below) strictly increasing. Isochronous data blocks follow the isochronous headers, and in the exact 6

same order of the headers. If the MA USB device that sends or receives the isochronous data packet has 7
required DWORD alignment for isochronous payload (by setting the Isochronous payload alignment 8

field in the CapResp packet to 1), each isochronous data block is padded with 0 to 3 zero bytes to make 9
the block length a multiple of 4 bytes; otherwise, isochronous data blocks are packed after each other 10
with no padding. 11

NOTE — The format shown in Figure 22 applies only to isochronous data packets with isochronous payload, i.e., 12
IsochTransferReq packets for isochronous OUT transfers and IsochTransferResp packets for isochronous IN 13
transfers. See Sections 5.10.2 and 5.10.3 for details. 14

Isochronous data

packet header

Isochronous data

packet header

No payload

Isochronous Transfer Request

(IsochTransferReq)

Isochronous Transfer Response

(IsochTransferResp)

Isochronous header 1

Isochronous header 2

Isochronous header N

Isochronous data block 1

Isochronous data block 2

Isochronous data block N

4, 8 or 12 bytes (all the same size)

block sizes vary

Isochronous OUT transfers

Isochronous data

packet header

Isochronous read size block 1

Isochronous read size block 2

Isochronous read size block M

Isochronous data

packet header

Isochronous Transfer Request

(IsochTransferReq)

Isochronous Transfer Response

(IsochTransferResp)

Isochronous header 1

Isochronous header 2

Isochronous header N

Isochronous data block 1

Isochronous data block 2

Isochronous data block N

4 or 8 bytes (all the same size) 4, 8 or 12 bytes (all the same size)

block sizes vary

Isochronous IN transfers

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 78

031 222324252627282930 21 121314151617181920 11 2345678910 1

Isochronous data packet header

Isochronous header 1 (1, 2 or 3 DWORDs – all segment headers in the packet have the same length)

Isochronous header 2 (1, 2 or 3 DWORDs – all segment headers in the packet have the same length)

Isochronous header N (1, 2 or 3 DWORDs – all segment headers in the packet have the same length)

Isochronous data block 1 (DWORD-aligned)

Isochronous data block 2 (DWORD-aligned)

Isochronous data block N (DWORD-aligned)

0-3 bytes of zero padding (if necessary)

0-3 bytes of zero padding (if necessary)

0-3 bytes of zero padding (if necessary)
 1

Figure 22—Format of isochronous data packets with isochronous payload 2

All isochronous headers in a packet have the same length, which can be 4, 8 or 12 bytes. The format 3

(and length) of these isochronous headers is defined by the Isochronous Header Type field (Section 4
6.5.1.8) in the isochronous data packet header. Specifically, these isochronous headers take one of the 5

three forms shown in Figure 23, 6

 The short format (Isochronous Header Format = 0) is 4 bytes in length, and does not support 7

fragmentation; this format is best for packing multiple small isochronous segments inside a 8
larger isochronous data packet. 9

 The standard format (Isochronous Header Format = 1) is 8 bytes in length, and supports 10

fragmentation of segments as large as 64 KB; this format allows carrying a mix of complete and 11
partial segments (subject to the rules defined in this section), and the segment size available 12

through this format is adequate for FS, HS and Enhanced SuperSpeed USB devices. 13

 The long format (Isochronous Header Format = 2) is 12 bytes in length, and supports 14

fragmentation of segments as large as 4 GB; this format is the most general and is defined to be 15
able to support future revisions of the USB protocol. 16

NOTE — Each isochronous header is transmitted starting with Bit 0 of the lowest-order byte of the Block Length 17
field and ending with Bit 4 of the S-Flags field for short format, or Bit 7 of the highest-order byte of the Fragment 18
Offset field for long and extended formats . 19

NOTE — The common format for all isochronous headers in a packet is to enable efficient packet processing. 20
Isochronous headers in different packets (including packets that target the same endpoint) may assume different 21
formats. 22

NOTE — Implementations are free to choose the short or standard isochronous header format based on their 23
packetization and design preferences . For example, an implementation that supports FS, HS and Enhanced 24
SuperSpeed devices may choose to always use the standard format and carry a mix of complete and partial segments 25
(subject to the rules defined in this section) in each packet. An alternative implementation may use a mix of short 26
and standard formats depending on the segment lengths and need for fragmentation inside each packet. 27

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 79

NOTE — The long format for isochronous headers shall not be used unless the packet is carrying a fragment of an 1
isochronous segment that is larger than 64 KB. This does not happen with FS, HS and Enhanced SuperSpeed 2
isochronous endpoints. 3

Segment NumberBlock Length S-Flags

Bits: 1216 4

Segment Length Fragment Offset

16 16

Segment NumberBlock Length S-Flags

Bits: 1216 4

b0

Short format (4 bytes, does not support fragmentation)

Standard format (8 bytes, supports fragmentation of segments as large as 64 KBytes)

b15 b0 b3b0 b11

b0 b15 b0 b3b0 b11

Segment NumberBlock Length S-Flags

Bits: 1216 4

Segment Length Fragment Offset

32 32

Long format (12 bytes, supports fragmentation of segments as large as 4 GBytes)

b0 b15 b0 b3b0 b11

b0 b15 b0 b15

b0 b31 b0 b31

 4

Figure 23—Isochronous header formats 5

The 16-bit Block Length field carries the length of the associated data block in bytes. 6

The 12-bit Segment Number identifies the segment the data block belongs to. Segment Number 0 refers 7
to the first segment belonging to an isochronous transfer, Segment Number 1 refers to the second 8

segment, and so on. Isochronous segments are sent in order, and segments with no data may be skipped, 9
i.e., the Segment Number fields observed in any isochronous data packet are strictly increasing but are 10
allowed to have gaps. 11

NOTE — MA USB architecture does not assume in-order delivery for isochronous data packets. Therefore, the 12
Segment Number fields across sequentially received isochronous data packets belonging to the same MA USB 13
transfer may not be strictly increasing. 14

NOTE — Any segment, including the first segment and the last segment of an isochronous transfer, may be skipped 15
if it carries no data. Alternatively, an isochronous header with the Block Length field set to 0 and the Fragment bit 16
(see below) set to 0 may be used to indicate a zero-payload (null) data block. No null data block shall be sent with 17
the Fragment bit set to 1. 18

The 4-bit S-Flags field defines the contents of the data block, and also carries information related to the 19

fragment transport and reassembly in case the associated data block is carrying a fragment. The field is 20
shown in Figure 24, with the subfields defined in Table 1. 21

b3

Fragment

b2b1b0

Last Fragment Reserved

 22

Figure 24—S-Flags field 23

Table 1—S-Flags subfields 24

Bit(s) Description

b0 Fragment. Set to 1 if the data block associated with the isochronous header is
carrying an incomplete isochronous segment (a fragment), and 0 otherwise.
This subfield is set to zero in short isochronous headers with no fragmentation
support.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 80

b1 Last Fragment. Set to 1 if the carried fragment is the last fragment of an
isochronous segment, and 0 otherwise. This subfield is defined only when the
Fragment subfield is set to 1, and is reserved otherwise.

b3, b2 Reserved.

The long and extended isochronous header formats include two more fields: 1

 The Segment Length field indicates the length of the isochronous segment in bytes, i.e., the sum 2
of the lengths of all data blocks carrying the segment. The field is 2 bytes long in the long format 3

and 4 bytes long in the extended format. 4

 The Fragment Offset field indicates the byte offset of the carried fragment relative to the 5

segment beginning. The field is 2 bytes long in the long format and 4 bytes long in the extended 6
format. 7

NOTE — The short, long and extended isochronous header formats are defined to support very large isochronous 8
segments as USB technology evolves while staying bit-efficient when carrying small segments. 9

NOTE — An isochronous header with long or extended format that corresponds to a full isochronous segment (i.e., 10
no fragment) has the Segment Length and Block Length fields set to the segment size, and the Fragment Offset field 11
set to 0. 12

The Last Fragment bit of the S-Flags field is set to 1 to indicate that the fragment carried by the 13

isochronous data block is the last fragment of an isochronous segment. 14

NOTE — The Last Fragment bit has been defined to accelerate the logic to detect the last fragment of an 15
isochronous segment; the Last Fragment bit is logically equivalent to the following Boolean function, 16

Segment Length = Fragment Offset + Block Length 17

NOTE — The Last Fragment bit (or the equivalent Boolean function above) assists the packet receiver in 18
reassembly and delivery of fragmented segments. However, implementations must be prepared for the loss of the 19
isochronous data packet that contains the last fragment of an isochronous segment. See Sections 5.10.2 and 5.10.3 20
for details. 21

No isochronous data packet shall include more than two fragments. The first fragment, if present, shall 22

satisfy exactly one of the following conditions. The second fragment, if present, shall satisfy the third 23
condition. 24

(1) The fragment is the last fragment of an isochronous segment (Last Fragment = 1), and is carried 25
by the first data block in the isochronous data packet. 26

(2) The fragment is a fragment in the middle of an isochronous segment (Last Fragment = 0, 27

Fragment Offset ≠ 0), and is carried by the only data block present in the isochronous data 28
packet. 29

(3) The fragment is the first fragment of an isochronous segment (Fragment Offset field = 0), and is 30
carried by the last data block in the isochronous data packet. 31

Isochronous transfers are expected to operate correctly with packet loss. Loss of an isochronous data 32

packet translates to partial or complete loss of some isochronous segments. Segments experiencing 33
partial loss may be discarded, or may be delivered to the USB application or the target endpoint up to 34

anywhere before the lost bytes in the segment. No incomplete segments shall be delivered with lost 35
bytes (gap) in the middle. Device and host implementations should balance their use of fragmentation 36
(packetization efficiency) against increased likelihood of dropped or incomplete segments. For example, 37

all packetization schemes in Figure 25 send the same number of isochronous segments using the same 38
number of isochronous data packets, but they are different in the number of isochronous segments they 39

subject to fragmentation and potential partial loss. 40

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 81

Largest isochronous payload

that the data packet can carry

Segment 1

Fragment=0

Segment 2

Fragment=0

Segment 3

Fragment=1

Segment 3

Fragment=1

Segment 4

Fragment=1

Segment 4

Fragment=1

Largest isochronous payload

that the data packet can carry

Segment 1

Fragment=0

Segment 2

Fragment=0

Segment 3

Fragment=1

Segment 3

Fragment=1

Segment 4

Fragment=0

Largest isochronous payload

that the data packet can carry

Segment 1

Fragment=0

Segment 2

Fragment=0

Segment 3

Fragment=0

Segment 4

Fragment=0

MA USB

Packet 1

MA USB

Packet 2

MA USB

Packet 3

MA USB

Packet 1

MA USB

Packet 2

MA USB

Packet 3

MA USB

Packet 1

MA USB

Packet 2

MA USB

Packet 3

(a) Packetization resulting in

two fragments

(b) Packetization resulting in

one fragment

(c) Packetization resulting in

no fragment 1

Figure 25—Examples of packetizing isochronous segments 2

Isochronous data blocks do not include a presentation time. The presentation time for the first 3

isochronous data block in an isochronous data packet is carried in the Presentation Time field of the 4
packet header (Section 6.5.1.9), and the presentation time for each subsequent data block in the packet is 5

determined based on the Segment Number field in the isochronous header associated with the data 6
block, and the Service Interval associated with the target isochronous endpoint. 7

All isochronous data packets that begin with the fragments of the same isochronous segment carry the 8

same value for the Presentation Time field, except for request packets corresponding to an isochronous 9
OUT transfer with ASAP delivery, where the Presentation Time field in each of the request packets is 10

reserved. In this case, the actual presentation time of the first segment is decided by the target MA USB 11
device, and the presentation time of each subsequent segment is implicitly determined based on the 12
Segment Number field in each request packet and the Service Interval associated with the target 13

isochronous endpoint. Regardless of the delivery mode of an isochronous transfer, the target MA USB 14
device returns the presentation time of the first segment of the transfer in the Presentation Time field of 15

each of the response packets corresponding to the transfer. 16

5.10.1.2 Isochronous read size blocks 17

Figure 26 illustrates the format of IsochTransferReq packets when used to initiate an isochronous IN 18
transfer. Isochronous read size (IRS) blocks are carried immediately after the IsochTransferReq packet 19
header. 20

031 222324252627282930 21 121314151617181920 11 2345678910 1

Isochronous data packet header

Isochronous read size block 1 (1 or 2 DWORDs – all read size blocks in the packet have the same length)

Isochronous read size block 2 (1 or 2 DWORDs – all read size blocks in the packet have the same length)

Isochronous read size block M (1 or 2 DWORDs – all read size blocks in the packet have the same length)

 21

Figure 26—Format of Isochronous Transfer Request packets for IN transfers 22

All IRS blocks in a packet have the same length, which can be 4 or 8 bytes. The format (and length) of 23

these blocks is defined by the Isochronous Header Type field (Section 6.5.1.8) in the IsochTransferReq 24
packet header. Specifically, all IRS blocks in a packet take one of the two forms shown in Figure 27, 25

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 82

 The standard format (Isochronous Header Format = 0) is 4 bytes in length and allows maximum 1

segment length values of up to 1 MB; the segment size available through this format is sufficient 2
to support FS, HS and Enhanced SuperSpeed USB devices. 3

 The long format (Isochronous Header Format = 1) is 8 bytes in length, and allows maximum 4

segment length values of up to 4 GB; this format is defined to be able to support future revisions 5
of the USB protocol. 6

NOTE — Each IRS block is transmitted staring with Bit 0 of the Service Intervals field and ending with Bit 19 7
(standard format) or bit 31 (extended format) of the Maximum Segment Length field. 8

NOTE — The common format for all IRS blocks in a packet is to enable efficient packet processing. IRS blocks in 9
different packets (including packets that target the same endpoint) may assume different formats. 10

NOTE — The long format for IRS blocks shall not be used unles s the IsochTransferReq packet needs to specify at 11
least one Maximum Segment Length value that exceeds 1 MB. This does not happen with FS, HS and Enhanced 12
SuperSpeed isochronous endpoints. 13

Service Intervals

Bits: 12

b0 b19b0 b11

Maximum Segment Length

20

Standard format (4 bytes, supports segment lengths of up to 1 MByte)

Service Intervals

Bits: 12

b0 b19b0 b11

Maximum Segment Length

32

Long format (8 bytes, supports segment lengths of up to 4 GBytes)

Reserved

b0 b31

20

 14

Figure 27—Isochronous read size block formats 15

The 12-bit Service Intervals field defines the number of consecutive target Service Intervals to which the 16

IRS block applies. 17

The Maximum Segment Length field indicates the size of the largest isochronous segment (in bytes) that 18

the MA USB host can receive during any of the target Service Intervals the IRS block applies to. 19

The IRS blocks in an IsochTransferReq packet apply to the target Service Intervals in strict order. For 20
example, an IsochTransferReq packet that includes exactly two IRS blocks, with Service Intervals fields 21

respectively set to S1 and S2 intervals, and Maximum Segment Length fields respectively set to M1 and 22
M2, specifies a maximum segment length of M1 for the first S1 target service intervals, and a maximum 23

segment length of M2 for the next S2 target service intervals. IsochTransferReq packets shall not include 24
an IRS block with the Service Intervals field set to 0. The sum of the values in the Service Intervals 25
fields of all IRS blocks in an IsochTransferReq packet shall be equal to the value of the Number of 26

Segments field in the IsochTransferReq packet header (Section 6.5.5). 27

NOTE — Application-level isochronous IN requests that target a large number of Service Intervals with disparate 28
maximum segment length values may result in a large number of IRS blocks. The MA USB host PAL may service 29
such requests through multiple MA USB isochronous transfers to be able to meet the network MTU size for the 30
generated IsochTransferReq packets. 31

5.10.2 Isochronous IN transfers 32

Isochronous IN transfers enable periodic data transfer from a target isochronous IN endpoint to the MA 33
USB host, normally with preferential treatment from the network. The starting point for an isochronous 34

IN transfer is an application-level read request targeting an isochronous IN endpoint over one or more 35
successive Service Intervals. The first target Service Interval may begin at a precise time in the future 36

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 83

specified by the application- level request, or may start “as soon as possible”, in which case its beginning 1
time is decided by the target MA USB device. The MA USB host fulfills the application-level request 2

through one or more MA USB isochronous IN transfers, which have the same general semantics as the 3
application- level request; in particular, each MA USB isochronous IN transfer targets an isochronous IN 4

endpoint over one or more Service Intervals, which may start at a specified time in the future, or at the 5
convenience of the target MA USB device. 6

The MA USB host initiates an isochronous IN transfer by sending an Isochronous Transfer Request 7

(IsochTransferReq) packet (Section 6.5.5) to the target MA USB device, indicating the target 8
isochronous endpoint on the MA USB device, the Request ID assigned to the transfer request by the MA 9

USB host, the number of isochronous segments that are being requested (one segment for each Service 10
Interval), the beginning time of the first target Service Interval (in the Presentation Time field) or “as 11
soon as possible” delivery option (using the ASAP subfield in the I-Flags field), and a set of isochronous 12

read size (IRS) blocks as defined in Section 5.10.1.2. 13

The Request ID assigned to each transfer shall be unique within the scope of the target endpoint. The 14

MA USB host may initiate other isochronous IN transfers targeting the same endpoint before an ongoing 15
isochronous IN transfer has been completed. The rules for assigning Request IDs to successive 16
isochronous transfers are the same as other MA USB IN transfers; in particular, (1) Request ID starts at 17

zero for the first isochronous transfer after any configuration event intended to return the state of an 18
endpoint flow to the initial state, (2) Request ID is incremented by 1 for each successive request, and (3) 19

the MA USB host shall not have more than one pending isochronous transfer using the same Request ID 20
and targeting the same endpoint. The rules for assigning Sequence Numbers to successive 21
IsochTransferResp packets belonging to the same transfer (same request ID) are also the same as other 22

MA USB IN transfers, except that the Sequence Number field is reset to zero for every new MA USB 23
isochronous transfer. The Presentation Time field in successive IsochTransferReq packets that target the 24

same endpoint and do not indicate ASAP delivery shall be strictly increasing. 25

In response to an IsochTransferReq packet, the target MA USB device programs its local resources to 26
read from the target endpoint during the target Service Intervals. The read operation for each target 27

Service Interval may happen anytime during that Service Interval. The target MA USB device shall 28
packetize the isochronous payload as defined in Section 5.10.1, and shall transmit the payload back to 29

the MA USB host in the strict order it was received from the target endpoint, using one or more 30
Isochronous Transfer Response (IsochTransferResp) packets (Section 6.5.6). The target MA USB device 31
may choose to deliver the isochronous segments that suffer a partial loss over the local connection up to 32

any point before the first lost byte, including dropping them altogether. To reduce latency, the target MA 33
USB device should packetize and transmit isochronous segments as they become available, avoiding 34

excessive aggregation. Also, as discussed in Section 5.10.1, the target MA USB device should avoid 35
excessive fragmentation in the interest of higher likelihood of delivering error-free segments. 36

Each IsochTransferResp packet belonging to an isochronous IN transfer carries the Request ID that was 37

present in the IsochTransferReq packet that initiated the transfer. To enable the MA USB host to 38
identify missing isochronous data packets, each IsochTransferResp packet carries a sequence number, 39

which is set to zero in the first IsochTransferResp packet for a given transfer, and is incremented by one 40
in every subsequent IsochTransferResp packet belonging to that transfer. In addition, each 41
IsochTransferResp packet carries in its Presentation Time field the Global Time (MGT) pointing to the 42

beginning of the Service Interval corresponding to the first isochronous segment or fragment carried in 43
the packet. The EoT field shall be set to 0 in all IsochTransferResp packets belonging to an isochronous 44

IN transfer, except in the last packet, where it shall be set to 1. The EPS and Status Code fields in each 45
IsochTransferResp packet carry the status of the endpoint and the status code related to the transfer. The 46
actual transfer size (i.e., the total size of the payload generated by the target isochronous endpoint over 47

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 84

target Service Intervals) may be smaller than the requested transfer size, including zero. The target MA 1
USB device shall transmit an IsochTransferResp packet (with Number of Segments field set to 0, and 2

EoT field set to 1) when the MA USB isochronous IN transfer has not generated any data. 3

NOTE — While isochronous data packets are allowed to be transmitted unreliably, it is recommended to exercise a 4
high reliability at lower layers when sending any IsochTransferReq packet that initiates an isochronous IN transfer, 5
the final IsochTransferResp packet belonging to an IN transfer, and also any IsochTransferResp packet that indicates 6
an error. 7

Figure 28 illustrates the lifecycle of an MA USB isochronous IN transfer with specified delivery time: 8
An IsochTransferReq packet initiates the transfer, targeting a remote isochronous IN endpoint over S 9
successive Service Intervals, with the first Service Interval starting at the MA USB Global Time of F:M 10

(Frame F, Microframe M). The target MA USB device, synchronized with the MA USB host, schedules 11
one or more isochronous IN transfers on the local bus, and packetizes and transmits isochronous 12

segments through one or more IsochTransferResp packets as segments become available. 13

NOTE — An MA USB isochronous IN transfer may also indicate “as soon as possible” (ASAP) delivery, in which 14
case the start time of the isochronous transfer on the local bus is decided by the MA USB device. 15

NOTE — A single application-level isochronous read request may be served by multiple MA USB transfers. 16

The Presentation Time field in all IsochTransferResp packets belonging to an MA USB transfer carries 17
the actual delivery time of the first isochronous segment (more precisely, the MGT value at the time the 18

first byte of the first isochronous segment was released to the local bus), except when the target MA 19
USB device experiences an error during the transfer (as indicated by the Status Code field in at least one 20

of the returned IsochTransferResp packets), in which case, the Presentation Time field is reserved. 21

IN ACK

DATA

Local host controller (SS) on

the target MA USB device

USB device

Target Service Intervals

(Service Intervals N to N+S-1)

Isochronous data packets received on the wired bus

(up to 48 per Service Interval for SS endpoints)

MA USB device sends S isochronous segments

through one or more MA link-layer data units

Application-level request to read from the target

isochronous endpoint for a period of S Service

Intervals starting at Global Time F:M

Access Controller

MA USB device

Local USB segment

Access Controller

MA USB host

MA USB host

interface to

application

M
A

 U
S

B
 d

e
v

ic
e

M
A

 U
S

B
 h

o
s

t
M

A
 l
in

k

t1

t2

t5

t6

Return the received isochronous

data for Service Intervals N to

N+S-1 to the application

First target Service

Interval starting at

Frame F, Microframe M

Local USB clock (Bus Interval numbers and

boundaries) synchronized with the MA USB host

Global Time F:M

(Frame=F, Microframe=M)

Global Time increased by

(S * Service Interval duration in

microframes) microframes

MA USB transfer

carrying isochronous

segments for Service

Intervals N to N+S-1

Service

Interval

N-1-X

(X ≥ 0)

Target Service Intervals

(Service Intervals N to N+S-1)

The MA link-layer data unit carrying the last byte of the

last isochronous segment (the segment corresponding

to Service Interval N+S-1)

IsochTransferReq

packet transmitted

Isochronous IN transfer

on the wired bus

programming complete

t3
IsochTransferReq

packet received

t4

Isochronous segments delivered to the MA USB

host; each MA link-layer data unit may carry

multiple segments, and each segment may be

carried through multiple MA link-layer data units

Service

Interval

N+S+Y

(Y ≥ 0)

t2 ≤ aMaxIsochLinkDelay

t3 ≤ pMaxDeviceIsochINProgDelay
t4 ≤ pMaxDeviceIsochINRespDelay

t5 ≤ aMaxIsochLinkDelay

IsochTransferResp

packet(s) transmitted

t1 ≤ pMaxHostIsochINReqDelay

t6 ≤ pMaxHostIsochINRespDelay

 22

Figure 28—MA USB isochronous IN transfer 23

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 85

MA USB isochronous IN transfers generally follow a time-based delivery model, and their correct 1
operation is guaranteed only if (1) certain system timings, related to the operation of the MA USB host, 2

the network, and the target MA USB device, are bounded under normal operating conditions, and (2) the 3
MA USB transfer follows certain rules formulated in terms of these upper bounds. 4

The most important timing parameter in the MA USB isochronous delivery model is the network delay: 5
The delivery model requires isochronous data packets to be delivered under a bounded delay contract 6
with the network. Part of the delay is intrinsic to the network, and the other depends on local decisions 7

such as retransmission policy and packet lifetime. The overall delay for those isochronous data packets 8
that are received (some packets may be lost) is expected not to exceed the protocol constant 9

aMaxIsochLinkDelay, which is defined by this specification for each network technology. 10

Referring to Figure 28, the rules for isochronous IN transfers are defined in terms of upper bounds on 11
the following timing parameters, 12

 t1: The time from the moment an application- level isochronous read request is presented to the 13
MA USB host PAL, to the moment the first bit of the first IsochTransferReq packet serving the 14

read request is released to the network; this time is (MA USB host) implementation-dependent, 15
although the application is expected to understand its impact when making isochronous read 16

requests. The implementation guidelines in this section assume an upper bound of 17
pMaxHostIsochINReqDelay for this timing parameter when discussing the impact. 18

 t2: The time from the moment the first bit of an IsochTransferReq packet corresponding to an 19

MA USB isochronous IN transfer is released to the network, to the moment that bit is received 20
(if not dropped) at the target MA USB device network interface; this time is expected not to 21

exceed the protocol constant aMaxIsochLinkDelay. 22

 t3: The time from the moment the first bit of an IsochTransferReq packet corresponding to an 23

MA USB isochronous IN transfer is received by a target MA USB device, to the moment the 24
programming of the first isochronous IN transfer corresponding to the IsochTransferReq packet 25
on the local bus is complete; this time is assumed to have an (MA USB device) implementation-26

dependent upper bound of pMaxDeviceIsochINProgDelay, which is made available to the MA 27
USB host by the target MA USB device, together with the endpoint handle (Section 6.3.7). 28

 t4: The time from the end of the last Service Interval an MA USB IN transfer targets, to the 29
moment the first bit of the last IsochTransferResp packet corresponding to the transfer is released 30

to the network; this time is assumed to have an (MA USB device) implementation-dependent 31
upper bound of pMaxDeviceIsochINRespDelay, which is made available to the MA USB host by 32
the target MA USB device, together with the endpoint handle (Section 6.3.7). 33

 t5: The time from the moment the first bit of the last IsochTransferReq packet corresponding to 34
an MA USB isochronous IN transfer request is released to the network, to the moment that bit is 35

received (if not dropped) at the MA USB host network interface; this time is expected not to 36
exceed the protocol constant aMaxIsochLinkDelay. 37

 t6: The time from the moment the first bit of the last IsochTransferResp packet corresponding to 38

an application- level isochronous read request is received at the MA USB host network interface, 39
to the moment the MA USB host PAL returns to the application with the isochronous payload; 40

this time is (MA USB host) implementation-dependent, although the application is expected to 41
understand its impact when making isochronous read requests. The implementation guidelines in 42

this section assume an upper bound of pMaxHostIsochINRespDelay for this timing parameter 43
when discussing the impact. 44

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 86

Table 2 summarizes the timing parameters specific to the MA USB isochronous IN transfer model. 1

Table 2—Timing parameters specific to the MA USB isochronous IN transfer model 2

Timing parameter Description Source

pMaxHostIsochINReqDelay Maximum time from the moment an
application-level isochronous read
request is presented to the MA USB host
PAL, to the moment the first bit of the
first IsochTransferReq packet
corresponding to the request is released
to the network

MA USB host
implementation-dependent

pMaxDeviceIsochINProgDelay Maximum time from the moment the
first bit of an IsochTransferReq packet is
received by the target MA USB device,
to the moment the programming of the
first isochronous IN transfer
corresponding to the IsochTransferReq
packet on the local bus is complete

NOTE — The value of this parameter is

inclusive of the minimum value of time

required for posting of isochronous

transfers before their scheduled

execution time.

MA USB device
implementation-dependent;
made available to the MA
USB host by the MA USB
device, together with the
endpoint handle (Section
7.3.2.2)

pMaxDeviceIsochINRespDelay Maximum time from the end of the last
Service Interval an MA USB
isochronous IN transfer targets, to the
moment the first bit of the last
IsochTransferResp packet corresponding
to the transfer is released to the network

MA USB device
implementation-dependent;
made available to the MA
USB host by the MA USB
device, together with the
endpoint handle (Section
7.3.2.2)

pMaxHostIsochINRespDelay Maximum time from the moment the
first bit of the last IsochTransferResp
packet corresponding to the last MA
USB isochronous IN transfer serving an
application-level isochronous read
request is received at the MA USB host
network interface, to the moment the
MA USB host PAL returns to the
application with the isochronous payload

MA USB host
implementation-dependent

5.10.2.1 MA USB host requirements 3

MA USB host implementations should attempt to release IsochTransferReq packets to the network that 4
either indicate as soon as possible (ASAP) delivery, or target one or more Service Intervals starting no 5

earlier than aMaxIsochLinkDelay + pMaxDeviceIsochINProgDelay after the moment of release to the 6
network. 7

NOTE — This requires an application-level isochronous read request to be presented to the MA USB host PAL no 8
later than pMaxHostIsochINReqDelay + aMaxIsochLinkDelay + pMaxDeviceIsochINProgDelay before the earliest 9
Service Interval it targets. MA USB host PAL implementations may reject or partially admit any application-level 10
isochronous read request that does not meet this timing (e.g., an implementation may skip any target Service Interval 11
that (the implementation assumes) will be received by the target MA USB device after the isochronous 12
programming deadline); implementations may also choose to skew the MA USB Global Time (MGT) they present 13

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 87

to the application, to hide or alter the above timing requirement. It should be understood that skewing the Global 1
Time presentation may not be suitable for applications or architectures that require synchronization across multiple 2
USB systems, including multiple MA USB Service Sets. 3

The MA USB host PAL shall not release an IsochTransferReq to the network that indicates a start time 4
(Presentation Time) more than aMaxFrameDistance USB frames before or after the MA USB Global 5

Time (MGT) at the moment the first bit of the packet is released to the network. 6

The MA USB host PAL shall conclude a pending MA USB isochronous IN transfer (1) when it receives 7

an IsochTransferResp packet that belongs to the transfer and has the EoT subfield set to 1, or (2) when it 8
receives an IsochTransferResp packet that belongs to the transfer and indicates a non-recoverable error 9
such as ISOCH_TIME_EXPIRED, or (3) at pMaxDeviceIsochINRespDelay + aMaxIsochLinkDelay 10

time units after the end of the last Service Interval targeted by the transfer. 11

NOTE — The last condition guarantees the conclusion of the transfer under packet loss. 12

Once all pending MA USB isochronous IN transfers corresponding to an application- level isochronous 13
read request are concluded, the MA USB host PAL shall return to the application with all isochronous 14
segments received in entirety during the target Service Intervals. An exception is when the MA USB 15

host PAL receives an IsochTransferResp packet that indicates an error, in which case the MA USB host 16
PAL may return the appropriate USBDI error code to the application without further delay. The MA 17

USB host PAL may also return partially received isochronous segments, up to any point before the first 18
lost byte of each segment. 19

5.10.2.2 MA USB device requirements 20

In response to an IsochTransferReq packet that indicates any Presentation Time more than 21
aMaxFrameDistance USB frames before or after the current MA USB Global Time (MGT), the target 22

MA USB device shall send an IsochTransferResp packet with the same Request ID as the 23
IsochTransferReq packet, and with the Status Code field set to ISOCH_TIME_INVALID. In response to 24

an IsochTransferReq packet that indicates a valid Presentation Time, but (considering all the requested 25
Service Intervals) the presentation time points to a time before the current MGT, or the presentation time 26
falls within pMaxDeviceIsochINProgDelay of the current MGT, the target MA USB device shall send 27

an IsochTransferResp packet with the same Request ID as the IsochTransferReq packet, and with the 28
Status Code field set to ISOCH_TIME_EXPIRED. 29

NOTE — MA USB device PAL implementations may reject, or partially admit any IsochTransferReq packet that 30
does not meet the recommended timing (e.g., they may skip any target Service Interval that is too near to the time of 31
programming). 32

5.10.2.3 Application design guidelines 33

To ensure timely delivery of isochronous payloads, applications should issue each isochronous read 34

request well ahead of the Service Interval the request is targeting. For continuous isochronous IN 35
streaming, applications may need to issue multiple outstanding read requests. The number of 36
outstanding requests and the associated required buffering increase with longer roundtrip times, where 37

each roundtrip time captures a basic cycle of data movement. 38

NOTE — Roundtrip times can be measured from the application (MA USB host) point of view, or from the target 39
MA USB device viewpoint, with no difference in measured values. From the application point of view, each 40
roundtrip time represents the time between when a buffer unit is allocated to a new target Service Interval, and when 41
a buffer unit allocated to another target Service Interval is made available again. From the target MA USB device 42
viewpoint, each roundtrip time represents the time between when a buffer unit allocated to a target Service Interval 43
is made available (MA USB device transmits the last IsochTransferResp packet corresponding to the target Service 44
Interval), and when a buffer unit is allocated to a new target Service Interval (MA USB device receives an 45
IsochTransferReq packet). 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 88

Figure 29 shows two examples of continuous IN streaming using double buffering and triple buffering. 1
It is generally possible to achieve uninterrupted streaming using k+1 buffer units (with each buffer unit 2

sized for one Service Interval) when roundtrip times do not exceed k Service Intervals. Implementations 3
may choose a different level of buffering to adapt to roundtrip variations or to be able to target multiple 4

Service Intervals through a single request. 5

Read

request

(N, N+1)

Service

Interval N N+1 N+2 N+3 N+4

Read

request

(N+2)

Read

response

(N)

(a) Continuous IN streaming using double buffering when the roundtrip time does not exceed one Service Interval

MA USB

host

MA USB

device

Is
o

ch
Tr

an
sf

er
R

eq
N

, N
+1

Iso
ch

Tran
sferR

esp

N

Is
o

ch
Tr

an
sf

er
R

eq
N

+2

Read

request

(N+3)

Read

response

(N+1)

Iso
ch

Tran
sferR

esp

N
+1

Is
o

ch
Tr

an
sf

er
R

eq
N

+3

Read

request

(N+4)

Read

response

(N+2)

Iso
ch

Tran
sferR

esp

N
+2

Is
o

ch
Tr

an
sf

er
R

eq
N

+4

Read

request

(N+5)

Read

response

(N+3)

Iso
ch

Tran
sferR

esp

N
+3

Is
o

ch
Tr

an
sf

er
R

eq
N

+5

Read

request

(N, N+1, N+2)

Service

Interval N N+1 N+2 N+3 N+4

Read

request

(N+3)

Read

response

(N)

(b) Continuous IN streaming using triple buffering when roundtrip time does not exceed two Service Intervals

MA USB

host

MS USB

device

Is
o

ch
Tr

an
sf

er
R

eq
N

, N
+1

, N
+2

Iso
ch

Tran
sferR

esp

N

Iso
chTransfe

rR
eq

N+3

IsochTransferResp

N
+1

Read

request

(N+5)

Read

response

(N+1)

IsochTransferResp

N+2

IsochTransferResp
N+3

Read

request

(N+4)

Is
oc

hT
ra

ns
fe

rR
eq

N
+4

N+5

N+5

Read

response

(N+2)

Is
o

ch
Tr

an
sf

er
R

eq
N

+5

Read

response

(N+3)

Read

response

(N+4)

Iso
ch

Tran
sferR

esp

N
+4

≤ 1× Service Interval ≤ 1× Service Interval ≤ 1× Service Interval ≤ 1× Service Interval

≤ 2× Service Interval ≤ 2× Service Interval ≤ 2× Service Interval

6
Figure 29—Continuous isochronous IN streaming using multiple levels of buffering 7

5.10.3 Isochronous OUT transfers 8

Isochronous OUT transfers enable periodic data transfer from the MA USB host to a target isochronous 9
OUT endpoint, normally with preferential treatment from the network. The starting point for an 10
isochronous OUT transfer is an application- level write request targeting an isochronous OUT endpoint 11

over one or more successive Service Intervals. The first target Service Interval may begin at a precise 12
time in the future specified by the application- level request, or may start “as soon as possible”, in which 13

case its beginning time is decided by the target MA USB device. The MA USB host fulfills the 14
application- level request through one or more MA USB isochronous OUT transfers, which have the 15
same general semantics as the application- level request; in particular, each MA USB isochronous OUT 16

transfer targets an isochronous OUT endpoint over one or more Service Intervals, which may start at a 17
specified time in the future, or at the convenience of the target MA USB device. 18

The MA USB host executes an isochronous OUT transfer by sending one or more Isochronous Transfer 19
Request (IsochTransferReq) packets (Section 6.5.5) to the target MA USB device. Each 20
IsochTransferReq packet indicates the target isochronous endpoint on the MA USB device, the Request 21

ID assigned to the transfer request by the MA USB host, the number of isochronous segments that are 22
being transmitted (one segment for each Service Interval), and the beginning time of the first target 23

Service Interval (in the Presentation Time field) or “as soon as possible” (ASAP) delivery option (using 24
the ASAP subfield in the I-Flags field). The Request ID assigned to the transfer shall be unique within 25
the scope of the target endpoint. The MA USB host may initiate other isochronous OUT transfers 26

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 89

targeting the same endpoint before an ongoing isochronous OUT transfer is completed. The rules for 1
assigning Request IDs to successive isochronous transfers are the same as other MA USB OUT 2

transfers; in particular, (1) Request ID starts at zero for the first isochronous transfer after any 3
configuration event intended to return the state of an endpoint flow to the initial state, (2) Request ID is 4

incremented by 1 for each successive request, and (3) the MA USB host shall not have more than one 5
pending isochronous transfer using the same Request ID and targeting the same endpoint. The rules for 6
assigning Sequence Numbers to successive IsochTransferReq packets belonging to the same transfer 7

(same request ID) are also the same as other MA USB OUT transfers, except that the Sequence Number 8
field is reset to zero for every new MA USB isochronous transfer. The Presentation Time field in 9

successive IsochTransferReq packets that target the same endpoint and do not indicate ASAP delivery 10
shall be strictly increasing. 11

Each IsochTransferReq packet carries one or more partial or complete isochronous segments subject to 12

the packetization rules defined in Section 5.10.1. 13

In response to each IsochTransferReq packet, the target MA USB device programs its local resources to 14

write to the target endpoint during the target Service Intervals. The write operation for each target 15
Service Interval may happen anytime during that Service Interval. The target MA USB device may 16
choose to deliver the isochronous segments that suffer a partial loss over the local connection up to any 17

point before the first lost byte, including dropping them altogether. To reduce latency, the MA USB host 18
should packetize and transmit isochronous segments as they become available, avoiding excessive 19

aggregation. Also, as discussed in Section 5.10.1, the MA USB host should avoid excessive 20
fragmentation in the interest of higher likelihood of delivering error-free segments. 21

NOTE — MA USB architecture allows out-of-order delivery of isochronous data packets (transmission is always in-22
order). The target MA USB device may choose to discard out-of-order isochronous payload, or perform a re-order 23
function if the presentation time of the received isochronous payload provides enough time for the function. 24

MEDIA DEPENDENT NOTE — While out-of-order delivery does not happen with direct operation over 802.11 25
radios, it is possible to experience out-of-order delivery when operating over IP (e.g., isochronous data packets 26
carried inside UDP datagrams). 27

Figure 30 illustrates the lifecycle of an MA USB isochronous OUT transfer with specified delivery time: 28

One or more IsochTransferReq packets carry the isochronous payload targeting a remote isochronous 29
OUT endpoint over S successive Service Intervals, with the first Service Interval starting at the Global 30

Time of F:M (Frame F, Microframe M). The target MA USB device, synchronized with the MA USB 31
host, schedules one or more isochronous OUT transfers on the local bus, and packetizes and transmits 32
the isochronous segments as they are received from the host. During delivery of isochronous segments 33

on the local bus, or upon detecting errors, the target MA USB device transmits one or more 34
IsochTransferResp packets to the MA USB host to indicate the status of the transfer. The Number of 35

Segments field in each IsochTransferResp packet indicates the number of isochronous segments that 36
have been delivered in entirety to the target endpoint. 37

NOTE — The frequency of IsochTransferResp packets is decided by the target MA USB device. For example, the 38
target MA USB device may choose to transmit a single IsochTransferResp packet once all isochronous segments 39
belonging to an MA USB transfer have been delivered to the target endpoint, or alternatively, transmit multiple 40
IsochTransferResp packets to provide incremental updates to the MA USB host. For large isochronous transfers that 41
include several segments, MA USB devices are recommended to provide incremental updates through multiple 42
IsochTransferResp packets , to help the MA USB host better estimate the buffer available to the target endpoint. 43

NOTE — A single application-level isochronous write request may be served by multiple MA USB transfers. 44

NOTE — An MA USB isochronous OUT transfer may also indicate “as soon as possible” (ASAP) delivery, in 45
which case the start time of the isochronous transfer on the local bus is decided by the MA USB device. 46

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 90

The Presentation Time field in the IsochTransferResp packet carries the actual delivery time of the first 1
isochronous segment (more precisely, the MGT value at the time the first byte of the first isochronous 2

segment belonging to the MA USB transfer was released to the local bus), except when the target MA 3
USB device experiences an error during the transfer (as indicated by the Status Code field in the 4

returned IsochTransferResp packet), in which case, the Presentation Time field is reserved. 5

 6

DATALocal host controller (SS) on

the target MA USB device

USB device

Target Service Intervals

(Service Intervals N to N+S-1)

Isochronous data packets transmitted on the wired bus

(up to 48 per Service Interval for SS endpoints)

MA USB device receives S isochronous segments

through one or more MA link-layer data units

Application-level request to write to the target

isochronous endpoint for a period of S Service

Intervals starting at Global Time F:M

Access Controller

MA USB device

Local USB segment

Access Controller

MA USB host

MA USB host

interface to

application

M
A

 U
S

B
 d

e
v

ic
e

M
A

 U
S

B
 h

o
s

t
M

A
 l
in

k

t1

t2 t5

t6

Return the status of the

application-level write request

First target Service

Interval starting at

Frame F, Microframe M

Global Time F:M

(Frame=F, Microframe=M)

Global Time increased by

(S * Service Interval duration in

microframes) microframes

MA USB transfer

carrying isochronous

segments for Service

Intervals N to N+S-1

Service

Interval

N-1-X

(X ≥ 0)

Target Service Intervals

(Service Intervals N to N+S-1)

Final IsochTransferResp packet indicating the delivery

completion or error for isochronous segments

corresponding to Service Intervals N to N+S-1

Isochronous IN transfer

on the wired bus

programming complete

t3

First

IsochTransferReq

packet transmitted

Service

Interval

N+S+Y

(Y ≥ 0)

t2 ≤ aMaxIsochLinkDelay

t3 ≤ pMaxDeviceIsochOUTProgDelay

Isochronous segments delivered to the MA USB

device; each MA link-layer data unit may carry

multiple segments, and each segment may be

carried through multiple MA link-layer data units

Local USB clock (Bus Interval numbers and

boundaries) synchronized with the MA USB host

t5
t5 ≤ aMaxIsochLinkDelay

First IsochTransferResp

packet received, which

provides incremental

update to the MA USB host

First IsochTransferResp

packet transmitted

t5 ≤ aMaxIsochLinkDelay

t4
t4 ≤ pMaxDeviceIsochOUTRespDelay

t1 ≤ pMaxHostIsochOUTReqDelay

t6 ≤ pMaxHostIsochOUTRespDelay

 7

Figure 30—MA USB isochronous OUT transfer 8

Similar to MA USB isochronous IN transfers, MA USB isochronous OUT transfers generally follow a 9
time-based delivery model and their correct operation is guaranteed only if (1) certain system timings, 10

related to the operation of the MA USB host, the network, and the target MA USB device, are bounded 11
under normal operating conditions, and (2) the MA USB transfer follows certain rules formulated in 12
terms of these upper bounds. In particular, the upper bound on network-induced delay for isochronous 13

data packets (the protocol constant aMaxIsochLinkDelay defined in Section 5.10.2) is again the key 14
timing parameter for MA USB isochronous OUT transfers. 15

Referring to Figure 30, the rules for isochronous OUT transfers are defined in terms of upper bounds on 16
the following timing parameters, 17

 t1: The time from the moment an application- level isochronous write request is presented to the 18

MA USB host PAL, to the moment the first bit of the first IsochTransferReq packet serving the 19
write request is released to the network; this time is (MA USB host) implementation-dependent, 20

although the application is expected to understand its impact when making isochronous write 21

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 91

requests. The implementation guidelines in this section assume an upper bound of 1
pMaxHostIsochOUTReqDelay for this timing parameter when discussing the impact. 2

 t2: The time from the moment the first bit of the first IsochTransferReq packet corresponding to 3
an MA USB isochronous OUT transfer is released to the network, to the moment that bit is 4

received (if not dropped) at the target MA USB device network interface; this time is expected 5
not to exceed the protocol constant aMaxIsochLinkDelay. 6

 t3: The time from the moment the first bit of the first IsochTransferReq packet corresponding to 7
an MA USB isochronous OUT transfer is received by a target MA USB device, to the moment 8
the programming of the first isochronous OUT transfer corresponding to the IsochTransferReq 9

packet on the local bus is complete; this time is assumed to have an (MA USB device) 10
implementation-dependent upper bound of pMaxDeviceIsochOUTProgDelay, which is made 11

available to the MA USB host by the target MA USB device, together with the endpoint handle 12
(Section 6.3.7). 13

 t4: The time from the end of the last Service Interval an MA USB OUT transfer targets, to the 14

moment the first bit of the IsochTransferResp packet corresponding to the transfer is released to 15
the network; this time is assumed to have an (MA USB device) implementation-dependent upper 16

bound of pMaxDeviceIsochOUTRespDelay, which is made available to the MA USB host by the 17
target MA USB device, together with the endpoint handle (Section 6.3.7). 18

 t5: The time from the moment the first bit of an IsochTransferReq packet corresponding to an 19
MA USB isochronous OUT transfer request is released to the network, to the moment that bit is 20

received (if not dropped) at the MA USB host network interface; this time is expected not to 21
exceed the protocol constant aMaxIsochLinkDelay. 22

 t6: The time from the moment the first bit of the IsochTransferResp packet corresponding to the 23

last MA USB isochronous OUT transfer serving an application-level isochronous write request is 24
received at the MA USB host network interface, to the moment the MA USB host PAL returns to 25

the application the status of the isochronous write operation; this time is (MA USB host) 26
implementation-dependent, although the application is expected to understand its impact when 27

making isochronous read requests. The implementation guidelines in this section assume an 28
upper bound of pMaxHostIsochOUTRespDelay for this timing parameter when discussing the 29
impact. 30

Table 3 summarizes the timing parameters specific to the MA USB isochronous OUT transfer model. 31

Table 3—Timing parameters specific to the MA USB isochronous OUT transfer 32
model 33

Timing parameter Description Source

pMaxHostIsochOUTReqDelay Maximum time from the moment an
application-level isochronous write
request is presented to the MA USB host
PAL, to the moment the first bit of the
first IsochTransferReq packet
corresponding to the request is released
to the network

MA USB host
implementation-dependent

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 92

pMaxDeviceIsochOUTProgDelay Maximum time from the moment the
first bit of the first IsochTransferReq
packet corresponding to an isochronous
OUT transfer is received by the target
MA USB device, to the moment the
programming of the first isochronous
OUT transfer corresponding to the
IsochTransferReq packet on the local bus
is complete

NOTE — The value of this parameter is

inclusive of the minimum value of time

required for posting of isochronous

transfers before their scheduled

execution time.

MA USB device
implementation-dependent;
made available to the MA
USB host by the MA USB
device, together with the
endpoint handle (Section
7.3.2.2)

pMaxDeviceIsochOUTRespDelay Maximum time from the end of the last
Service Interval an MA USB
isochronous OUT transfer targets, to the
moment the first bit of the
IsochTransferResp packet corresponding
to the transfer is released to the network

MA USB device
implementation-dependent;
made available to the MA
USB host by the MA USB
device, together with the
endpoint handle (Section
7.3.2.2)

pMaxHostIsochOUTRespDelay Maximum time from the moment the
first bit of the IsochTransferResp packet
corresponding to the last MA USB
isochronous OUT transfer serving an
application-level isochronous write
request is received at the MA USB host
network interface, to the moment the
MA USB host PAL returns to the
application the status of the isochronous
write operation

MA USB host
implementation-dependent

5.10.3.1 MA USB host requirements 1

MA USB host implementations should attempt to release IsochTransferReq packets to the network that 2
either indicate as soon as possible (ASAP) delivery, or target one or more Service Intervals starting no 3
earlier than aMaxIsochLinkDelay + pMaxDeviceIsochOUTProgDelay after the moment of release to the 4

network. 5

NOTE — This requires an application-level isochronous write request to be presented to the MA USB host PAL no 6
later than pMaxHostIsochOUTReqDelay + aMaxIsochLinkDelay + pMaxDeviceIsochOUTProgDelay before the 7
earliest Service Interval it targets. MA USB host PAL implementations may reject or partially admit any 8
application-level isochronous write request that does not meet this timing (e.g., an implementation may skip any 9
target Service Interval that (the implementation assumes) will be received by the target MA USB device after the 10
isochronous programming deadline); implementations may also choose to skew the Global Time (MGT) they 11
present to the application, to hide or alter the above timing requirement. It should be understood that skewing the 12
MGT presentation may not be suitable for applications or architectures that require synchronization across multiple 13
USB systems, including multiple Service Sets. 14

The MA USB host PAL shall not release an IsochTransferReq to the network that indicates a start time 15

(Presentation Time) more than aMaxFrameDistance USB frames before or after the Global Time (MGT) 16
at the moment the first bit of the packet is released to the network. 17

In addition, the MA USB host PAL should maintain a model of the device buffer available to the target 18

isochronous OUT endpoint and follow a transmission schedule that does not result in buffer overflow. 19

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 93

The buffer model takes into account the transmitted isochronous payload, targeted Service Intervals, and 1
the response packets received from the MA USB device. 2

NOTE — Insufficient buffer space allocated to an isochronous OUT endpoint on the MA USB device may result in 3
scheduling complexity for the MA USB host, increased network activity and power consumption for the MA USB 4
host and device, and possibly interruption of isochronous traffic stream. MA USB devices are recommended to 5
allocate a buffer space to each isochronous OUT endpoint larger than the product of the expected data transmission 6
rate to the endpoint multiplied by the endpoint access latency aMaxIsochLinkDelay + 7
pMaxHostIsochOUTReqDelay + pMaxDeviceIsochOUTProgDelay. See Section 5.10.3.3 for more discussion. 8

For timed delivery (i.e., when isochronous presentation times are specified by the MA USB host), a 9
model of the buffer available to a target isochronous OUT endpoint at time t can be defined as following 10

 ABE(t) = TB – [IP(t) – max(EIP(t), AIP(t))] 11

 ABE(t): (Available Buffer Estimate) Host estimate of the available buffer at time t 12

 TB: (Total Buffer) Total buffer allocated to the target isochronous OUT endpoint, indicated 13

by the Buffer Size field in the MA USB EP descriptor (Section 6.3.7) 14

 IP(t): (Isochronous Payload) Total isochronous payload transmitted before time t 15

 DPT(t): (Delivered Presentation Time) Upper bound on presentation times that are expected to 16
have been delivered to the target endpoint at time t; defined as the largest multiple of the 17
endpoint service interval that does not exceed the current time (mathematically, 18

MF/Interval × Interval, where MF denotes the current absolute microframe number and 19
Interval denotes the endpoint service interval in microframes); at any point in time t, all 20

received isochronous payload with presentation time strictly earlier than DPT(t) is 21
expected to have left the MA USB device buffer allocated to the endpoint 22

 EIP(t): (Expired Isochronous Payload) Transmitted isochronous payload with presentation time 23
earlier than DPT(t); this is the isochronous payload that is expected to have left the MA 24
USB device buffer allocated to the target isochronous endpoint in the absence of any 25

indication by the MA USB device 26

 AIP(t): (Acknowledged Isochronous Payload) Isochronous payload transmitted before time t that 27

is known to have left the MA USB device buffer through received IsochTransferResp 28
packets 29

NOTE — For example, for an isochronous OUT endpoint with a service interval of 4 milliseconds (Interval = 32), 30
at Global time t = (100, 5) (Frame number = 100, Microframe number = 5), the upper bound on delivered 31
presentation times is given by DPT(t) = (100 × 8 + 5)/32 × 32 = 800 microframes = (100, 0) (Frame number = 32
100, Microframe number = 0), meaning no isochronous payload with presentation time strictly earlier than (100, 0) 33
is expected to reside in the MA USB device buffer allocated to the endpoint. 34

NOTE — The accumulative format of the buffer model (defining buffer and payload quantities in terms of absolute 35
numbers since the system start up) is mainly to illustrate the model; implementations likely use a differential format 36
to track changes in the buffer size. 37

NOTE — Additional implementation details are needed to handle rollover in MGT and presentation times. 38

Figure 31 illustrates an example of how the MA USB host may estimate the buffer available to an 39

isochronous OUT endpoint with timed delivery. Available buffer estimate can be updated as soon as an 40
isochronous segment is guaranteed to have been delivered to the target endpoint, or an 41

IsochTransferResp packet is received that confirms the delivery of an isochronous segment. 42

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 94

IsochTransferReq transmitted

Request ID 1

Presentation Time t1
Targeting 2 Service Intervals

Isochronous data block lengths P11, P12

Service Intervals

targeted by the first

transfer request

IsochTransferReq transmitted

Request ID 2

Presentation Time t2
Targeting 3 Service Intervals

Isochronous data block lengths P21, P22, P23

Service Intervals

targeted by the second

transfer request

+P11

+P12

+P21

+P22

+P23

IsochTransferResp received

Request ID 1

Presentation Time T1 ≥ t1

IsochTransferResp received

Request ID 2

Presentation Time T2 ≥ t2

t1 T1 T2t2

Service Interval, aligned to

the MA USB device Service

Interval boundary

Buffer estimate can

be updated based on

the received response

 1

Figure 31—Example of buffer estimate for isochronous OUT timed delivery 2

For ASAP delivery (i.e., when isochronous presentation times are not specified), the above buffer model 3

is simplified as 4

 ABE(t) = TB – [IP(t) – AIP(t)] 5

Figure 32 illustrates an example of how the MA USB host may estimate the buffer available to an 6
isochronous OUT endpoint with ASAP delivery. In this case, the available buffer estimate can be 7
updated upon receiving an IsochTransferResp packet that confirms delivery of an isochronous segment. 8

In particular, losing an IsochTransferResp packet can delay the buffer update. 9

NOTE — An IsochTransferResp packet that indicates delivery (successful or otherwise) of any segment belonging 10
to an MA USB isochronous transfer also confirms the departure of all prior segments belonging to the same MA 11
USB isochronous transfer, as well as all segments belonging to previous MA USB isochronous transfers (as 12
identified by smaller Request ID values, subject to rollover considerations) from the MA USB device buffer. 13

NOTE — For large MA USB isochronous OUT transfers that include several segments, MA USB devices are 14
recommended to provide incremental updates through multiple IsochTransferResp packets, to help the MA USB 15
host better estimate the buffer available to the target endpoint. 16

IsochTransferReq transmitted

Request ID 1

Presentation Time ASAP

Targeting 2 Service Intervals

Isochronous data block lengths P11, P12

Service Intervals

targeted by the first

transfer request

IsochTransferReq transmitted

Request ID 2

Presentation Time ASAP

Targeting 3 Service Intervals

Isochronous data block lengths P21, P22, P23

Service Intervals

targeted by the second

transfer request

+P11+P12

+P21+P22+P23

IsochTransferResp received

Request ID 1

Presentation Time T1

IsochTransferResp received

Request ID 2

Presentation Time T2

T1 T2

Service Interval, aligned to

the MA USB device Service

Interval boundary

 17

Figure 32—Example of buffer estimate for isochronous OUT ASAP delivery 18

The MA USB host PAL shall conclude a pending MA USB isochronous OUT transfer (1) when it 19
receives an IsochTransferResp packet that belongs to the transfer and has the EoT subfield set to 1, or 20

(2) when it receives an IsochTransferResp packet that belongs to the transfer and indicates a non-21
recoverable error such as ISOCH_TIME_EXPIRED, or (3) at pMaxDeviceIsochOUTRespDelay + 22

aMaxIsochLinkDelay time units after the end of the last Service Interval targeted by the transfer. 23

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 95

NOTE — The last condition guarantees the conclusion of the transfer under packet loss. 1

Once all pending MA USB isochronous OUT transfers corresponding to an application- level 2

isochronous write request are concluded, the MA USB host PAL shall return to the application the status 3
of the isochronous write operation. An exception is when the MA USB host PAL receives an 4

IsochTransferResp packet that indicates an error, in which case the MA USB host PAL may return the 5
appropriate USBDI error to the application without further delay. 6

5.10.3.2 MA USB device requirements 7

In response to an IsochTransferReq packet that indicates any Presentation Time more than 8
aMaxFrameDistance USB frames before or after the current Global Time (MGT), the target MA USB 9

device shall send an IsochTransferResp packet with the same Request ID as the IsochTransferReq 10
packet, and with the Status Code field set to ISOCH_TIME_INVALID. In response to an 11

IsochTransferReq packet that indicates a valid Presentation Time, but (considering all the requested 12
Service Intervals) the presentation time points to a time before the current MGT, or the presentation time 13
falls within pMaxDeviceIsochOUTProgDelay of the current MGT, the target MA USB device shall send 14

an IsochTransferResp packet with the same Request ID as the IsochTransferReq packet, and with the 15
Status Code field set to ISOCH_TIME_EXPIRED. 16

NOTE — MA USB device PAL implementations may reject, or partially admit any IsochTransferReq packet that 17
does not meet the recommended timing (e.g., they may skip any target Service Interval that is too near to the time of 18
programming). 19

5.10.3.3 Application design guidelines 20

To ensure timely delivery of isochronous payload, applications should issue each isochronous write 21

request well ahead of the Service Interval the request is targeting. For continuous isochronous OUT 22
streaming, applications may need to issue multiple outstanding write requests. The number of 23

outstanding requests and the associated required buffering increase with longer roundtrip times, where 24
each roundtrip time captures a basic cycle of data movement. 25

NOTE — Roundtrip times can be measured from the application (MA USB host) point of view, or from the target 26
MA USB device viewpoint, with no difference in measured values. From the application point of view, each 27
roundtrip time represents the time between when a buffer unit is allocated to a new target Service Interval, and when 28
a buffer unit allocated to another target Service Interval is made available again (MA USB host transmits the last 29
IsochTransferReq packet corresponding to the target Service Interval). From the target MA USB device viewpoint, 30
each roundtrip time represents the time between when a buffer unit allocated to a target Service Interval is made 31
available (the last byte of isochronous payload for the target Service Interval is delivered to the USB endpoint), and 32
when a buffer unit is allocated to a new target Service Interval (MA USB device receives the first IsochTransferReq 33
packet corresponding to the target Service Interval). 34

Figure 33 shows two examples of continuous OUT streaming using double buffering and triple 35

buffering. It is generally possible to achieve uninterrupted streaming using k+1 buffer units (with each 36
buffer unit sized for one Service Interval) when roundtrip times do not exceed k Service Intervals. 37
Implementations may choose a different level of buffering to adapt to roundtrip variations or to be able 38

to target multiple Service Intervals through a single request. 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 96

Write

request

(N, N+1)

Service

Interval N N+1 N+2 N+3 N+4

Write

request

(N+2)

Write

response

(N)

(a) Continuous OUT streaming using double buffering when the roundtrip time does not exceed one Service Interval

MA USB

host

MA USB

device

Is
o

ch
Tr

an
sf

er
R

eq
N

, N
+1

Iso
ch

Tran
sferR

esp

N

Is
o

ch
Tr

an
sf

er
R

eq
N

+2

Write

request

(N+3)

Write

response

(N+1)

Iso
ch

Tran
sferR

esp

N
+1

Is
o

ch
Tr

an
sf

er
R

eq
N

+3

Write

request

(N+4)

Write

response

(N+2)

Iso
ch

Tran
sferR

esp

N
+2

Is
o

ch
Tr

an
sf

er
R

eq
N

+4

Write

request

(N+5)

Write

response

(N+3)

Iso
ch

Tran
sferR

esp

N
+3

Is
o

ch
Tr

an
sf

er
R

eq
N

+5

Write

request

(N, N+1, N+2)

Service

Interval N N+1 N+2 N+3 N+4

Write

request

(N+3)

Write

response

(N)

(b) Continuous OUT streaming using triple buffering when roundtrip time does not exceed two Service Intervals

MA USB

host

MA USB

device

Is
o

ch
Tr

an
sf

er
R

eq
N

, N
+1

, N
+2

Iso
ch

Tran
sferR

esp

N

Iso
chTransfe

rR
eq

N+3

IsochTransferResp

N
+1

Write

request

(N+5)

Write

response

(N+1)

IsochTransferResp

N+2

IsochTransferResp
N+3

Write

request

(N+4)

Is
oc

hT
ra

ns
fe

rR
eq

N
+4

N+5

N+5

Write

response

(N+2)

Is
o

ch
Tr

an
sf

er
R

eq
N

+5

Write

response

(N+3)

Write

response

(N+4)

Iso
ch

Tran
sferR

esp

N
+4

≤ 1× Service Interval ≤ 1× Service Interval ≤ 1× Service Interval ≤ 1× Service Interval

≤ 2× Service Interval ≤ 2× Service Interval ≤ 2× Service Interval

1
Figure 33—Continuous isochronous OUT streaming using multiple levels of buffering 2

5.11 Device notifications 3

Device notifications are a standard method for a USB device to communicate asynchronous device-level 4
and bus-level event information to the host [USB 3.1]. Device notifications are always initiated by a 5

USB device and the flow of data information in MA USB is always from an MA USB device to the MA 6
USB host. The MA USB devices use the Device Notification Request (DevNotificationReq) packet 7
(Section 6.3.50) to carry the device notifications to the MA USB host. The MA USB host shall respond 8

to a DevNotificationReq packet with a Device Notification Response (DevNotificationResp) packet 9
(Section 6.3.51) to inform the device whether the Device Notification Request was successfully 10

received. 11

An MA USB device can send a Device Notification Request at any time. 12

5.12 Reliability 13

The MA USB protocol does not have specific reliability requirements for the physical layer. Reliable 14
delivery is required at the link layer (802.11 mode) and network layer (IP mode) for all MA USB 15

packets except isochronous data packets. The MA USB protocol defines mechanisms such as protocol-16
level retransmission to ensure data integrity in the event of network transients. 17

5.13 Efficiency 18

The MA USB protocol achieves transfer efficiency by sizing its data packets according to the MTU of 19
the underlying link or network layer. 20

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 97

6 Protocol layer 1

6.1 Packet types 2

MA USB packets are broadly categorized into three types, each with one or more subtypes, 3

 Management packets transfer MA USB-specific information to manage entities such as 4
endpoint handles. The information contained in these packets is strictly for MA USB PAL 5

management; no USB payload of any type is carried in these packets. MA USB Capability 6
Request (CapReq) and Endpoint Handle Request (EPHandleReq) are examples of a management 7
packet. 8

 Control packets contain MA USB-specific information to control the flow of data packets 9
carrying USB payload. Transfer Setup Request (TransferSetupReq) is an example of a control 10

packet. 11

 Data packets transfer USB payload between MA USB host and MA USB devices. USB payload 12

for all USB transfers, including control transfers, is carried in data packets. 13

Each packet carries a protocol header that contains the protocol version, the packet type and subtype, the 14

MSS, and the MA USB device the packet is targeting. These are the key information a packet receiver 15
needs to accept or reject an incoming packet, and to route the accepted packet to the correct protocol 16
instance when multiple PAL instances (e.g., an MA USB host and an MA USB device PAL) are 17

operating in parallel. MA USB packets can be as large as 64 KB; in practice, they are sized in 18
accordance with the network MTU to minimize fragmentation. 19

MA USB does not define any header or payload protection mechanism such as Cyclic Redundancy 20
Check (CRC) codes; all protocol content (header and payload) is assumed to be delivered error-free by 21
the network. Similarly, MA USB does not define any data confidentiality mechanism; confidentiality, if 22

required, is assumed to be provided by the network. 23

6.2 Packet formats 24

All packet headers have a length (in bytes) that is a multiple of 4, and are defined as a series of 4-byte 25
data units known as double words (DWORDs). DWORDs are numbered starting from zero, and are 26
displayed with the least significant bit (Bit 0) on the right and the most significant bit (Bit 31) on the 27

left. Header bits are sent over the air starting with Bit 0 of DWORD 0 and ending with Bit 31 of the last 28
DWORD in the header. 29

No header field is larger than a single DWORD in size, and no header field crosses DWORD 30
boundaries. The location of each field or subfield in the header is defined pictorially or using the 31
shorthand notation DW:b, where DW is the DWORD and b is the bit number for the least significant bit 32

of the field or subfield. For example, a header field that occupies the lower 4 bits of the sixth byte in the 33
header has an offset of 1:8. 34

Unless stated otherwise, a reserved field shall be sent with all the field bits set to zero. 35

The payload of the packet, if present, starts at bit number 0 of the first DWORD following the header 36
fields. The payload bits are sent over the air starting with Bit 0 of the first DWORD following the packet 37

header and ending with the most significant bit of the last DWORD of the payload. 38

6.2.1 Common header fields 39

All MA USB packets share the common header shown in Figure 34. 40

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 98

031 222324252627282930 21 121314151617181920 11 2345678910 1

Version

SSID Device Address EP Handle/Device Handle

Subtype FlagsType DWORD 0

DWORD 1

Length

DWORD 2Status Code
 1

Figure 34— Common header for MA USB packets 2

6.2.1.1 Version 3

The 4-bit Version field (offset 0:0) identifies the MA USB protocol version. It is defined as 0000b for 4
this revision of the specification. MA USB 1.0 devices and hosts shall set the Version field to 0000b at 5

transmit. 6

6.2.1.2 Flags 7

The 4-bit Flags field (offset 0:4), shown in Figure 35, brings together the bit fields in Table 4. 8

0

HostReserved

1234567

RetryTimestamp DWORD 0
 9

Figure 35—Flags field 10

Table 4—Flags subfields 11

Width

(bits)

Offset

(DW:bit)

Description

1 0:4 Host. Set to 1 if the packet is sent by the host, and set to 0 otherwise.

1 0:5 Retry. Set to 1 if the packet is a retry, and set to 0 otherwise.

1 0:6 Timestamp. Set to 1 if the packet header includes an MA USB Timestamp
and Media Time/Transmission Delay fields, and 0 otherwise.

NOTE — Certain packet subtypes are required to carry MA USB timestamps;

all these packets shall set the Timestamp bit to 1.

NOTE — For isochronous data packets, a valid Media Time/Transmission

Delay field is separately marked by the MTD bit in the I-Flags (Section

6.5.1.8) field.

1 0:7 Reserved.

NOTE — The Host bit helps uniquely identify any MA USB packet (type/subtype) that may be transmitted by both 12
an MA USB host and an MA USB device, and with potentially the same payload. 13

6.2.1.3 Type and Subtype 14

The 2-bit Type field (offset 0:14) and the 6-bit Subtype field (offset 0:8) together identify the packet 15

variant, which in turn defines the expected packet structure and function. Valid Type and Subtype 16
combinations are listed in Table 5. 17

Table 5—Type and Subtype values for MA USB packet variants 18

Type Description Subtype Packet full name Packet short name

00b Management 000000b MA USB Capability Request CapReq

00b Management 000001b MA USB Capability Response CapResp

00b Management 000010b USB Device Handle Request USBDevHandleReq

00b Management 000011b USB Device Handle Response USBDevHandleResp

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 99

Type Description Subtype Packet full name Packet short name

00b Management 000100b Endpoint Handle Request EPHandleReq

00b Management 000101b Endpoint Handle Response EPHandleResp

00b Management 000110b Endpoint Activate Request EPActivateReq

00b Management 000111b Endpoint Activate Response EPActivateResp

00b Management 001000b Endpoint Inactivate Request EPInactivateReq

00b Management 001001b Endpoint Inactivate Response EPInactivateResp

00b Management 001010b Endpoint Reset Request EPResetReq

00b Management 001011b Endpoint Reset Response EPResetResp

00b Management 001100b Clear Transfers Request ClearTransfersReq

00b Management 001101b Clear Transfers Response ClearTransfersResp

00b Management 001110b Endpoint Handle Delete
Request

EPHandleDeleteReq

00b Management 001111b Endpoint Handle Delete
Response

EPHandleDeleteResp

00b Management 010000b MA USB Device Reset Request DevResetReq

00b Management 010001b MA USB Device Reset
Response

DevResetResp

00b Management 010010b Modify EP0 Request ModifyEP0Req

00b Management 010011b Modify EP0 Response ModifyEP0Resp

00b Management 010100b Set USB Device Address
Request

 SetUSBDevAddrReq

00b Management 010101b Set USB Device Address
Response

 SetUSBDevAddrResp

00b Management 010110b Update Device Request UpdateDevReq

00b Management 010111b Update Device Response UpdateDevResp

00b Management 011000b USB Device Disconnect
Request

USBDevDisconnectReq

00b Management 011001b USB Device Disconnect
Response

USBDevDisconnectResp

00b Management 011010b USB Suspend Request USBSuspendReq

00b Management 011011b USB Suspend Response USBSuspendResp

00b Management 011100b USB Resume Request USBResumeReq

00b Management 011101b USB Resume Response USBResumeResp

00b Management 011110b Remote Wake Request RemoteWakeReq

00b Management 011111b Remote Wake Response RemoteWakeResp

00b Management 100000b Ping Request PingReq

00b Management 100001b Ping Response PingResp

00b Management 100010b MA USB Device Disconnect
Request

DevDisconnectReq

00b Management 100011b MA USB Device Disconnect
Response

DevDisconnectResp

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 100

Type Description Subtype Packet full name Packet short name

00b Management 100100b MA USB Device Initiated
Disconnect Request

DevInitDisconnectReq

00b Management 100101b MA USB Device Initiated
Disconnect Response

DevInitDisconnectResp

00b Management 100110b Synchronization Request SynchReq

00b Management 100111b Synchronization Response SynchResp

00b Management 101000b Cancel Transfer Request CancelTransferReq

00b Management 101001b Cancel Transfer Response CancelTransferResp

00b Management 101010b Endpoint Open Stream Request EPOpenStreamReq

00b Management 101011b Endpoint Open Stream
Response

EPOpenStreamResp

00b Management 101100b Endpoint Close Stream Request EPCloseStreamReq

00b Management 101101b Endpoint Close Stream
Response

EPCloseStreamResp

00b Management 101110b USB Device Reset Request USBDevResetReq

00b Management 101111b USB Device Reset Response USBDevResetResp

00b Management 110000b Device Notification Request DevNotificationReq

00b Management 110001b Device Notification Response DevNotificationResp

00b Management 110010b Endpoint Set Keep-Alive
Request

EPSetKeepAliveReq

00b Management 110011b Endpoint Set Keep-Alive
Response

EPSetKeepAliveResp

00b Management 110100b Get Port Bandwidth Request GetPortBWReq

00b Management 110101b Get Port Bandwidth Response GetPortBWResp

00b Management 110110b Sleep Request SleepReq

00b Management 110111b Sleep Response SleepResp

00b Management 111000b Wake Request WakeReq

00b Management 111001b Wake Response WakeResp

00b Management 111110b Vendor Specific Request VendorSpecificReq

00b Management 111111b Vendor Specific Response VendorSpecificResp

01b Control 000000b Transfer Setup Request TransferSetupReq

01b Control 000001b Transfer Setup Response TransferSetupResp

01b Control 000010b Transfer Tear Down
Confirmation

TransferTearDownConf

10b Data 000000b Transfer Request TransferReq

10b Data 000001b Transfer Response TransferResp

10b Data 000010b Transfer Acknowledgement TransferAck

10b Data 000011b Isochronous Transfer Request IsochTransferReq

10b Data 000100b Isochronous Transfer Response IsochTransferResp

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 101

6.2.1.4 Length 1

The 16-bit Length field (offset 0:16) carries the length of the MA USB packet, including the packet 2
header, in bytes. 3

6.2.1.5 EP Handle/Device Handle 4

This 16-bit field (offset 1:0) carries a handle for a USB device or a USB endpoint. When pointing to a 5

USB device (in MA USB packets of type management), the field is referred to as Device Handle, and is 6
unstructured. When pointing to a USB endpoint (EP) (in MA USB packets of type control and data), the 7
field is referred to as EP Handle, and is structured as shown in Figure 36. 8

012131415 11 2345678910 1

EP NumberUSB Device AddressBus Number D
 9

Figure 36—EP Handle field 10

The Bus Number subfield carries the USB bus number for the EP assigned by the MA USB device PAL. 11

For virtual USB devices the Bus Number subfield is set to the reserved value of 15. For physical USB 12
devices it is set to the value of the USB bus number allocated by the MA USB device PAL. This 13
subfield is used to ensure uniqueness of the EP handle value when there are multiple USB devices with 14

the same USB address present. 15

NOTE — A USB host controller implementation can choose to treat each downstream port as a different bus 16
instance (Enhanced SuperSpeed and USB 2.0 speeds) while assigning addresses to the devices connected to the 17
downstream ports (in the case of a host controller with 2 Enhanced SuperSpeed ports and 2 USB 2.0 ports there can 18
be up to 4 separate bus instances). Additionally, a host controller implementation may choose to assign USB 19
addresses independently on each bus instance (starting at device address 1, for example). 20

The USB Device Address subfield carries the USB address of the USB device to which the EP belongs. 21
The USB address is allocated by the MA USB device. For virtual USB devices the USB Device Address 22

subfield is set by the MA USB device PAL. For physical USB devices it is set to the USB address of the 23
device. Prior to allocation of the USB address to the device, this field is set to the default value of 0. 24

The EP Number subfield carries the EP number as defined in [USB 2.0]. Prior to allocating an address, 25

the only valid EP Number is zero. 26

The Direction (D) subfield carries the direction of the EP as defined in [USB 2.0]. 27

6.2.1.6 Device Address 28

The 8-bit Device Address field (offset 1:16) carries the address assigned by an MA USB host to an MA 29

USB device, or a value of 0xFF to indicate any MA USB device within the MSS. 30

6.2.1.7 SSID 31

The 8-bit SSID field (offset 1:24) identifies the MA USB Service Set (MSS) to which the target MA 32
USB device belongs. 33

6.2.1.8 Status Code 34

The 8-bit Status Code field (offset 2:0) is used to communicate a status code, e.g., the success or failure 35

of a requested operation. If an operation is successful, or involves no error, the Status Code is set to 0 36
(SUCCESS, or NO_ERROR). Otherwise, depending on the operation, one of the values in Table 6 is 37

returned in a response packet. Management packets with Status Code field set to values other than 0, 38
shall still carry all the fields defined for the packet subtype. 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 102

Table 6—Status Code values 1

Value Description

0 SUCCESS (NO_ERROR). Used when no error condition is being reported.

1-127 Reserved values

128 UNSUCCESSFUL. The operation did not succeed due an unidentified error.

129 INVALID_MA_USB_SESSION_STATE. The MA USB session is in an invalid state
for the requested operation.

130 INVALID_DEVICE_HANDLE. Provided device handle is invalid.

131 INVALID_EP_HANDLE. Provided EP handle is invalid.

132 INVALID_EP_HANDLE_STATE. Provided EP handle is an invalid state for the
requested operation.

133 INVALID_REQUEST. The received Transfer Request was invalid or did not match
the endpoint capabilities.

134 MISSING_SEQUENCE_NUMBER. A sequence number gap was detected.

135 TRANSFER_PENDING. Used in response to a duplicate IN Transfer Request to
indicate that the Transfer Request has been received but the data is not being received
from the target USB endpoint.

136 TRANSFER_EP_STALL. Transfer request ended with the USB endpoint returning
STALL handshake.

137 TRANSFER_SIZE_ERROR. The TransferResp packet includes an unexpected
number of bytes in its payload.

138 TRANSFER_DATA_BUFFER_ERROR. Overrun of incoming data or under-run of
outgoing data has occurred.

139 TRANSFER_BABBLE_DETECTED. Babble error returned by the WSB device.

140 TRANSFER_TRANSACTION_ERROR. Transaction error returned by the target
USB device.

141 TRANSFER_SHORT_TRANSFER. Transfer request ended with the short packet.

142 TRANSFER_CANCELLED. The received Transfer Request corresponds to a
cancelled transfer.

143 INSUFFICIENT_RESOURCES. There are not enough resources on the MA USB
device to perform the operation.

144 NOT_SUFFICIENT_BANDWIDTH. There is not enough bandwidth to support the
endpoint(s).

145 INTERNAL_ERROR. MA USB device encountered an internal error.

146 DATA_OVERRUN. The isochronous transfer exceeded the bandwidth allocated to the
endpoint.

147 DEVICE_NOT_ACCESSED. The USB device is not accessible.

148 BUFFER_OVERRUN. The USB device attempted transfer of more data than the
scheduled amount per service interval for an isochronous IN transfer.

149 BUSY. An attempt was made to close an endpoint with outstanding transfers.

150 DROPPED_PACKET. MA USB device dropped a TransferReq packet.

151 ISOCH_TIME_EXPIRED. Isochronous payload was delivered later than its intended
presentation time.

152 ISOCH_TIME_INVALID. The presentation time is invalid.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 103

153 NO_USB_PING_RESPONSE. Completion of data transfer to an Enhanced
SuperSpeed isochronous endpoint within the service interval is not possible because the
USB device has not responded to a PING with a PING_RESPONSE in the required
time [USB 3.1].

154 NOT_SUPPORTED. The value of the Subtype field is not recognized or the requested
operation is not supported.

155 REQUEST_DENIED. A protocol operation request was denied.

156 MISSING_REQUEST_ID. A Request ID gap was detected.

157-255 Reserved values

6.3 Management packets 1

MA USB management packets share the common management header shown in Figure 37. All 2

management header fields except for the Dialog Token field are defined in Section 6.2. 3

031 222324252627282930 21 121314151617181920 11 2345678910 1

Version

SSID Device Address Device Handle

Subtype FlagsType DWORD 0

DWORD 1

Length

DWORD 2Status CodeDialog TokenReserved
 4

Figure 37—Common header for MA USB management packets 5

6.3.1 Common header fields 6

6.3.1.1 Dialog Token 7

The 10-bit Dialog Token field (offset 2:8) is used to match request and response management packets 8
between an MA USB host and a target MA USB device PAL. The field is set to 1 at session 9
initialization or upon any configuration event that returns the state of the MA USB PAL to the initial 10

state. The Dialog Token value is incremented by 1 after transmitting each new (i.e., not retried) 11
management packet carrying a request, with wraparound to 1 after reaching the maximum value of 12

aMaxDialogToken. To avoid ambiguity in tracking the request management packets waiting for 13

response, the MA USB PAL shall have no more than aMaxDialogToken/2 (half the size of the Dialog 14

Token space) outstanding management requests. Also the total management requests targeted for an MA 15
USB PAL shall not exceed the number returned by the target MA USB PAL in the Number of 16
Outstanding Management Requests field in the CapReq or CapResp packets. A management packet 17

carrying an out-of-order Dialog Token value shall be ignored by the recipient. 18

NOTE — The value of the Dialog Token field is allocated by the originator of the request. Hence, there may be two 19
active requests at the MA USB device or the MA USB host with the same Dialog Token value, one originated from 20
the MA USB device and one from the MA USB host. 21

The Dialog Token field is set to 0 for management packets with broadcast Device Address, and other 22

management packets that do not require a response correlated with the request. 23

6.3.2 MA USB Capability Request (CapReq) 24

The MA USB Capability Request (CapReq) packet is transmitted by the MA USB host to a target MA 25

USB device to inquire about the MA USB device’s capabilities. The Device Handle field is reserved. 26
The Type and Subtype fields are set to 0 (Management) and 0 (CapReq), respectively. The Status Code 27
field is set to 0 (NO_ERROR). 28

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 104

The CapReq packet carries the fields listed in Table 7 after the management header. 1

Table 7—MA USB Capability Request fields 2

Width

(bits)

Offset

(DW:bit)

Description

12 3:0 Number of Outstanding Management Requests. Indicates the maximum
number of device initiated outstanding management requests that MA USB
host can track.

NOTE—The MA USB host is recommended to be able to track at least 127

outstanding requests per each MA USB device it supports.

20 3:12 Reserved.

 In addition, the CapReq packet may carry one or multiple MA Host Capability descriptors. The format 3

of the MA Host Capability descriptors is defined in Table 8. The MA Host Capability descriptors are 4
byte aligned. 5

Table 8—Format of MA Host Capability descriptors 6

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes.

8 N:n+8 MA Host Capability Type. Indicates the type of the descriptor. Descriptor
types are listed in Table 9.

Variable N:n+16 Descriptor specific format.

The valid MA Host Capability Types to be carried in the CapReq packet are listed in Table 9. 7

Table 9—MA Host Capability Type values 8

MA Host Capability Type Value Description

Synchronization Capabilities 3 Indicates the synchronization related capabilities
of the MA USB host. Shall be present if the MA
USB host has access to Media Time.

Link Sleep Capability 5 Indicates the capability of the MA USB host
related to the session state transition to Session
Inactive. Shall be present if the MA USB host
supports transition of the session state to Session
Inactive without the integrated USB device being
suspended.

6.3.2.1 Synchronization Capabilities descriptor 9

The Synchronization Capabilities descriptor reports the synchronization related capabilities of the MA 10

USB host and shall be present if the MA USB host has access to the Media Time. Absence of the 11
Synchronization Capabilities descriptor is equivalent of Media Time Available field set to 0. Table 10 12
illustrates the format of the Synchronization Capabilities descriptor. 13

Table 10—Synchronization Capabilities descriptor 14

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 3.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 105

8 N:n+8 MA Host Capability Type. Indicates the type of the descriptor. Set to the
value of Synchronization Capabilities in Table 9.

1 N:n+16 Media Time Available. Indicates whether the MA USB host has access to a
synchronized Media Time.

 Value Meaning
 0 MA USB host does not have access to Media Time

 1 MA USB host has access to Media Time

7 N:n+17 Reserved.

6.3.2.2 Link Sleep Capability descriptor 1

The Link Sleep Capability descriptor indicates whether the MA USB host can receive a Sleep Request 2

packet (Section 6.3.56) from a target MA USB device to take the session state to Session Inactive 3
without the MA USB host suspending the USB device integrated into the target MA USB device first. 4
Table 11 lists the descriptor fields. The absence of the descriptor is equivalent to the Link Sleep Capable 5

field set to 0. 6

Table 11—Link Sleep Capability descriptor 7

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 3.

8 N:n+8 MA Host Capability Type. Indicates the type of the descriptor. Set to the
value of Link Sleep Capability in Table 9.

1 N:n+16 Link Sleep Capable. Indicates whether the MA USB host can receive a Sleep
Request packet (Section 6.3.56) from a target MA USB device to take the
session state to Session Inactive without suspending the integrated USB
device.

 Value Meaning
 0 Cannot receive a Sleep Request packet without USB suspend
 1 Can receive a Sleep Request packet without USB suspend

7 N:n+17 Reserved.

6.3.3 MA USB Capability Response (CapResp) 8

The MA USB Capability Response (CapResp) packet is transmitted by the target MA USB device in 9

response to an MA USB Capability Request (CapReq) packet. The Device Handle field is reserved. The 10
Type and Subtype fields are set to 0 (Management) and 1 (CapResp), respectively. The Status Code field 11
indicates whether the request was successfully completed. 12

The CapResp packet carries the fields listed in Table 12 after the management header. 13

Table 12—MA USB Capability Response fields 14

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Number of Endpoints . Indicates the maximum number of endpoints for
which the MA USB device can track state. For MA USB hubs, the minimum
value of this field is 16.

8 3:16 Number of Devices. Indicates the maximum number of USB devices the MA
USB device can manage; only MA USB hubs can manage multiple (two or
more) USB devices.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 106

5 3:24 Number of Streams. 2 to the power of the value of this field is the maximum
number of streams supported by the MA USB device for any of its Enhanced
SuperSpeed bulk endpoints.

3 3:29 Device Type. Indicates whether the MA USB device is an MA USB hub or
not.

 Value Meaning
 0 Not an MA USB hub
 1 MA USB hub with an integrated USB 2.0 hub
 2 MA USB hub with an integrated USB 3.1 hub
 3-8 Reserved

8 4:0 Descriptors Count. Indicates the total number of MA Device Capabilities
descriptors present.

24 4:8 Descriptors Length. Indicates the total size of MA Device Capabilities
descriptors in bytes.

16 5:0 Number of Outstanding Transfer Requests. Indicates the maximum number
of total outstanding transfer requests that the MA USB device can track.

12 5:16 Number of Outstanding Management Requests. Indicates the maximum
number of host initiated outstanding management requests that MA USB
device can track.

NOTE—It is recommended that the number of outstanding management

requests the MA USB device supports should be at least 2 times the

maximum number of endpoints plus 2 times the total number of devices it

supports.

4 5:28 Reserved.

In addition, the CapResp packet may carry one or multiple MA Device Capability descriptors. The 1
format of the MA Device Capability descriptors is defined in Table 13. The MA Device Capability 2

descriptors are byte aligned. 3

Table 13—Format of MA Device Capability descriptors 4

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes.

8 N:n+8 MA Device Capability Type. Indicates the type of the descriptor. Descriptor
types are listed in Table 14.

Variable N:n+16 Descriptor specific format.

The valid MA Device Capability Types to be carried in the CapResp packet are listed in Table 14. 5

Table 14—MA Device Capability Type values 6

MA Device Capability Type Value Description

Speed Capability 0 Indicates the speed capability of the USB device
behind the MA USB device. If the Device Type
field is set to 0 or 2, the Speed Capability
descriptor shall be present.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 107

MA Device Capability Type Value Description

P-managed OUT Capabilities 1 Indicates the optional capabilities related to P-
managed OUT transfers that the MA USB device
supports. Shall be present if the MA USB device
supports any of the P-managed OUT optional
capabilities.

Isochronous Capabilities 2 Indicates the isochronous related capabilities of
the MA USB device. Shall be present if the
Device Type field is not set to 0, or if the MA
USB device supports isochronous endpoints.

Synchronization Capabilities 3 Indicates the synchronization related capabilities
of the MA USB device. Shall be present if the
Device Type field is not set to 0, or if the MA
USB device supports isochronous endpoints.

Container ID Capability 4 Indicates the capability related to support of
Container ID descriptor by the integrated USB
device behind the MA USB device PAL. Shall be
present if the integrated USB device supports
Container ID descriptor (Section 4.4.4).

Link Sleep Capability 5 Indicates the capability of the MA USB device
related to the session state transition to Session
Inactive. Shall be present if the MA USB device
supports transition of the session state to Session
Inactive without the integrated USB device being
suspended.

The following sections define the MA Device Capability descriptors. 1

6.3.3.1 Speed Capability descriptor 2

If the Device Type field is set to 0 the CapResp packet carries the Speed Capability descriptor for the 3

single USB device behind the MA USB device. If the Device Type field is set to 2 the CapResp packet 4
carries the Speed Capability descriptor for the integrated Enhanced SuperSpeed hub in the MA USB 5

hub. Table 15 illustrates the format of the Speed Capability descriptor. 6

Table 15—Speed Capability descriptor 7

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 4.

8 N:n+8 MA Capability Type. Indicates the type of the descriptor. Set to the value of
Speed Capability in Table 14.

4 N:n+16 Reserved.

4 N:n+20 Speed. Indicates the speed of the USB device behind the MA USB device.

 Value Meaning
 0 Low-Speed
 1 Full-Speed
 2 High-Speed
 3 SuperSpeed
 4 SuperSpeedPlus
 5-15 Reserved

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 108

4 N:n+24 Reserved.

2 N:n+28 Lane Speed Exponent (LSE). Indicates the LSE of the USB device as defined
in [USB 3.1] if the Speed field is set to SuperSpeed or SuperSpeedPlus.
Reserved otherwise.

2 N:n+30 Reserved.

6.3.3.2 P-managed OUT Capabilities descriptor 1

The P-managed OUT Capabilities descriptor shall be present if the MA USB device supports any of the optional 2
capabilities related to the P-managed OUT transfer. Absent of the descriptor is equivalent to the P-managed OUT 3
Capability Bitmap field set to 0. Table 16 illustrates the format of the P-managed OUT Capabilities 4

descriptor. 5

Table 16—P-managed OUT Capabilities descriptor 6

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 3.

8 N:n+8 MA Capability Type. Indicates the type of the descriptor. Set to the value of

P-managed OUT Capabilities in Table 14.

8 N:n+16 P-managed OUT Capability Bitmap. Indicates the optional capabilities the
MA USB device supports.

Table 17 illustrates the format of the P-managed OUT Capability Bitmap field. 7

Table 17—P-managed OUT Capability Bitmap format 8

Width

(bits)

Offset

(DW:bit)

Description

1 N:n+16 Elastic Buffer Capability. Indicates whether the MA USB host is allowed to
exceed the amount of credit advertised by the MA USB device during p-
managed OUT transfers targeting the MA USB device.

 Value Meaning
 0 MA USB host shall not transmit data if no credit is available
 1 MA USB host may transmit data if no credit is available

1 N:n+17 Drop Notification. Indicates whether the MA USB device can return an
explicit DROPPED_PACKET status during p-managed OUT transfers.

 Value Meaning
 0 MA USB device cannot return a DROPPED_PACKET status
 1 MA USB device can return a DROPPED_PACKET status

6 N:n+18 Reserved.

6.3.3.3 Isochronous Capabilities descriptor 9

The Isochronous Capabilities descriptor reports the isochronous related capabilities of the MA USB 10

device and shall be present if the MA USB device supports isochronous endpoints or the Device Type 11
field is not set to 0. Table 18 illustrates the format of the Isochronous Capabilities descriptor. 12

Table 18—Isochronous Capabilities descriptor 13

Width

(bits)

Offset

(DW:bit)

Description

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 109

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 3.

8 N:n+8 MA Capability Type. Indicates the type of the descriptor. Set to the value of

Isochronous Capabilities in Table 14.

1 N:n+16 Isochronous payload alignment. Indicates whether the MA USB device
requires DWORD aligned payload for isochronous transfers.

 Value Meaning
 0 MA USB device transmits and expects to receive byte-aligned

isochronous payload
 1 MA USB device transmits and expects to receive DWORD-

aligned isochronous payload

7 N:n+17 Reserved.

6.3.3.4 Synchronization Capabilities descriptor 1

The Synchronization Capabilities descriptor reports the synchronization related capabilities of the MA 2
USB device and shall be present if the MA USB device supports isochronous endpoint(s) or the Device 3

Type field is not set to 0. Table 19 illustrates the format of the Synchronization Capabilities descriptor. 4

Table 19—Synchronization Capabilities descriptor 5

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 3.

8 N:n+8 MA Capability Type. Indicates the type of the descriptor. Set to the value of
Synchronization Capabilities in Table 14.

1 N:n+16 Media Time Available. Indicates whether the MA USB device has access to a
synchronized Media Time.

 Value Meaning
 0 MA USB device does not have access to Media Time
 1 MA USB device has access to Media Time

1 N:n+17 Timestamp Request. Indicates the need to receive MA USB timestamps from
the MA USB host through unicast or broadcast packets.

 Value Meaning
 0 Need to receive MA USB timestamps only when the MA USB

device has isochronous endpoints selected
 1 Need to receive MA USB timestamps regardless of endpoint

configuration

NOTE — MA USB hubs shall set this field to1.

NOTE — Some MA USB devices may not have any isochronous endpoints

selected when the CapResp packet is transmitted.

6 N:n+18 Reserved.

6.3.3.5 Container ID Capability descriptor 6

The Container ID Capability descriptor shall be present if the integrated USB device behind the MA 7
USB device PAL supports the Container ID descriptor and reports its value. Table 20 illustrates the 8
format of the Container ID Capability descriptor. 9

Table 20—Container ID Capability descriptor 10

Width Offset Description

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 110

(bits) (DW:bit)

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 18.

8 N:n+8 MA Capability Type. Indicates the type of the descriptor. Set to the value of
Container ID Capability in Table 14.

128 N:n+16 Container ID. Indicates the value of Container ID.

6.3.3.6 Link Sleep Capability descriptor 1

The Link Sleep Capability descriptor indicates whether the MA USB device can receive a Sleep Request 2

packet (Section 6.3.56) from the MA USB host to take the session state to Session Inactive without the 3
MA USB host suspending the USB device integrated into the MA USB device first. Table 21 lists the 4

descriptor fields. The absence of the descriptor is equivalent to the Link Sleep Capable field set to 0. 5

Table 21—Link Sleep Capability descriptor 6

Width

(bits)

Offset

(DW:bit)

Description

8 N:n Length. Indicates the length of the descriptor in bytes. Set to 3.

8 N:n+8 MA Device Capability Type. Indicates the type of the descriptor. Set to the
value of Remote Link Sleep in Table 14.

1 N:n+16 Link Sleep Capable. Indicates whether the MA USB device can receive a
Sleep Request packet (Section 6.3.56) from the MA USB host to take the
session state to Session Inactive without suspending the integrated USB
device.

 Value Meaning
 0 Cannot receive a Sleep Request packet without USB suspend
 1 Can receive a Sleep Request packet without USB suspend

7 N:n+17 Reserved.

6.3.4 USB Device Handle Request (USBDevHandleReq) 7

The USB Device Handle Request (USBDevHandleReq) packet is transmitted by the MA USB host to a 8
target MA USB device to trigger the MA USB device to assign a handle to the USB device behind it. 9

The Device Handle field is reserved. The Type and Subtype fields are set to 0 (Management) and 2 10
(USBDevHandleReq), respectively. The Status Code field is set to 0 (NO_ERROR). 11

The USBDevHandleReq packet carries the fields listed in Table 22 after the management header. 12

Table 22—USB Device Handle Request fields 13

Width

(bits)

Offset

(DW:bit)

Description

20 3:0 MA USB Route String. Identifies the USB topology as defined in Section 4.2
and the corresponding route string, as defined in [USB 3.1].

NOTE — Route strings do not include the root hub port number. For USB

devices behind an MA USB hub, the first entry in the route string refers to the

port number on the hub integrated into the MA USB hub through which the

USB device is accessed.

4 3:20 Speed. Identifies the speed of the USB device as following,

 Value Meaning
 0 Low-Speed
 1 Full-Speed

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 111

 2 High-Speed
 3 SuperSpeed
 4 SuperSpeedPlus
 5-15 Reserved

8 3:24 Reserved.

16 4:0 Hub. Identifies the device handle of the hub inside the MA USB hub through
which the USB device is accessed (USB device may not be directly attached to
this hub). Reserved for integrated USB devices.

16 4:16 Reserved.

16 5:0 Parent HS Hub. If the device is LS or FS (including an LS or FS hub) and is
accessed through an HS hub, this field identifies the device handle of the
“parent” HS hub that isolates LS or FS signaling on its downstream facing port
from HS signaling on its upstream facing port. Reserved for other device
speeds.

4 5:16 Parent HS Hub Port. If the device is LS or FS (including an LS or FS hub)
accessed through an HS hub, this field identifies the port number on the parent
HS hub (identified by the Parent HS Hub field above) to which the LS or FS
device is directly attached. Reserved for other device speeds.

1 5:20 MTT (Multiple Transaction Translators). Set to 1 for an LS or FS USB
device, if it is connected through an HS hub that has Multiple TTs support
enabled by software. The value of the field is set to 0 otherwise. See [USB 2.0]
for details.

2 5:21 Lane Speed Exponent (LSE). Indicates the LSE of the USB device as defined
in [USB 3.1] if the Speed field is set to SuperSpeed or SuperSpeedPlus.
Reserved otherwise.

9 5:23 Reserved.

6.3.5 USB Device Handle Response (USBDevHandleResp) 1

The USB Device Handle Request (USBDevHandleResp) packet is transmitted by the target MA USB 2

device to the MA USB host in response to a USBDevHandleReq packet. The Device Handle field is 3
reserved. The Type and Subtype fields are set to 0 (Management) and 3 (USBDevHandleResp), 4

respectively. The Status Code field indicates whether the request was successfully completed. 5

The USBDevHandleResp packet carries the fields listed in Table 23 after the management header. 6

Table 23—USB Device Handle Response fields 7

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 USB Device Handle. Handle of the USB device.

16 3:16 Reserved.

6.3.6 Endpoint Handle Request (EPHandleReq) 8

The Endpoint Handle Request (EPHandleReq) packet is transmitted by the MA USB host to request a 9

target MA USB device to assign a list of handles to the endpoints of a designated USB device behind the 10
MA USB device. The Device Handle field carries the handle of the USB device behind the MA USB 11

device for which the endpoint handle list is requested, i.e., the handle returned by the 12
USBDevHandleResp packet. The Type and Subtype fields are set to 0 (Management) and 4 13
(EPHandleReq), respectively. The Status Code field is set to 0 (NO_ERROR). 14

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 112

The EPHandleReq packet carries the fields listed in Table 24 after the management header. 1

Table 24—Endpoint Handle Request fields 2

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Descriptors. Indicates the number of EP descriptors carried in
the EPHandleReq packet.

6 3:5 Size of EP Descriptor. Indicates the size of each EP descriptor included in the
EPHandleReq packet, in bytes. The size is inclusive of the bytes padded to
make each EP descriptor DWORD-aligned.

21 3:11 Reserved.

In addition, each EPHandleReq packet carries one or more EP descriptors. All of the EP descriptors 3
included in an EP Handle Request packet are of the same size, defined by the Size of EP Descriptor 4

field. 5

Table 25 illustrates the format of each EP descriptor. The size of the EP descriptor depends on the speed 6

of the USB device to which the EP belongs: 7

 For an LS, FS, or HS device, the EP descriptor takes 8 bytes (including 1 byte of zero padding). 8

 For an Enhanced SuperSpeed device the EP descriptor takes 16 bytes (including 3 bytes of zero 9
padding). 10

 For an Enhanced SuperSpeed device operating at above Gen 1 speed with isochronous 11
endpoint(s), the EP descriptor takes 24 bytes (including 3 bytes of zero padding). 12

Table 25—EP descriptor 13

Width

(bytes)

Offset

(DW:bit)

Description

7 N:0 Standard endpoint descriptor, as defined in [USB 2.0].

6 N+1:24 (For Enhanced SuperSpeed devices only) SuperSpeed Endpoint Companion
Descriptor, as defined in [USB 3.1].

8 N+3:8 (For Enhanced SuperSpeed devices operating at above Gen 1 speed with
isochronous EPs only) SuperSpeedPlus Isochronous Endpoint Companion
Descriptor, as defined in [USB 3.1].

Variable Variable Zero padding to make the EP descriptor DWORD-aligned.

6.3.7 Endpoint Handle Response (EPHandleResp) 14

The Endpoint Handle Response (EPHandleResp) packet is transmitted by the target MA USB device to 15
the MA USB host, and includes the list of endpoint handles requested by the MA USB host. The Device 16

Handle field carries the handle of the USB device behind the MA USB device for which the endpoint 17
handle list is returned. The Type and Subtype fields are set to 0 (Management) and 5 (EPHandleResp), 18

respectively. The Status Code field indicates whether the request was successfully completed. The 19
request is considered successful if there is at least one endpoint for which EP handle is successfully 20
allocated. 21

The EPHandleResp packet carries the fields listed in 22

 23

Table 26 after the management header. 24

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 113

 1

Table 26—EP Handle Response fields 2

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of MA USB EP Descriptors. Indicates the number of MA USB EP
descriptors carried in the EPHandleResp packet. This field is set to the same
value as the Number of EP Descriptors field in the corresponding
EPHandleReq packet.

27 3:5 Reserved.

In addition, the EPHandleResp packet carries one or more MA USB EP descriptors. MA USB EP 3
descriptors are inserted in the same order as the corresponding EP descriptors in the EPHandleReq 4
packet. 5

Table 27 illustrates the format of each MA USB EP descriptor. Each descriptor takes 16 bytes. 6

Table 27—MA USB EP descriptor format 7

Width

(bits)

Offset

(DW:bit)

Description

16 N:0 EP Handle. The handle of the endpoint requested in the EPHandleReq packet.

1 N:16 Direction. Endpoint direction.

 Value Meaning
 0 Control or OUT endpoint
 1 IN endpoint

1 N:17 Isochronous. Indicates an isochronous endpoint.

 Value Meaning
 0 Non-isochronous endpoint
 1 Isochronous endpoint

1 N:18 L-managed. For a control or non-isochronous OUT endpoint, indicates
whether the endpoint can be accessed through an l-managed transfer (in
addition to the mandatory p-managed transfer). The field is reserved for all
other endpoint types.

 Value Meaning
 0 L-managed transfers not supported
 1 L-managed transfers supported

1 N:19 Valid. Indicates whether the handle for the endpoint was successfully allocated
and the handle in the EP Handle field is valid.

 Value Meaning
 0 The handle is valid.
 1 The handle is not valid.

NOTE — If the handle is not valid the EP handle remains in Unassigned state.

12 N:20 Reserved.

16 N+1:0 Credit Consumption Unit (CCU). For a control or non-isochronous OUT
endpoint, the field indicates the buffer size (in bytes) that the MA USB host
must assume as the unit of credit consumption for all p-managed transfers
targeting the endpoint. The field is reserved for all other endpoints.

16 N+1:16 Reserved.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 114

32 N+2:0 Buffer Size. For control and OUT endpoints, the field indicates the buffer size
(in bytes) available to transfers targeting the endpoint. The field is reserved for
IN endpoints.

16 N+3:0 Isochronous Programming Delay. For isochronous endpoints, the field
indicates the maximum time, in microseconds, from the moment the first bit of
an IsochTransferReq packet is received by the MA USB device to the moment
the programming of the first isochronous transfer corresponding to that
IsochTransferReq packet on the local bus is complete. The field is reserved for
non-isochronous endpoints.

NOTE — The value of this field is denoted by

pMaxDeviceIsochINProgDelay for isochronous IN endpoints (Section

5.10.2), and by pMaxDeviceIsochOUTProgDelay for isochronous OUT

endpoints (Section 5.10.3).

16 N+3:16 Isochronous Response Delay. For isochronous endpoints, the field indicates
the maximum time, in microseconds, from the moment the end of the last
Service Interval an isochronous MA USB transfer targets to the moment the
first bit of the last IsochTransferResp packet corresponding to the transfer is
released to the network. The field is reserved for non-isochronous endpoints.

NOTE — The value of this field is denoted by

pMaxDeviceIsochINRespDelay for isochronous IN endpoints (Section

5.10.2), and by pMaxDeviceIsochOUTRespDelay for isochronous OUT

endpoints (Section 5.10.3).

6.3.8 Endpoint Activate Request (EPActivateReq) 1

The Endpoint Activate Request (EPActivateReq) packet is transmitted by the MA USB host to a target 2
MA USB device to change the status of a set of EP handles behind the MA USB device from inactive to 3

active. The Device Handle field carries the handle of the USB device behind the MA USB device the 4
request is targeting. The Type and Subtype fields are set to 0 (Management) and 6 (EPActivateReq), 5
respectively. The Status Code field is set to 0 (NO_ERROR). 6

The EPActivateReq packet carries the fields listed in Table 28 after the management header. 7

Table 28—Endpoint Activate Request fields 8

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles. Number of EP handles included in the packet.

27 3:5 Reserved.

Variable 4:0 EP Handle List. List of EP handles the MA USB host is requesting to
activate, concatenated in 16-bit increments.

6.3.9 Endpoint Activate Response (EPActivateResp) 9

The Endpoint Activate Response (EPActivateResp) packet is transmitted by the target MA USB device 10

to the MA USB host in response to an EPActivateReq packet. The Device Handle field carries the 11
handle of the USB device behind the MA USB device for which the response is being returned. The 12

Type and Subtype fields are set to 0 (Management) and 7 (EPActivateResp), respectively. The Status 13
Code field indicates whether the request was successfully completed. 14

The EPActivateResp packet carries the fields listed in Table 29 after the management header. 15

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 115

Table 29—Endpoint Activate Response fields 1

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles with Error. Number of EP handles whose activation
did not complete. This field is nonzero only if the Status Code field in the
packet carries a value other than SUCCESS (NO_ERROR).

27 3:5 Reserved.

Variable 4:0 EP Handle List. List of EP handles whose activation failed, concatenated in
16-bit increments. The list is empty when all EP handles in the corresponding
EPActivateReq packet were successfully activated. If the Endpoint Activate
Request is executed as an atomic operation then the list may be empty when
the Status Code field is set to Failure.

6.3.10 Endpoint Inactivate Request (EPInactivateReq) 2

The Endpoint Inactivate Request (EPInactivateReq) packet is transmitted by the MA USB host to a 3
target MA USB device to inactivate a set of EP handles under the MA USB device management. The 4
Device Handle field carries the handle of the USB device the request is targeting. The Type and Subtype 5

fields are set to 0 (Management) and 8 (EPInactivateReq), respectively. The Status Code field is set to 0 6
(NO_ERROR). 7

The EPInactivateReq packet carries the fields listed in Table 30 after the management header. 8

Table 30—Endpoint Inactivate Request fields 9

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles. Number of EP handles included in the packet.

1 3:5 Suspend (SP) Flag. Indicates whether the EPInactivateReq is issued due to
suspension of the endpoints for which EP Handles are included.

 Value Meaning
 0 Endpoints not suspended
 1 Endpoints suspended

26 3:6 Reserved.

Variable 4:0 EP Handle List. List of EP handles the MA USB host is requesting to
inactivate, concatenated in 16-bit increments.

NOTE — Endpoint handles may be inactivated for a number of reasons. Examples are inactivating an EP handle 10
prior to deleting the handle, and inactivating an EP handle prior to cancelling a transfer targeting the corresponding 11
endpoint. 12

6.3.11 Endpoint Inactivate Response (EPInactivateResp) 13

The Endpoint Inactivate Response (EPInactivateResp) packet is transmitted by the target MA USB 14

device to the MA USB host in response to an EPInactivateReq packet. The Device Handle field carries 15
the handle of the USB device for which the response is being returned. The Type and Subtype fields are 16
set to 0 (Management) and 9 (EPInactivateResp), respectively. The Status Code field indicates whether 17

the request was successfully completed. 18

The EPInactivateResp packet carries the fields listed in Table 31 after the management header. 19

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 116

Table 31—Endpoint Inactivate Response fields 1

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles with Error. Number of EP handles whose
inactivation did not successfully complete. This field is nonzero only if the
Status Code field in the packet carries a value other than SUCCESS
(NO_ERROR).

27 3:5 Reserved.

Variable 4:0 EP Handle List. List of EP handles whose inactivation failed, concatenated in
16-bit increments. The list is empty when all endpoints specified in the
corresponding EPInactivateReq packet have been successfully inactivated. If
the Endpoint Inactivate Request is executed as an atomic operation then the list
may be empty when the Status Code field is set to Failure. The Endpoint
Inactivate Request is expected to be successfully completed unless the
command is not valid.

6.3.12 Endpoint Reset Request (EPResetReq) 2

The Endpoint Reset Request (EPResetReq) packet is transmitted by the MA USB host to a target MA 3

USB device to change the status of a set of endpoint handles behind the MA USB device from halted to 4
inactive. The Device Handle field carries the handle of the USB device the request is targeting. The 5
Type and Subtype fields are set to 0 (Management) and 10 (EPResetReq), respectively. The Status Code 6

field is set to 0 (NO_ERROR). 7

The EPResetReq packet carries the fields listed in Table 32 after the management header. 8

Table 32—Endpoint Reset Request fields 9

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP reset information blocks. Number of the EP reset information
blocks included in the packet (Table 33).

27 3:5 Reserved.

In addition, each EPResetReq packet carries a set of EP reset information blocks, where the format of 10
each block is shown in Table 33. 11

Table 33—EP reset information block 12

Width

(bits)

Offset

(DW:bit)

Description

16 N:0 EP Handle. The EP handle the MA USB host is requesting to reset.

1 N: 16 Transfer State Preserve (TSP) Flag. Indicates whether the value of the data
toggle bit [USB 2.0] or the sequence number [USB 3.1] shall be preserved for
the endpoint.

 Value Meaning
 0 Value of the data toggle bit [USB 2.0] or sequence number

[USB 3.1] is reset.
 1 Value of the data toggle bit [USB 2.0] or sequence number

[USB 3.1] is preserved.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 117

NOTE — Resetting data toggle [USB 2.0] or sequence number [USB 3.1] of

an endpoint not in a halted state, requires the MA USB host to first inactivate

the endpoint if the endpoint handle is in Active State (using EPInactivateReq

packet), then delete the handle of the endpoint (using EPHandleDeleteReq

packet), and then request a new endpoint handle with the original EP

descriptor (using EPHandleReq packet).

IMPLEMENTATION NOTE — If the value of this field is 0, the USB

controller hardware should invalidate any cached Transfer Descriptors and

fetch the next Transfer Request Block when endpoint transits from stopped to

running state. If the value of this field is 1, the USB controller hardware

should retry last transaction once the endpoint is transitioned from stopped to

running state, providing that no other commands were performed on the

endpoint.

15 N:17 Reserved.

6.3.13 Endpoint Reset Response (EPResetResp) 1

The Endpoint Reset Response (EPResetResp) packet is transmitted by the target MA USB device to the 2
MA USB host in response to an EPResetResp packet. The Device Handle field carries the handle of the 3

USB device for which the response is being returned. The Type and Subtype fields are set to 0 4
(Management) and 11 (EPResetResp), respectively. The Status Code field indicates whether the request 5
was successfully completed. 6

The EPResetResp packet carries the fields listed in Table 34 after the management header. 7

Table 34—Endpoint Reset Response fields 8

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles with Error. Number of EP handles whose reset did
not successfully complete. This field is nonzero only if the Status Code field in
the packet carries a value other than SUCCESS (NO_ERROR).

27 3:5 Reserved.

Variable 4:0 EP Handle List. EP handles whose reset failed, concatenated in 16-bit
increments. The list is empty when all EP handles in the corresponding
EPResetReq packet were successfully reset. If the Endpoint Reset Request is
executed as an atomic operation then the list may be empty when the Status
Code field is set to Failure.

6.3.14 Clear Transfers Request (ClearTransfersReq) 9

The Clear Transfers Request (ClearTransfersReq) packet is transmitted by the MA USB host to a target 10
MA USB device to clear all outstanding transfers targeted at a set of endpoints behind the MA USB 11

device. The Device Handle field carries the handle of the USB device the request is targeting. The Type 12
and Subtype fields are set to 0 (Management) and 12 (ClearTransfersReq), respectively. The Status 13
Code field is set to 0 (NO_ERROR). ClearTransfersReq packet carries the fields listed in Table 35 after 14

the management header. 15

Table 35—Clear Transfers Request fields 16

Width

(bits)

Offset

(DW:bit)

Description

8 3:0 Number of clear transfers information blocks. Number of clear transfers
information blocks (Table 36) included in the packet.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 118

NOTE — The MA USB host may be required to limit the number of clear

transfers information blocks included in the packet streams to meet the MA

link MTU size.

24 3:8 Reserved.

In addition, each ClearTransfersReq packet carries a set of clear transfer Information blocks; the format 1
of each block is shown in Table 36. 2

Table 36—Clear transfers information block 3

Width

(bits)

Offset

(DW:bit)

Description

16 N:0 EP Handle. The Endpoint Handle the request is targeting.

16 N:16 Stream ID. Indicates the target stream when the target endpoint is an
Enhanced SuperSpeed bulk endpoint that supports the Enhanced SuperSpeed
Stream Protocol; reserved otherwise.

8 N+1:0 Start Request ID. Indicates the value of the Request ID that MA USB host
uses following the ClearTransfersReq packet, which is not the target of this
request; i.e., The ClearTransfersReq targets all the transfers carrying a
preceding request ID values. The scope of cancellation are transfers carrying
Request IDs less than Start Request ID. A transfer with Request ID set to Start
Request ID or larger is not in the scope of cancellation. .

24 N+1:8 Reserved.

6.3.15 Clear Transfers Response (ClearTransfersResp) 4

The Clear Transfers Response (ClearTransfersResp) packet is transmitted by the target MA USB device 5
to the MA USB host in response to a ClearTransfersReq packet. The Device Handle field carries the 6
handle of the USB device for which the response is being returned. The Type and Subtype fields are set 7

to 0 (Management) and 13 (ClearTransfersResp), respectively. The Status Code field indicates whether 8
the request was successfully completed. 9

ClearTransfersResp packet carries the fields listed in Table 37 after the management header. 10

Table 37—Clear Transfers Response fields 11

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of cancel transfers status blocks. Number of cancel transfers status
blocks included in the packet (Table 38). The number of cancel transfers status
blocks shall be equal to the value of Number of cancel transfers information
blocks field in the corresponding ClearTransfersReq packet.

27 3:5 Reserved.

In addition, each ClearTransfersResp packet carries a set of cancel transfers status blocks; the format of 12

each block is shown in Table 38. 13

Table 38— Cancel transfers status block 14

Width

(bits)

Offset

(DW:bit)

Description

16 N:0 EP Handle. Indicates the endpoint for which the status is being returned.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 119

16 N:16 Stream ID. Indicates the stream to which the response is related when the
endpoint identified in the EP Handle field is an Enhanced SuperSpeed bulk
endpoint that supports the Enhanced SuperSpeed Stream Protocol; reserved
otherwise.

1 N+1:0 Cancellation Status. Set to 1 if the request was successfully completed for
the transfers identified by the EP Handle, Stream ID, and Start Request ID of
the corresponding request or the Status Code field is set to SUCCESS. Set to 0
otherwise.

1 N+1:1 Partial Delivery. Set to 1 if the last cancelled transfer was not completed, i.e.,
some (but not all) data related to the transfer was moved to/from the device
before its cancellation.

30 N+1:2 Reserved.

8 N+2:0 Last Request ID. Indicates the value of the Request ID field in the last
TransferResp packet created by the MA USB Device.

24 N+2:8 Delivered Sequence Number. For an OUT transfer, indicates the last
sequence number delivered to the device. Valid if Partial Delivery field is set
to 1 and reserved otherwise. Reserved for IN transfers.

32 N+3:0 Delivered Byte Offset. Indicates the total amount of data related to the
transfer delivered to the device identified by the sequence number value in the
Delivered Sequence Number field. Valid if partial delivery field is set to 1 and
reserved otherwise. Reserved for IN transfers.

6.3.16 Endpoint Handle Delete Request (EPHandleDeleteReq) 1

The Endpoint Handle Delete Request (EPHandleDeleteReq) packet is transmitted by the MA USB host 2
to a target MA USB device to delete the handles of a set of endpoints behind the MA USB device. The 3

Device Handle field carries the handle of the USB device the request is targeting. The Type and Subtype 4
fields are set to 0 (Management) and 14 (EPHandleDeleteReq), respectively. The Status Code field is set 5
to 0 (NO_ERROR). 6

The EPHandleDeleteReq packet carries the fields listed in Table 39 after the management header. 7

Table 39—Endpoint Handle Delete Request fields 8

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles. Number of EP handles included in the packet.

27 3:5 Reserved.

Variable 4:0 EP Handle List. List of EP handles the MA USB host is requesting to delete,
concatenated in 16-bit increments.

6.3.17 Endpoint Handle Delete Response (EPHandleDeleteResp) 9

The Endpoint Handle Delete Response (EPHandleDeleteResp) packet is transmitted by the target MA 10

USB device to the MA USB host in response to an EPHandleDeleteReq packet. The Device Handle 11
field carries the handle of the USB device for which the response is being returned. The Type and 12

Subtype fields are set to 0 (Management) and 15 (EPHandleDeleteResp), respectively. The Status Code 13
field indicates whether the request was successfully completed. 14

The EPHandleDeleteResp packet carries the fields listed in Table 40 after the management header. 15

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 120

Table 40—Endpoint Handle Delete Response fields 1

Width

(bits)

Offset

(DW:bit)

Description

5 3:0 Number of EP Handles with Error. Number of EP handles that could not be
deleted. This field is nonzero only if the Status Code field in the packet carries
a value other than SUCCESS (NO_ERROR).

27 3:5 Reserved.

Variable 4:0 EP Handle List. List of EP handles that could not be deleted, concatenated in
16-bit increments. The list is empty when all EP handles in the corresponding
EPHandleDeleteReq packet were successfully deleted. If the Endpoint Handle
Delete Request is executed as an atomic operation then the list may be empty
when the Status Code field is set to Failure.

6.3.18 MA USB Device Reset Request (DevResetReq) 2

The MA USB Device Reset Request (DevResetReq) packet is transmitted by the MA USB host to a 3
target MA USB device to clear all of the MA USB device state. The Device Handle and Dialog Token 4
fields are reserved. The Type and Subtype fields are set to 0 (Management) and 16 (DevResetReq), 5

respectively. The Status Code field is set to 0 (NO_ERROR). 6

6.3.19 MA USB Device Reset Response (DevResetResp) 7

The MA USB Device Reset Response (DevResetResp) packet is transmitted by a target MA USB device 8

to the MA USB host in response to a DevResetReq packet. The Device Handle and Dialog Token fields 9
are reserved. The Type and Subtype fields are set to 0 (Management) and 17 (DevResetResp), 10

respectively. The Status Code field indicates whether the request was successfully completed. 11

6.3.20 Modify EP0 Request (ModifyEP0Req) 12

The Modify EP0 Request (ModifyEp0Req) packet is transmitted by the MA USB host to a target MA 13

USB device to modify the default endpoint parameters and/or request an updated EP0 handle. The 14
Device Handle field carries the handle of the USB device the request is targeting. The Type and Subtype 15

fields are set to 0 (Management) and 18 (ModifyEP0Req), respectively. The Status Code field is set to 0 16
(NO_ERROR). 17

The ModifyEP0Req packet carries the fields listed in Table 41 after the management header. 18

Table 41—Modify EP0 Request fields 19

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 EP0 Handle. EP0 handle of the USB device identified by the Device Handle
field.

16 3:16 Max Packet Size. Updated value of the maximum packet size for EP0 handle,
in bytes.

6.3.21 Modify EP0 Response (ModifyEP0Resp) 20

The Modify EP0 Response (ModifyEP0Resp) packet is transmitted by the target MA USB device to the 21

MA USB host in response to a ModifyEP0Req packet. The Device Handle field carries the handle of the 22
USB device for which the response is being returned. The Type and Subtype fields are set to 0 23

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 121

(Management) and 19 (ModifyEP0Resp), respectively. The Status Code field indicates whether the 1
request was successfully completed. 2

The ModifyEP0Resp packet carries the fields listed in Table 42 after the management header. 3

Table 42—Modify EP0 Response fields 4

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 EP0 Handle. Present only in the following cases:

a) The USB Address subfield of the EP0 Handle field in the corresponding
ModifyEP0Req packet is set to 0, and the USB device identified by the Device
Handle field is in the addressed state [USB 2.0]. The EP0 Handle field
contains the EP0 handle of the USB device with a nonzero USB Address
subfield.

b) The USB Address subfield of the EP0 Handle field in the corresponding
ModifyEP0Req packet is not 0, and the USB device identified by the Device
Handle field is in Default state [USB 2.0]. The EP0 Handle field contains the
EP0 handle of the USB device with a USB Address subfield set to 0.

16 3:16 Reserved.

6.3.22 Set USB Device Address Request (SetUSBDevAddrReq) 5

The Set USB Device Address Request (SetUSBDevAddrReq) packet is transmitted by the MA USB 6
host to a target MA USB device to set the USB address of a USB device. The Device Handle field 7

carries the handle of the USB device the request is targeting. The Type and Subtype fields are set to 0 8
(Management) and 20 (SetUSBDevAddrReq), respectively. The Status Code field is set to 0 9
(NO_ERROR). 10

The SetUSBDevAddrReq packet carries the fields listed in Table 43 after the management header. 11

Table 43—Set USB Device Address Request fields 12

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Response Timeout. The duration in milliseconds by which the USB device is
expected to respond to the USB Address Device command. If no response is
received from the USB device in the expected response time the MA USB
device shall respond to the SetUSBDevAddrReq with status code set to
UNSUCCESSFUL.

16 3:16 Reserved.

6.3.23 Set USB Device Address Response (SetUSBDevAddrResp) 13

The Set Device USB Address Response (SetUSBDevAddrResp) packet is transmitted by the target MA 14
USB device to the MA USB host in response to a SetUSBDevAddrReq packet. The Device Handle field 15
carries the handle of the USB device for which the response is being returned. The Type and Subtype 16

fields are set to 0 (Management) and 21 (SetUSBDevAddrResp), respectively. The Status Code field 17
indicates whether the request was successfully completed. 18

The SetUSBDevAddrResp packet carries the fields listed in Table 44 after the management header. 19

Table 44—Set USB Device Address Response fields 20

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 122

Width

(bits)

Offset

(DW:bit)

Description

7 3:0 USB Device Address. The USB address of the USB device requested in
SetUSBDevAddrReq packet.

25 3:7 Reserved.

6.3.24 Update Device Request (UpdateDevReq) 1

The Update Device Request (UpdateDevReq) packet is transmitted by the MA USB host to a target MA 2

USB device to modify the device parameters of a USB device. The Device Handle field carries the 3
handle of the USB device the request is targeting. The Type and Subtype fields are set to 0 4

(Management) and 22 (UpdateDevReq), respectively. The Status Code field is set to 0 (NO_ERROR). 5

The UpdateDevReq packet carries the fields listed in Table 45 after the management header. 6

Table 45—Update Device Request fields 7

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Max Exit Latency. The worst case exit latency for the links and hubs between
the target USB device and the integrated USB hub on the MA USB hub. The
latency associated with the integrated USB hub is included in the value of the
Max Exit Latency field if the Integrated Hub Latency field is set to 1, and is
excluded otherwise. See [USB 3.1] for a description of how to calculate the
Maximum Exit Latency. Set to 0 if the integrated USB device is not a hub.

1 3:16 Hub. Indicates whether the USB device is a hub.

 Value Description
 0 Not a hub
 1 Hub

4 3:17 Number of Ports. Number of downstream facing ports of the USB device if
the USB device is a hub. Reserved otherwise.

1 3:21 MTT (Multiple Transaction Translators). Set to 1 for an HS hub that has
Multiple Transaction Translators (TTs) enabled by software and set to 0
otherwise. See [USB 2.0] for details.

2 3:22 TTT (Transaction Translator Think Time). Time required by an HS hub to
proceed to the next FS/LS transaction. Reserved if the target USB device is not
an HS hub.

 Value Description
 0 TT requires at most 8 FS bit times of inter-transaction gap on

an LS or FS downstream bus.
 1 TT requires at most 16 FS bit times.
 2 TT requires at most 24 FS bit times.
 3 TT requires at most 32 FS bit times.

1 3:24 Integrated Hub Latency. If the USB device is a hub indicates whether the
latency associated with the integrated hub is included in the value of Max Exit
Latency field. Reserved if the USB device is not a hub.

 Value Description
 0 Integrated hub latency excluded.
 1 Integrated hub latency included.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 123

NOTE — The MA USB device is expected to be aware of the value of the

integrated hub latency.

7 3:25 Reserved.

In addition, the UpdateDevReq packet carries the device descriptor. 1

Table 46 illustrates the format of the device descriptor of the target USB device. The descriptor takes 18 2
bytes. 3

Table 46—Device descriptor 4

Width

(bytes)

Offset

(DW:bit)

Description

18 4:0 Standard device descriptor, as defined in [USB 2.0] and [USB 3.1].

2 8:16 Reserved.

6.3.25 Update Device Response (UpdateDevResp) 5

The Update Device Response (UpdateDevResp) packet is transmitted by the target MA USB device to 6
the MA USB host in response to an UpdateDevReq packet. The Device Handle field carries the handle 7
of the USB device for which the response is being returned. The Type and Subtype fields are set to 0 8

(Management) and 23 (UpdateDevResp), respectively. The Status Code field indicates whether the 9
request was successfully completed. 10

6.3.26 USB Device Disconnect Request (USBDevDisconnectReq) 11

The USB Device Disconnect Request (USBDevDisconnectReq) packet is transmitted by the MA USB 12
host to a target MA USB device to clear the MA USB state of a USB device. The Device Handle field 13

carries the handle of the USB device the request is targeting. The Type and Subtype fields are set to 0 14
(Management) and 24 (USBDevDisconnectReq), respectively. The Status Code field is set to 0 15
(NO_ERROR). 16

6.3.27 USB Device Disconnect Response (USBDevDisconnectResp) 17

The USB Device Disconnect Response (USBDevDisconnectResp) packet is transmitted by the target 18

MA USB device to the MA USB host in response to a USBDevDisconnectReq packet. The Device 19
Handle field carries the handle of the USB device for which the response is being returned. The Type 20
and Subtype fields are set to 0 (Management) and 25 (USBDevDisconnectResp), respectively. The 21

Status Code field indicates whether the request was successfully completed. Successful completion of 22
the request results in the device handle of the target USB device becoming invalid. 23

6.3.28 USB Suspend Request (USBSuspendReq) 24

The USB Suspend Request (USBSuspendReq) packet is transmitted by the MA USB host to a target 25
MA USB device to request the integrated USB device behind the MA USB device PAL to move to the 26

Suspend state. The Device Handle field identifies the integrated USB device the request is targeting. The 27
Type and Subtype fields are set to 0 (Management) and 26 (USBSuspendReq), respectively. The Status 28
Code value is set to 0 (NO_ERROR). 29

6.3.29 USB Suspend Response (USBSuspendResp) 30

The USB Suspend Response (USBSuspendResp) packet is transmitted by the target MA USB device to 31

the MA USB host in response to a USBSuspendReq packet. The Device Handle field carries the same 32
value as the Device Handle field in the corresponding USBSuspendReq packet. The Type and Subtype 33

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 124

fields are set to 0 (Management) and 27 (USBSuspendResp), respectively. The Status Code value 1
indicates whether the request was successfully completed. 2

6.3.30 USB Resume Request (USBResumeReq) 3

The USB Resume Request (USBResumeReq) packet is transmitted by the MA USB host to a target MA 4

USB device to request the integrated USB device behind the MA USB device PAL to move out of the 5
Suspend state. The Device Handle field identifies the integrated USB device behind the MA USB device 6
PAL the request is targeting. The Type and Subtype fields are set to 0 (Management) and 28 7

(USBResumeReq), respectively. The Status Code field is set to 0 (NO_ERROR). 8

6.3.31 USB Resume Response (USBResumeResp) 9

The USB Resume Response (USBResumeResp) packet is transmitted by the target MA USB device to 10

the MA USB host in response to a USBResumeReq packet. The Device Handle field carries the same 11
value as the Device Handle field in the corresponding USBResumeReq packet. The Type and Subtype 12

fields are set to 0 (Management) and 29 (USBResumeResp), respectively. The Status Code field 13
indicates whether the request was successfully completed. 14

6.3.32 Remote Wake Request (RemoteWakeReq) 15

If the remote wake mechanism is supported, the MA USB Remote Wake Request (RemoteWakeReq) 16
packet is transmitted by the MA USB device to the MA USB host to request the MA USB host to 17

resume communication with the integrated USB device. The Device Handle field carries the handle of 18
the integrated USB device the request is targeting. The Type and Subtype fields are set to 0 19
(Management) and 30 (RemoteWakeReq), respectively. The Status Code field is set to 0 (NO_ERROR). 20

The RemoteWakeReq packet carries the fields listed in Table 47 after the management header. 21

 22

Table 47—Remote Wake Request fields 23

Width

(bits)

Offset

(DW:bit)

Description

1 3:0 USB Device Resumed. Indicates whether the USB device initiating the remote
wake request is already resumed and ready to receive USB control packets or
the MA USB device PAL expects a USB Device Resume Request packet to
resume the USB device.

 Value Meaning
 0 The USB device is in Suspend state
 1 The USB device is not in Suspend state

31 3:1 Reserved.

6.3.33 Remote Wake Response (RemoteWakeResp) 24

The Remote Wake Response (RemoteWakeResp) packet is transmitted by the MA USB host to the 25
target MA USB device in response to a RemoteWakeReq packet. The Device Handle field carries the 26
handle of the USB device for which the response is being returned. The Type and Subtype fields are set 27

to 0 (Management) and 31 (RemoteWakeResp), respectively. The Status Code field indicates whether 28
the request was successfully completed. 29

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 125

6.3.34 Ping Request (PingReq) 1

The Ping Request (PingReq) packet is transmitted by the MA USB host or the MA USB device to verify 2

or possibly re-establish network connectivity with a target MA USB device. The Device Address field is 3
set to the address of the target MA USB device, or to 0xFF (any device). The Device Handle field is 4

reserved. The Type and Subtype fields are set to 0 (Management) and 32 (PingReq), respectively. The 5
Status Code field is set to 0 (NO_ERROR). 6

6.3.35 Ping Response (PingResp) 7

The Ping Response (PingResp) packet is transmitted by the MA USB device or the MA USB host in 8
response to a PingReq packet. The Device Handle field is reserved. The Type and Subtype fields are set 9
to 0 (Management) and 33 (PingResp), respectively. The Status Code field is set to 0 (NO_ERROR). 10

6.3.36 MA USB Device Disconnect Request (DevDisconnectReq) 11

The MA USB Device Disconnect Request (DevDisconnectReq) packet is transmitted by the MA USB 12

host to a target MA USB device to initiate transition to Session Down state. The Device Handle field is 13
reserved. The Type and Subtype fields are set to 0 (Management) and 34 (DevDisconnectReq), 14
respectively. The Status Code field is set to 0 (NO_ERROR). 15

6.3.37 MA USB Device Disconnect Response (DevDisconnectResp) 16

The MA USB Device Disconnect Response (DevDisconnectResp) packet is transmitted by the target 17
MA USB device to the MA USB host in response to a DevDisconnectReq packet. The Device Handle 18

field is reserved. The Type and Subtype fields are set to 0 (Management) and 35 (DevDisconnectResp), 19
respectively. The Status Code field indicates whether the request was successfully completed. 20

6.3.38 MA USB device Initiated Disconnect Request (DevInitDisconnectReq) 21

The MA USB device Initiated Disconnect Request (DevInitDisconnectReq) packet is transmitted by the 22
MA USB device to initiate the MA USB host to transition to Session Down state. The Device Handle 23

field is reserved. The Type and Subtype fields are set to 0 (Management) and 36 24
(DevInitDisconnectReq), respectively. The Status Code field is set to 0 (NO_ERROR). 25

6.3.39 MA USB device Initiated Disconnect Response (DevInitDisconnectResp) 26

The MA USB device Initiated Disconnect Response (DevInitDisconnectResp) packet is transmitted by 27
the MA USB host to the target MA USB device in response to a DevInitDisconnectReq packet. The 28

Device Handle field is reserved. The Type and Subtype fields are set to 0 (Management) and 37 29
(DevInitDisconnectResp), respectively. The Status Code field indicates whether the request was 30
successfully completed. 31

6.3.40 Synchronization Request (SynchReq) 32

The Synchronization Request (SynchReq) packet is transmitted by the MA USB host to a target MA 33

USB device or to all MA USB devices in an MSS to deliver the MGT. The Device Handle and Dialog 34
Token fields are reserved. The Type and Subtype fields are set to 0 (Management) and 38 (SynchReq), 35
respectively. The Status Code field is set to 0 (NO_ERROR). The SynchReq packet carries the fields 36

listed in Table 48 after the management header. 37

Table 48—Synchronization Request fields 38

Width

(bits)

Offset

(DW:bit)

Description

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 126

1 3:0 MTD Valid. Defined in Section 6.5.1.8 (Table 66).

1 3:1 Response Required. Set to 1 if a SynchResp packet is required.

NOTE — For broadcast SynchReq packets that have this field set to1, only

MA USB devices that have requested to receive MA USB timestamps are

required to respond.

30 3:2 Reserved.

32 4:0 MA USB Timestamp. Defined in Section 6.5.1.11.

32 5:0 Media Time/Transmission Delay. Defined in Section 6.5.1.12.

6.3.41 Synchronization Response (SynchResp) 1

The Synchronization Response (SynchResp) packet is transmitted by the target MA USB device to the 2
MA USB host in response to a SynchReq packet with unicast Device Address. An MA USB device may 3
also transmit a SynchResp packet to the MA USB host in response to a SynchReq packet with broadcast 4

Device Address. The Device Handle and Dialog Token fields are reserved. The Type and Subtype fields 5
are set to 0 (Management) and 39 (SynchResp), respectively. The Status Code field is set to SUCCESS. 6

The SynchResp packet carries the same fields as SynchReq packet (Table 48) after the management 7
header, except that the Response Required field is reserved and the MA USB Timestamp field carries 8
the MA USB Global Time at the target MA USB device at the moment the field is initialized. 9

NOTE — After transmitting a SynchReq packet with broadcast Device Address, the MA USB host may receive a 10
number of SynchResp packets ranging from 0 to the number of MA USB devices in the MA USB Service Set. 11

NOTE — The latency compensation method for the MGT reading in a SynchResp packet is the same as the method 12
used for the SynchReq packet that triggered the response. 13

6.3.42 Cancel Transfer Request (CancelTransferReq) 14

The Cancel Transfer Request (CancelTransferReq) packet is transmitted by the MA USB host to request 15

cancellation of a transfer. The Device Handle field carries the handle of the USB device the request is 16
targeting. The Type and Subtype fields are set to 0 (Management) and 40 (CancelTransferReq), 17

respectively. The Status Code field is set to 0 (NO_ERROR). The Dialog Token field is reserved. 18

The CancelTransferReq packet carries the fields listed in Table 49 after the management header. 19

Table 49—Cancel Transfer Request fields 20

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 EP Handle. Indicates the endpoint the request is targeting.

16 3:16 Stream ID. Indicates the target stream when the target endpoint is an

Enhanced SuperSpeed bulk endpoint that supports the Enhanced
SuperSpeed Stream Protocol; reserved otherwise.

8 4:0 Request ID. Indicates the target request.

24 4:8 Reserved.

6.3.43 Cancel Transfer Response (CancelTransferResp) 21

The Cancel Transfer Response (CancelTransferResp) packet is transmitted by the MA USB device in 22
response to a CancelTransferReq packet. The Device Handle field carries the handle of the USB device 23
for which the response is being returned. The Type and Subtype fields are set to 0 (Management) and 41 24

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 127

(CancelTransferResp), respectively. The Status Code field indicates whether the request was 1
successfully completed. The Dialog Token field is reserved. 2

The CancelTransferResp packet carries the fields listed in Table 50 after the management header. 3

Table 50—Cancel Transfer Response fields 4

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 EP Handle. Indicates the endpoint for which the response is being returned.

16 3:16 Stream ID. Indicates the stream to which the response is related when the

endpoint identified in the EP Handle field is an Enhanced SuperSpeed
bulk endpoint that supports the Enhanced SuperSpeed Stream Protocol;
reserved otherwise.

8 4:0 Request ID. Indicates the request for which the response is being returned.

3 4:8 Cancellation Status. Set to 0 if the Status Code field is not set to SUCCESS.
Set to 1 if the transfer was cancelled before any data was moved to/from the
USB device. Set to 2 if the transfer was cancelled after some data was moved
to/from the USB device. Set to 3 if the transfer was completed. Set to 4 if the
transfer was not yet received. Set to 5 if the transfer was cleared without any
data moved during ClearTransfersReq processing.

21 4:11 Reserved.

24 5:0 Delivered Sequence Number. For an OUT transfer, indicates the last
sequence number delivered to the device. Valid if Cancellation Status field is
set to 2 and reserved otherwise. Reserved for IN transfers.

8 5:24 Reserved.

32 6:0 Delivered Byte Offset. Indicates the amount of data identified by the sequence
number value in the Delivered Sequence Number field delivered to the device.
Valid if Cancellation Status field is set to 2 and reserved otherwise. Reserved
for IN transfers.

6.3.44 Endpoint Open Stream Request (EPOpenStreamReq) 5

The Endpoint Open Stream Request (EPOpenStreamReq) packet is transmitted by the MA USB host to 6
a target MA USB device to open streams on an Enhanced SuperSpeed bulk endpoint on a USB device 7
behind the MA USB device. The Device Handle field carries the handle of the USB device the request is 8

targeting. The Type and Subtype fields are set to 0 (Management) and 42 (EPOpenStreamReq), 9
respectively. The Status Code field is set to 0 (NO_ERROR). 10

The EPOpenStreamReq packet carries the fields listed in Table 51 after the management header. 11

Table 51—Endpoint Open Streams Request fields 12

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 EP Handle. Indicates the Enhanced SuperSpeed bulk endpoint the request is
targeting.

16 3:16 Number of Streams. Indicates the number of streams to be opened for the
target endpoint.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 128

16 4:0 Stream ID Index. Indicates the lower bound for the stream IDs the MA USB
host is retrieving, if the value of Open Stream field is set to 0. Reserved
otherwise.

1 4:16 Allocation mode. Indicates the rules associated with allocation of stream IDs;
may be set to 1 only if the number of streams is less than 256.

 Value Meaning
 0 The allocation of stream IDs is free of rules.
 1 The allocation of stream IDs shall be sequential and start at 1.

1 4:17 Open Stream. Indicates whether the request is to open new streams or retrieve
previously opened streams.

 Value Meaning
 0 The request is to retrieve stream IDs of previously opened

streams
 1 The request is to open new streams

14 4:18 Reserved.

6.3.45 Endpoint Open Stream Response (EPOpenStreamResp) 1

The Endpoint Open Stream Response (EPOpenStreamResp) packet is transmitted by the target MA USB 2
device to the MA USB host in response to an EPOpenStreamReq packet. The Device Handle field 3

carries the handle of the USB device for which the response is being returned. The Type and Subtype 4
fields are set to 0 (Management) 43 (EPOpenStreamResp), respectively. The Status Code field indicates 5

whether the request was successfully completed. 6

The EPOpenStreamResp packet carries the fields listed in Table 52 after the management header. 7

Table 52—Endpoint Open Stream Response fields 8

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Number of Streams. Indicates the number of streams that are included in the
packet. If the Status Code field in the packet carries a value indicating
SUCCESS (NO_ERROR) this field shall carry a value less than or equal to the
value of the Number of Streams field in the corresponding EPOpenStreamReq
packet.

NOTE — The number of streams that are included in the packet may be less than

the number requested in the EPOpenStreamReq packet to meet the MA link MTU

size. An MA USB host that receives a smaller number of Stream IDs than it asked

for may transmit additional EPOpenStreamReq packets with updated Number of

Streams field to receive additional Stream IDs.

16 3:16 Number of stream ID blocks. Indicates the number of stream ID blocks

included in this packet.

In addition, each EPOpenStreamResp packet carries a set of stream ID interval blocks. Each block 9
identifies a range of consecutive stream IDs. The format of each block is shown in Table 53. The stream 10
ID interval blocks shall be included in the increasing order of the stream ID values. 11

Table 53—Stream ID interval block 12

Width

(bits)

Offset

(DW:bit)

Description

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 129

16 N:0 First Stream ID. Indicates the value of the first stream ID in the interval
block.

16 N:16 Last Stream ID. Indicates the value of the last stream ID in the interval block.
If the values of the Last Stream ID and First Stream ID fields are equal there is
only one Stream ID identified in the block.

6.3.46 Endpoint Close Stream Request (EPCloseStreamReq) 1

The Endpoint Close Stream Request (EPCloseStreamReq) packet is transmitted by the MA USB host to 2
a target MA USB device to close streams on an Enhanced SuperSpeed bulk endpoint on a USB device 3
under the MA USB device management. The Device Handle field carries the handle of the USB device 4

the request is targeting. The Type and Subtype fields are set to 0 (Management) and 44 5
(EPCloseStreamReq), respectively. The Status Code field is set to 0 (NO_ERROR). 6

The EPCloseStreamReq packet carries the fields listed in Table 54 after the management header. 7

Table 54—Endpoint Close Stream Request fields 8

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 EP Handle . Indicates the Enhanced SuperSpeed bulk endpoint the request is
targeting.

1 3:16 Close All. Indicates whether the request targets all the open streams.

 Value Meaning

 0 The request is for a subset of the open streams.
 1 The request is for all of the open streams.

15 3:17 Reserved.

16 4:0 Number of stream ID blocks. Indicates the number of stream ID blocks

included in this packet. Set to 0 if the Close All field is set to 1.

16 4:16 Reserved.

In addition, each EPCloseStreamResp packet may carry a set of stream ID interval blocks. Each block 9
identifies a range of consecutive stream IDs. The format of each block is shown in Table 53. 10

6.3.47 Endpoint Close Stream Response (EPCloseStreamResp) 11

The Endpoint Close Stream Response (EPCloseStreamResp) packet is transmitted by the target MA 12
USB device to the MA USB host in response to an EPCloseStreamReq packet. The Device Handle field 13

carries the handle of the USB device for which the response is being returned. The Type and Subtype 14
fields are set to 0 (Management) and 45 (EPCloseStreamResp), respectively. The Status Code field 15

indicates whether the request was successfully completed. 16

6.3.48 USB Device Reset Request (USBDevResetReq) 17

The USB Device Reset Request (USBDevResetReq) packet is transmitted by the MA USB host to a 18

target MA USB device to request reset of the integrated USB device, or in case of an MA USB hub, to 19
inform the MA USB hub of the reset of a downstream USB device (as defined in Section 7.3.5). The 20

Device Handle field carries the handle of the USB device the request is targeting. The Type and Subtype 21
fields are set to 0 (Management) and 46 (USBDevResetReq), respectively. The Status Code field is set 22
to 0 (NO_ERROR). 23

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 130

6.3.49 USB Device Reset Response (USBDevResetResp) 1

The USB Device Reset Response (USBDevResetResp) packet is transmitted by the target MA USB 2

device to the MA USB host in response to a USBDevResetReq packet. The Device Handle field carries 3
the handle of the USB device for which the response is being returned. The Type and Subtype fields are 4

set to 0 (Management) 47 (USBDevResetResp), respectively. The Status Code field indicates whether 5
the request was successfully completed. 6

6.3.50 Device Notification Request (DevNotificationReq) 7

The Device Notification Request (DevNotificationReq) packet is transmitted by the MA USB device to 8
the MA USB host to carry USB defined device notifications [USB 3.1]. The Device Handle field carries 9
the handle of the USB device that is issuing the notification. The Type and Subtype fields are set to 0 10

(Management) and 48 (DevNotificationReq), respectively. The Status Code field is set to 0 11
(NO_ERROR). 12

The DevNotificationReq packet carries the fields listed in Table 55 after the management header. 13

Table 55—Device Notification Request fields 14

Width

(bits)

Offset

(DW:bit)

Description

4 3:0 Reserved

4 3:4 Notification Type. The field identifies the type of the device notification.
Refer to Section 8.5.6 of [USB3.1].

56 3:8 Notification Type Specific Data. The field carries payload dependent on
Notification Type. Refer to section 8.5.6 of [USB3.1].

6.3.51 Device Notification Response (DevNotificationResp) 15

The Device Notification Response (DevNotificationResp) packet is transmitted by the MA USB host to 16

the target MA USB device in response to a DevNotificationReq packet. The Device Handle field carries 17
the handle of the USB device for which the response is being returned. The Type and Subtype fields are 18
set to 0 (Management) and 49 (DevNotificationResp), respectively. The Status Code field indicates 19

whether the request was successfully completed. 20

6.3.52 Endpoint Set Keep-Alive Request (EPSetKeepAliveReq) 21

The Endpoint Set Keep-Alive Request (EPSetKeepAliveReq) packet is transmitted by an MA USB 22

device to the MA USB host to set the keep-alive duration for an endpoint in units of 23
aTransferKeepAlive. This keep-alive determines the time that the host shall hold-off resending a 24

TransferReq for which the device has already sent a TransferResp with status code 25
TRANSFER_PENDING. The Device Handle field carries the handle of the USB device behind the MA 26
USB device the request is targeting. The Type and Subtype fields are set to 0 (Management) and 50 27

(EPSetKeepAliveReq), respectively. The Status Code field is set to 0 (NO_ERROR). 28

The EPSetKeepAliveReq packet carries the fields listed in Table 56 after the management header. 29

Table 56—Endpoint Set Keep-Alive Request fields 30

Width

(bits)

Offset

(DW:bit)

Description

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 131

16 3:0 Keep-alive duration. The duration of the keep-alive measured in units of
aTransferKeepAlive. If this value is 0 the keep-alive is reset to the default
value aDefaultKeepAliveDuration.

16 3:16 EP Handle. Indicates the endpoint the request is targeting.

6.3.53 Endpoint Set Keep-Alive Response (EPSetKeepAliveResp) 1

The Endpoint Set Keep-Alive Response (EPSetKeepAliveResp) packet is transmitted by the MA USB 2
host to an MA USB device in response to an EPSetKeepAliveReq packet. The Device Handle field 3

carries the handle of the USB device behind the MA USB device for which the response is being 4
returned. The Type and Subtype fields are set to 0 (Management) and 51 (EPSetKeepAliveResp), 5
respectively. The Status Code field indicates whether the request was successfully completed. 6

The EPSetKeepAliveResp packet carries the fields listed in Table 57 after the management header. 7

Table 57—Endpoint Set Keep-Alive Response fields 8

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Old Keep-alive Duration. The previous value of the keep-alive measured in
units of aTransferKeepAlive.

8 3:16 Start Request ID. The Request ID at which the new keep-alive duration will
take effect.

8 3:24 Reserved.

16 4:0 Stream ID. Indicates the stream to which the response is related when the
endpoint identified in the corresponding EPSetKeepAliveReq packet is an
Enhanced SuperSpeed bulk endpoint that supports the Enhanced SuperSpeed
Stream Protocol; reserved otherwise.

16 4:16 EPHandle. Indicates the endpoint to which the response is related.

6.3.54 Get Port Bandwidth Request (GetPortBWReq) 9

The Get Port Bandwidth Request (GetPortBWReq) packet is transmitted by the MA USB host to a target 10
MA USB hub to retrieve the percentage of the periodic bandwidth available on each port of a USB hub 11

integrated into or downstream of the MA USB hub. The Device Handle field carries the handle of the 12
USB hub the request is targeting. 13

The Type and Subtype fields are set to 0 (Management) and 52 (GetPortBWReq), respectively. The 14
Status Code field is set to 0 (NO_ERROR). 15

Support of GetPortBWReq packet by the MA USB host and by the MA USB hub is optional. MA USB 16

host shall not transmit a GetPortBWReq packet to MA USB devices. MA USB host shall not transmit 17
another GetPortBWReq packet to an MA USB hub after it has received a GetPortBWResp packet with 18

Status Code field set to NOT_SUPPORTED. 19

The GetPortBWReq packet carries the fields listed in Table 58 after the management header. 20

Table 58— Get USB Port Bandwidth Request fields 21

Width

(bits)

Offset

(DW:bit)

Description

4 3:0 Speed. Indicates the speed of the port(s) for which the available bandwidth
shall be returned.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 132

 Value Meaning

 0 Low-Speed
 1 Full-Speed
 2 High-Speed
 3 SuperSpeed
 4 SuperSpeedPlus
 5-15 Reserved

2 3:4 Lane Speed Exponent (LSE). Indicates the LSE of the USB device as defined
in [USB 3.1] if the Speed field is set to SuperSpeed or SuperSpeedPlus.
Reserved otherwise.

4 3:6 Lane Count. Indicates the lane count of the USB device as defined in [USB
3.1] if the Speed field is set to SuperSpeed or SuperSpeedPlus. Reserved
otherwise.

2 3:10 Link Protocol. Indicates the link protocol of the USB device as defined in
[USB 3.1] if the Speed field is set to SuperSpeed or SuperSpeedPlus. Reserved
otherwise.

4 3:12 Reserved.

16 3:16 Lane Speed Mantissa (LSM). Indicates the LSM of the USB device as
defined in [USB 3.1] if the Speed field is set to SuperSpeed or
SuperSpeedPlus. Reserved otherwise.

6.3.55 Get Port Bandwidth Response (GetPortBWResp) 1

The Get Port Bandwidth Response (GetPortBWResp) packet is transmitted by the target MA USB hub 2

to the MA USB host in response to a GetPortBWReq packet to report the percentage of the periodic 3
bandwidth available on each port of the USB hub the request is targeting. The Type and Subtype fields 4
are set to 0 (Management) and 53 (GetPortBWResp), respectively. The Status Code field indicates 5

whether the MA USB hub supports the feature, and if it does whether the request was successfully 6
completed. If the MA USB hub does not support the GetPortBWReq packet it shall respond with a 7

GetPortBWResp packet with Status Code field set to NOT_SUPPORTED. If the MA USB hub does not 8
support the speed indicated by the value of the Sublink Speed Attribute ID field it shall respond with a 9
GetPortBWResp packet with Status Code field set to UNSUCCESSFUL. 10

If the status code field is set to SUCCESS, then the GetPortBWResp packet carries the fields listed in 11
Table 59 after the management header. 12

Table 59— Get USB Port Bandwidth Response fields 13

Width

(bits)

Offset

(DW:bit)

Description

8 3:0 Number of Ports. Indicates the number of ports on the USB hub for which
bandwidth information is reported.

24 3:8 Reserved

Variable 4:0 Port Available Bandwidth List. List of port available bandwidth reports,
concatenated in 8-bit increments, starting with the report of port number 1 in
increasing order. Each 8-bit entry has a range of 0 to 100 and indicates the
percentage of the periodic bandwidth available to the corresponding port.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 133

6.3.56 Sleep Request (SleepReq) 1

The Sleep Request (SleepReq) packet is transmitted by an MA USB PAL to indicate the desire to move 2

the session state to Session Inactive (Section 8.1.1.4). The Device Handle field is reserved. The Type 3
and Subtype fields are set to 0 (Management) and 54 (SleepReq), respectively. The Status Code field is 4

set to 0 (NO_ERROR). 5

The SleepReq packet carries the fields listed in Table 60 after the management header. 6

Table 60—SleepReq fields 7

Width

(bits)

Offset

(DW:bit)

Description

32 3:0 Management Request Timeout. Indicates the maximum time (in
milliseconds) between the moment the remote MA USB PAL releases a
management packet requiring a response to the management channel, and the
moment it can expect the corresponding response packet through the
management channel, while its session is in Session Inactive state.

32 4:0 Data Request Timeout. Indicates the maximum time (in milliseconds)
between the moment the remote MA USB PAL releases a control or data
packet requiring a response to the assigned data channel, and the moment it
can expect the corresponding response packet through the assigned data
channel, while its session is in Session Inactive state.

NOTE — Management Request Timeout and Data Request Timeout values are respectively equivalent to 8
aManagementRequestTimeout and aTransferTimeout protocol constants when session is in Session Active state. 9

6.3.57 Sleep Response (SleepResp) 10

The Sleep Response (SleepResp) packet is transmitted in response to a SleepReq packet to acknowledge 11
the desire to move the session state to Session Inactive (Section 8.1.1.4), and carries the same fields as 12

the SleepReq packet. The Device Handle field is reserved. The Type and Subtype fields are set to 0 13
(Management) and 55 (SleepResp), respectively. The Status Code value indicates whether the request to 14
move the session to Session Inactive is granted. A Status Code value of 0 (NO_ERROR) indicates that 15

the MA USB PALs at the two ends of an MA link can coordinate activities at the MA link level to enter 16
low-power mode, and a Status Code value of REQUEST_DENIED indicates that the MA link cannot 17

enter low-power mode. 18

When the Status Code field is set to 0 (NO_ERROR), the Management Request Timeout and Data 19
Request Timeout values are less than or equal to the corresponding values in the SleepReq packet and 20

indicate the management and control or data packet exchange timeout values when the exchange is 21
initiated by the recipient of the SleepResp packet. When the Status Code field is set to 22

REQUEST_DENIED, the Management Request Timeout and Data Request Timeout values are less than 23
or equal to the corresponding values in the SleepReq packet and indicate the maximum timeout values 24
acceptable to the recipient of the SleepReq packet. Any of the timeout fields may be set to 0 to indicate 25

that the request to move the session state to Session Inactive is being denied without specifying 26
maximum acceptable values. 27

NOTE — For example, a SleepReq packet transmitted by an MA USB device with Management Request Timeout 28
value of 5,000 indicates that should the MA USB host accept the request to move its session state to Session 29
Inactive, it has to exercise a timeout value of 5 seconds when initiating a management packet exchange that targets 30
the MA USB device. A SleepResp packet transmitted by the MA USB host with Status Code value of 0 31
(NO_ERROR) and Management Request Timeout value of 4,000 indicates that the MA USB host will observe the 32
timeout value of 5 seconds when it initiates a management packet exchange that targets the MA USB device; 33
furthermore, it indicates that the MA USB host has moved its own session state to Session Inactive, and the MA 34

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 134

USB device has to exercise a timeout value of 4 seconds when initiating a management packet exchange that targets 1
the MA USB host. A SleepResp packet transmitted by the MA USB host with Status Code value of 2
REQUEST_DENIED and a Management Request Timeout value of 4,000 indicates that the MA USB host has not 3
moved its session state to Session Inactive, but may accept the request to move its session state to Session Inactive if 4
the Management Request Timeout value in a future SleepReq packet does not exceed 4,000 milliseconds. 5

6.3.58 Wake Request (WakeReq) 6

The Wake Request (WakeReq) packet is transmitted by an MA USB PAL to indicate the desire to move 7
the session state to Session Active (Section 8.1.1.3). The Device Handle field is reserved. The Type and 8

Subtype fields are set to 0 (Management) and 56 (WakeReq), respectively. The Status Code field is set 9
to 0 (NO_ERROR). 10

6.3.59 Wake Response (WakeResp) 11

The Wake Response (WakeResp) packet is transmitted in response to a WakeReq packet to 12
acknowledge the desire to move the session state to Session Active (Section 8.1.1.3). The Device 13

Handle field is reserved. The Type and Subtype fields are set to 0 (Management) and 57 (WakeResp), 14
respectively. The Status Code field is set to 0 (NO_ERROR). 15

6.3.60 Vendor Specific Request (VendorSpecificReq) 16

The Vendor Specific Request (VendorSpecificReq) packet is transmitted by the MA USB host or the 17
MA USB device to request a vendor specific operation. The Device Handle field is reserved. The Type 18

and Subtype fields are set to 0 (Management) and 62 (VendorSpecificReq), respectively. The Status 19
Code field is set to 0 (NO_ERROR). 20

The VendorSpecificReq packet carries the fields listed in Table 61 after the management header. 21

Table 61—Vendor Specific Request fields 22

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Vendor Identifier. The value assigned by the USB-IF to the organization that
has defined the content of the particular vendor-specific request.

16 3:16 Reserved.

6.3.61 Vendor Specific Response (VendorSpecificResp) 23

The Vendor Specific Response (VendorSpecificResp) packet is transmitted by the MA USB host or the 24

MA USB device in response to a VendorSpecificReq packet. The Device Handle field is reserved. The 25
Type and Subtype fields are set to 0 (Management) and 63 (VendorSpecificResp), respectively. The 26

Status Code field is set to SUCCESS. 27

The VendorSpecificResp packet carries the fields listed in Table 62 after the management header. 28

Table 62—Vendor Specific Response fields 29

Width

(bits)

Offset

(DW:bit)

Description

16 3:0 Vendor Identifier. The value assigned by the USB-IF to the organization that
has defined the content of the particular vendor-specific request that triggered
the response.

16 3:16 Reserved.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 135

6.4 Control packets 1

MA USB control packets share the control header shown in Figure 38. All control header fields are 2
defined in Section 6.2. 3

031 222324252627282930 21 121314151617181920 11 2345678910 1

Version

SSID Device Address EP Handle

Subtype FlagsType DWORD 0

DWORD 1

Length

DWORD 2Status Code
 4

Figure 38—Common header for MA USB control packets 5

6.4.1 Transfer Setup Request (TransferSetupReq) 6

The Transfer Setup Request (TransferSetupReq) packet initiates the setup phase of an l-managed OUT 7
transfer. The Type and Subtype fields are set to 1 (Control) and 0 (TransferSetupReq), respectively. The 8

Status Code field is set to 0 (NO_ERROR). 9

TransferSetupReq packet carries the fields listed in Table 63 after the control header. 10

 Table 63—Transfer Setup Request fields 11

Width

(bits)

Offset

(DW:bit)

Description

8 2:8 Link Type . Identifies the link type as following,

 Value Description
 0 Reserved
 1 IEEE 802.11 link (802.11 mode)
 2-255 Reserved

Variable 2:16 Connection ID. Identifies the flow-controlled link-level connection associated
with the l-managed OUT transfer. The size of the field depends on the link
type as specified by the Link Type field.

For an IEEE 802.11 link (Link Type = 1), the Connection ID field is 8 bits
wide, with the lower-order 4 bits set to the Traffic Identifier (TID) on which a
dedicated traffic flow is established or will be established to serve the l-
managed OUT transfer. The higher-order 4 bits of the field are reserved in this
case.

6.4.2 Transfer Setup Response (TransferSetupResp) 12

The Transfer Setup Response (TransferSetupResp) packet indicates the success or failure of the set up 13
phase for an l-managed OUT transfer, and has the same format as the TransferSetupReq packet (Section 14

6.4.1). The Type and Subtype fields are set to 1 (Control) and 1 (TransferSetupResp), respectively. The 15
Status Code field indicates the success or failure of the l-managed OUT transfer set up phase. 16

6.4.3 Transfer Tear Down Confirmation (TransferTearDownConf) 17

The Transfer Tear Down Confirmation (TransferTearDownConf) packet indicates the end of lifetime of 18
an l-managed OUT transfer, and has the same format as the TransferSetupReq packet (Section 6.4.1). 19

The Type and Subtype fields are set to 1 (Control) and 2 (TransferTearDownConf), respectively. The 20
Status Code field is set to 0 (NO_ERROR). 21

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 136

6.5 Data packets 1

Non-isochronous data packets share the header shown in Figure 39. Isochronous data packets share the 2
header shown in Figure 40. Header fields not defined in Section 6.2 are defined in Section 6.5.1. Data 3
packet subtypes are defined in Sections 6.5.2 through 6.5.6. 4

031 222324252627282930 21 121314151617181920 11 2345678910 1

DWORD 0

DWORD 1

DWORD 2

DWORD 3Sequence Number

Stream ID Status CodeT-Flags

Request ID

Version

SSID Device Address EP Handle

Subtype FlagsTypeLength

EPS

DWORD 4Remaining Size/Credit
 5

Figure 39—Common header for MA USB non-isochronus data packets 6

I-Flags

031 222324252627282930 21 121314151617181920 11 2345678910 1

DWORD 0

DWORD 1

DWORD 2

DWORD 3Sequence Number

MA USB Timestamp (optionally present in IsochTransferResp packets)

Number of Headers Status CodeT-Flags

DWORD 5

Request ID

Version

SSID Device Address EP Handle

Subtype FlagsTypeLength

EPS

DWORD 4Presentation Time

Media Time/Transmission Delay (optionally present in IsochTransferResp packets) DWORD 6

Number of Segments

 7

Figure 40—Common header for MA USB isochronus data packets 8

6.5.1 Common data header fields 9

6.5.1.1 EPS 10

The 2-bit EPS (EP Status) field (offset 2:8) indicates the status of the EP handle contained in the data 11
packets transmitted by the MA USB device. It assumes one of the values listed in Table 64. The EPS 12
field is reserved in data packets transmitted by the MA USB host. 13

Table 64—EPS field values 14

Value Description

00b Unassigned. The EP handle contained in the packet is not assigned to any endpoint.

01b Active. The EP handle contained in the packet is assigned and is in active state, i.e., the
corresponding endpoint is able to move data and complete transfer requests successfully.

10b Inactive. The EP handle contained in the packet is assigned but is in an inactive state, i.e.,
the corresponding endpoint is not able to move data and complete transfer requests
successfully.

11b Halted. The EP handle contained in the packet in Halted state, i.e., the corresponding
endpoint has encountered a USB halt condition.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 137

6.5.1.2 T-Flags 1

The 6-bit T-Flags field (offset 2:10), shown in Figure 41, contains the bit fields listed in Table 65. 2

8

Reserved

9101112131415

ARQ DWORD 2NEGTransfer Type EoT
 3

Figure 41—T-Flags field 4

Table 65—T-Flags subfields 5

Width

(bits)

Offset

(DW:bit)

Description

1 2:10 ARQ (Acknowledgment Request). Set to 1 to indicate an acknowledgment
request and 0 otherwise. Reserved for all data packet subtypes other than
Transfer Request and Transfer Response.

1 2:11 NEG (Negative Credit). A logical extension of the 32-bit Credit field to form
a 33-bit signed integer using two’s complement format. If set to 0, the 32-bit
credit field is carrying a positive number in the range 0 to 232 – 1. If set to 1,
the 33-bit number made of concatenation of this bit and the Credit field is
carrying a negative number in the range –1 to –232. This field may be set to 1
only if the device indicates support for elastic buffer capability in the CapResp
packet it sends to the MA USB host.

1 2:12 EoT (End of Transfer). In an OUT transfer, set to 1 to indicate the
completion of the transfer, i.e., delivery of the data to the endpoint. In an IN
transfer, set to 1 to indicate the last TransferResp packet related to the transfer.

2 2:13 Transfer Type. Indicates the transfer type of the data packet,

 Value Meaning
 00b Control
 01b Isochronous
 10b Bulk
 11b Interrupt

NOTE — In a Control TransferReq packet with the Sequence Number field

set to 0, the first 2 DWORDs of the payload in the packet are control transfer

setup data.

1 2:15 Reserved.

6.5.1.3 Stream ID (non-isochronous data packets) 6

The 16-bit Stream ID field (offset 2:16) identifies the target stream when the target endpoint is an 7

Enhanced SuperSpeed bulk endpoint that supports the Enhanced SuperSpeed Stream Protocol. It is 8
reserved in all other cases. 9

6.5.1.4 Sequence Number 10

The 24-bit Sequence Number field (offset 3:0) is normally used to identify the successive data packets 11

that carry the payload for a given MA USB transfer, i.e., successive Transfer Request or Isochronous 12
Transfer Request packets belonging to an OUT transfer, and successive Transfer Response or 13
Isochronous Transfer Response packets belonging to an IN transfer. The field is set to 0 for the first data 14

bearing packet, and is incremented by one for each subsequent data bearing packet, with rollover to 0 15
after aMaxSequenceNumber. Additional (subtype-specific) usages of the field are described together 16

with each data packet subtype definition. 17

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 138

6.5.1.5 Request ID 1

The 8-bit Request ID field (offset 3:24) carries the identifier assigned by the MA USB host to an MA 2
USB transfer to identify it among all outstanding transfers targeting the same endpoint. All data packets 3

(request or response) belonging to the same MA USB transfer carry the same Request ID. 4

6.5.1.6 Remaining Size/Credit (non-isochronous data packets) 5

The 32-bit Remaining Size/Credit field (offset 3:0) carries the number of bytes remaining to complete a 6
transfer (assuming the current packet is successfully received), or the number of bytes that the receiver 7
can accept. The exact function of this field depends on the transfer direction and data packet subtype. 8

6.5.1.7 Number of Headers (isochronous data packets) 9

When sent in an MA USB isochronous transfer request packet for an OUT transfer or an MA USB 10
isochronous transfer response for an IN transfer, the 12-bit Number of Headers field (offset 2:16) carries 11
the number of isochronous headers that are present in the packet. When sent in an MA USB isochronous 12

transfer request packet for an IN transfer, the Number of Headers field carries the number of IRS 13
headers that are present in the packet. The Number of Headers field is reserved otherwise. 14

6.5.1.8 I-Flags (isochronous data packets) 15

The 4-bit I-Flags field (offset 2:28) is formatted as shown in Figure 42, with the subfields defined in Table 16

66. 17

24

ASAP

25262728293031

MTD Valid DWORD 2Isochronous Header Format
 18

Figure 42—I-Flags field 19

Table 66—I-Flags subfields 20

Width

(bits)

Offset

(DW:bit)

Description

1 2:28 MTD Valid. Set to 1 if the Media Time/Transmission Delay field in the packet
carries a valid value and set to 0 otherwise.

NOTE — The MTD Valid subfield can be set to 0 both at transmission (e.g.,

before releasing the MA USB packet to the lower network layer to indicate

that the field has not been uninitialized) and reception (e.g., after receiving

the MA USB packet from the lower network layer and detecting inaccuracy

in the Media Time/Transmission Delay field.).

2 2:29 Isochronous Header Format. Indicates the format of all isochronous headers
or isochronous read size (IRS) blocks in the packet. When applied to
isochronous headers, valid values for this subfield are 0 (short format), 1
(standard format) and 2 (long format). When applied to isochronous read size
(IRS) blocks, valid values are 0 (standard format) and 1 (long format).

1 2:31 ASAP. Set to 1 to request immediate (as soon as possible) delivery to or from
the target isochronous endpoint, or to 0 to indicate delivery at the time
specified by the Presentation Time field in an isochronous transfer request
packet. This field is reserved for isochronous transfer response packets.

6.5.1.9 Presentation Time (isochronous data packets) 21

The 20-bit Presentation Time field (offset 4:0) carries the intended time of delivery of the first segment 22
of transfer, or actual time of delivery of the first isochronous segment in the packet to or from the target 23

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 139

isochronous endpoint. The time of delivery for each subsequent segment (if any) embedded in the packet 1
is implicitly defined according to the Service Interval associated with the target isochronous endpoint. 2

The field is reserved in isochronous transfer request packets that indicate as soon as possible (ASAP) 3
delivery. The Presentation Time field has the format shown in Figure 43, with the subfields defined in 4

Table 67. 5

Microframe

Number

031 222324252627282930 21 121314151617181920 11 2345678910 1

DWORD 4Frame Number
 6

Figure 43—Presentation Time field format 7

Table 67—Presentation Time subfields 8

Width

(bits)

Offset

(DW:bit)

Description

3 4:0 Microframe Number. Indicates the modulo-8 number of the USB microframe
(the 125 μs time base) at the time of interest. Set to 0 when not supported.

17 4:3 Frame Number. Indicates the USB frame number, i.e., the 1 millisecond time
base established by the MA USB host. Frame number is maintained modulo
217 or a smaller number, but not smaller than 211.

6.5.1.10 Number of Segments (isochronous data packets) 9

When sent in an MA USB isochronous transfer request packet, the 12-bit Number of Segments field 10

(offset 4:20) carries the total number of isochronous segments that are being requested or transmitted for 11
the MA USB transfer. When sent in an MA USB isochronous transfer response packet, the field carries 12
the number of complete segments that have been read from or delivered to the target isochronous 13

endpoint in the MA USB device at the time the response packet was generated. 14

NOTE — The value of this field is generally larger than the value of the Number of Headers field (Section 6.5.1.7), 15
which carries the number of isochronous segments (or fragments thereof) present in the packet. 16

6.5.1.11 MA USB Timestamp (isochronous data packets) 17

The 32-bit MA USB timestamp field carries a sample of the MA USB Global Time (Section 6.6.1). It is 18
present in all IsochTransferReq packets, and optionally present in IsochTransferResp packets. 19

NOTE — When transmitted in an IsochTransferResp packet, the MA USB Timestamp field repres ents a reading of 20
the MA USB Global Time that the transmitting MA USB device is maintaining. The MA USB host can monitor the 21
device synchronization status for error recovery and diagnostic purposes. 22

6.5.1.12 Media Time/Transmission Delay (isochronous data packets) 23

Depending on the latency compensation method applied to an MA link, the 32-bit Media 24
Time/Transmission Delay field carries the synchronized Media Time of the MA link at the time MGT is 25

captured into the MA USB Timestamp field, or the time elapsed (in nanoseconds) from the moment 26
MGT is captured into the MA USB Timestamp field to the moment the first bit of the Media 27

Time/Transmission Delay field is released to the physical medium. This field is present in all 28
IsochTransferReq packets, and optionally present in IsochTransferResp packets. 29

NOTE — The Media Time format and its adaptation into the 32-bit Media Time field depend on the Media Clock 30
and are media-specific. 31

NOTE — A network packet may contain more data units than a single MA USB packet, e.g., other MA USB 32
packets, or packets belonging to other protocols. The Transmission Delay field captures an interval that ends at the 33
moment the first bit of the field itself is released to the physical medium, and therefore finds dependency on the 34
relative offset of the field into the network packet that carries the field. 35

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 140

Media Time and Transmission Delay values have accuracy requirements. For Media Time, there is an 1
additional sampling accuracy requirement applicable at transmission. See Section 6.6 for details. 2

6.5.2 Transfer Request (TransferReq) 3

The Transfer Request (TransferReq) packet is sent by the MA USB host to initiate an MA USB non-4

isochronous IN or OUT transfer, and to carry the transfer payload for OUT transfers. It carries the data 5
header shown in Figure 39. When initiating a control transfer the packet carries the control set up data. 6
When initiating a bulk or interrupt IN transfer the packet carries no payload. 7

The Type and Subtype fields are set to 2 (Data) and 0 (TransferReq), respectively. The Status Code field 8
is set to 0 (NO_ERROR). The EPS field is reserved. The Request ID and Sequence Number fields are 9

set according to Section 5.4 for IN transfers and Section 5.5 for OUT transfers. 10

The Remaining Size/Credit field carries the remaining number of bytes to complete an OUT transfer or 11
the number of bytes that the device can transmit in the case of an IN transfer. 12

6.5.3 Transfer Response (TransferResp) 13

The Transfer Response (TransferResp) packet is sent by an MA USB device to carry the payload for a 14
non-isochronous IN transfer, or to provide feedback (in the form of receive confirmation, endpoint status 15

and credit) for a non-isochronous OUT transfer. It carries the data header shown in Figure 39. 16

The Type and Subtype fields are set to 2 (Data) and 1 (TransferResp), respectively. The Status Code 17

field is set to one of the values listed in Table 6 to indicate successful or failed reception of the payload 18
belonging to one or more Transfer Request packets. The EPS field is set to one of the values listed in 19
Table 64 to indicate the status of the EP handle contained in the packet. 20

The Sequence Number field is set according to Section 6.5.1.4 for IN transfers. 21

For OUT transfers, the field is used to acknowledge or provide feedback on one or more Transfer 22

Request packets. See Section 5.5 for operation details. 23

The Remaining Size/Credit field is used differently depending on the transfer type. For IN transfers, the 24
field carries the remaining number of bytes to complete the transfer. For OUT transfers, the field carries 25

the number of bytes the MA USB device can accept throughout the OUT transfer. 26

A TransferResp packet of an IN transfer that does not carry any payload is called a null transfer. A null 27

transfer may carry an EOT field set to 1 and it may have the Sequence Number field set to 28
aInvalidSequenceNumber. 29

6.5.4 Transfer Acknowledgement (TransferAck) 30

The Transfer Acknowledgement (TransferAck) packet is used by the MA USB host to acknowledge 31
TransferResp packets sent by an MA USB device. It carries the data header shown in Figure 39. 32

The Type and Subtype fields are set to 2 (Data) and 2 (TransferAck), respectively. The Status Code field 33

is set to one of the values listed in Table 6. The Status Code field shall be set to TRANSFER_PENDING 34
if the TransferAck is sent in response to a TransferResp packet that had the ARQ bit set to 1 and a Status 35

Code value of TRANSFER_PENDING. This enables a device to determine that a TransferResp packet 36
with status TRANSFER_PENDING has been received by the host. The EPS field is reserved. 37

The Sequence Number field is used to acknowledge or provide feedback on one or more Transfer 38

Response packets. 39

The Remaining Size/Credit field is reserved. 40

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 141

6.5.5 Isochronous Transfer Request (IsochTransferReq) 1

The Isochronous Transfer Request (IsochTransferReq) packet initiates an MA USB isochronous IN or 2

OUT transfer. It carries the data header shown in Figure 40. When initiating an isochronous IN transfer, 3
the packet carries no payload. When initiating an isochronous OUT transfer, the packet additionally 4

carries the first segment of the OUT transfer payload. 5

The Type and Subtype fields are set to 2 (Data) and 3 (IsochTransferReq), respectively. The Status Code 6
field is set to 0 (NO_ERROR). The EPS field is reserved. 7

The Sequence Number field is set to aInvalidSequenceNumber for IN transfers. It is set according to 8
Section 6.5.1.4 for OUT transfers. 9

6.5.6 Isochronous Transfer Response (IsochTransferResp) 10

The Isochronous Transfer Response (IsochTransferResp) packet is used to carry isochronous payload for 11
IN transfers, or provides feedback for isochronous OUT transfers. It carries the data header shown in 12

Figure 40. 13

The Type and Subtype fields are set to 2 (Data) and 4 (IsochTransferReq), respectively. 14

6.6 Clock synchronization 15

6.6.1 Clock model 16

The USB clock model is defined in Section 5.12.2 of [USB 2.0]. The MA USB clock model maintains 17

the Sample Clock and Service Clock defined in [USB 2.0], but replaces the Bus Clock with an MA USB 18
Global Clock that is maintained by the MA USB host and made available to all MA USB devices within 19
an MA USB Service Set. The MA USB Global Clock has the same frequency as the Enhanced 20

SuperSpeed USB Bus Clock (8 KHz). In addition, each MA USB hub is expected to synchronize the 21
Bus Clock for each of its wired USB segments downstream to the MA USB Global Clock. The MA 22

USB clock model is shown in Figure 44. 23

NOTE — This may require that, on full-speed and high-speed bus segments, the first bit of the SOF is issued onto 24
the USB bus when the delta field of the MGT is zero. The frame counter in the PID must match bits 26:16 of the 25
MGT (the part of the MGT that corresponds to the traditional “frame number”). For SuperSpeed and SuperSpeed 26
Plus segments, bits 13:0 of the ITS in the ITP, when issued from the root port of the segment, must match bits 26:13 27
of the MGT (the part of the MGT that corresponds to the SuperSpeed bus interval counter), and bits 26:14 in the ITS 28
of the ITP must be set appropriately relative to the bus boundary established by the MGT when the MGT Delt a field 29
is zero. 30

MA USB

host

MA USB

hub

MA USB

device

MA USB

device

USB

device

MA link with

synchronization function

MA link with

synchronization function

MA link without

synchronization function

(MA USB Timestamp,

Media Time)

(MA USB Timestamp,

Transmission Delay)

(MA USB Timestamp,

Media Time)

MA USB Global

Clock domain
USB

segment

USB

device

USB

segment

 31

Figure 44—MA USB clock model and distribution 32

Each sample of the MA USB Global Clock designates the MA USB Global Time (MGT) at the 33
sampling instant. The MGT format is shown in Figure 45, with the subfields defined in Table 68. 34

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 142

031 222324252627282930 21 121314151617181920 11 2345678910 1

Delta DWORD NNominal Bus Interval
 1

Figure 45—MA USB Global Time (MGT) format 2

Table 68—MA USB Global Time (MGT) subfields 3

Width

(bits)

Offset

(DW:bit)

Description

13 N:0 Delta. Indicates the value of Delta field in Isochronous Timestamp Packet as
defined in [USB 3.1]. Delta is maintained in units of 8 nominal HS bit times,
i.e., 8/480 μs (nominal).

19 N:13 Nominal Bus Interval. Indicates the nominal USB microframe number, i.e.,
the 125 μs time base. Nominal Bus Interval is maintained modulo 219.

6.6.2 Synchronization 4

Clock synchronization in MA USB is achieved by the MA USB host transmitting samples of the MA 5
USB Global Clock through timestamp fields of certain management and data packets. Specifically, the 6

MA USB host carries the MA USB Global Time in the MA USB Timestamp field of SynchReq (Section 7
6.3.40) and IsochTransferReq (Section 6.5.5) packets. 8

Because of the loose coupling between MA USB protocol and the PHY layer of each MA link, this 9

specification defines mechanisms to enable the receiver of an MA USB timestamp to compensate for the 10
variable latency MA USB packets experience across an MA link. 11

 Compensation through a synchronized “Media Time”: Some MA links provide access to a 12
synchronized “Media Clock”, possibly implemented for networking purposes outside MA USB. 13

By providing a reading of the Media Clock (referred to as Media Time) at the moment the MA 14
USB Timestamp field in an outgoing MA USB packet is initialized, an additional point of 15
reference is made available to the receiver of the MA USB timestamp to adjust the received 16

timestamp for additional latencies. The Media Clock of an MA link shall have an accuracy of 17
±aMaxMediaTimeError, i.e., the Media Time at the two ends of an MA link shall not be different 18

by more than 2×aMaxMediaTimeError. Media Time is carried in the Media Time field of the 19
MA USB packet containing an MA USB timestamp. Sampling of the Media Clock shall have an 20
accuracy of ±aMaxMediaTimeSamplingError, i.e., the value inserted into the Media Time field 21

of an MA USB packet shall not be more than ±aMaxMediaTimeSamplingError different from 22
the value of the Media Time at the moment of insertion. 23

NOTE — The Media Time format depends on the Media Clock and is media-specific. 24

NOTE — The synchronization function of a Media Clock may be required to compensate for the MA link average 25
latency (path delay) to meet the Media Clock accuracy requirement. 26

NOTE — A received MA USB timestamp carries an error no smaller than the difference between the local Media 27
Time at the moment the MA USB timestamp is captured and the Media Time transmitted in the MA USB packet. 28
Implementations need to consider additional complexities when applying an error term to the complex (frame, 29
microframe) MGT format. 30

 Compensation through an estimate of the “Transmission Delay”: Alternatively, the MA USB 31
host may choose to augment the MA USB timestamps with an estimate of the delay the 32

containing MA USB packet experiences from the moment the MA USB timestamp is initialized 33
to the moment the packet is released to the physical medium. The delay estimate, expressed in 34

nanoseconds, is carried in the Transmission Delay field of the MA USB packet containing the 35
timestamp, and shall have an accuracy of ±aMaxTransmissionDelayError. 36

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 143

NOTE — As the name implies, the transmission delay estimate does not cover additional latencies incurred at the 1
receiver; compensating for latencies local to the receiver is a matter of receiver implementation and outside the 2
scope of this specification. 3

The compensation method for each MA link is decided by the MA USB host and does not change 4
through the lifetime of an MA link. The MA USB host indicates access to a synchronized Media Time 5

by setting the Media Time Available field in any CapReq packet it transmits to a target MA USB device. 6
The target MA USB device also indicates access to the same synchronized Media Time by setting the 7

Media Time Available bit in any CapResp packet it transmits to the MA USB host. The latency 8
compensation method applied to the MA link in both directions shall be based on Media Time if both 9
MA USB host and device have indicated Media Time availability, and shall be based on Transmission 10

Delay otherwise. 11

NOTE — The type and characteristics (e.g., accuracy) of the Media Clock are assumed to be known to both MA 12
USB host and device by virtue of the MA Link type and the discovery context, i.e., MA USB host and device refer 13
to the same Media Clock when announcing the Clock availability. 14

The MA USB host distributes the MGT through a combination of broadcast and unicast SynchReq 15

(Section 6.3.40) packets as well as IsochTransferReq (Section 6.5.5) packets. The MA USB host shall 16
not transmit unicast SynchReq packets to an MA USB device that has not requested to receive MA USB 17
timestamps. 18

For monitoring and diagnostic purposes, the MA USB host may request an MA USB device that has 19
requested to receive MA USB timestamps to share its local instance of the MGT through an appropriate 20

response packet. An MA USB device that has requested to receive MA USB timestamps 21

 shall respond to a unicast or broadcast SynchReq packet that has a Response Required bit set to 1 22

with a SynchResp packet that includes a local reading of the MGT; 23

 may insert a local reading of the MGT in any of the IsochTransferResp (Section 6.5.6) packets it 24
transmits to the MA USB host. 25

The MA USB host shall distribute the MGT to each MA USB device in Session Active state (Section 26
8.1.1.3) that has at least one configured isochronous endpoint. MGT shall be delivered at least once 27

every aMinSynchFrequencyActive if the target MA USB device has at least one active isochronous 28
endpoint (i.e., a configured isochronous endpoint that has not been idle for more than 29
aMinSynchFrequencyIdle), and at least every aMinSynchFrequencyIdle otherwise. 30

NOTE — The MA USB host may distribute the MGT to an MA USB hub prior to the enumeration of the integrated 31
USB hub and following the transition of the integrated USB hub out of a low power state. 32

NOTE — The clock synchronization mechanism for MA USB described in this specification assumes a hardware 33
implementation. 34

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 144

7 MA USB device framework 1

7.1 Device states 2

The device states match the state of the session between the MA USB host and the MA USB device as 3

defined in Section 8.1. 4

7.2 EP handle states 5

An endpoint handle is either not assigned or assigned. An assigned endpoint handle can be in Active, 6
Inactive, or Halt State. The state diagram of an endpoint handle is depicted in Figure 46 and the states 7
are described below. 8

Unassigned

Assigned

Active Inactive

EPActivateReq

Halted

EPClearTransferReq

 9

Figure 46—EP handle state diagram 10

7.2.1 Active state 11

This state is entered on any of the following events: 12

 An endpoint handle is first assigned by the MA USB device in response to an EPHandleReq packet 13
(Section 6.3.6) received from the MA USB host. 14

 The MA USB device receives an EPActivateReq packet (Section 6.3.8) from the MA USB host for an 15
endpoint handle in Inactive State. 16

While in this state the endpoint is capable of USB transactions and the MA USB host may transmit 17
TransferReq packets targeting the endpoint. 18

This state exits when: 19

 The USB transactions with the associated endpoint encounter a USB halt condition. 20

 The MA USB device receives an EPInactivateReq packet (Section 6.3.10) from the MA USB host. 21

 The MA USB device receives a DevResetReq packet (Section 6.3.18). 22

7.2.2 Halted state 23

This state is entered when the USB transactions with an endpoint with a handle in Active State 24
encounter a USB halt condition (i.e., transmission error occurs on the bus or STALL handshake is 25

returned from the endpoint). 26

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 145

While in Halted State the endpoint is not capable of USB transactions. Any TransferReq packet received 1
targeting the EP shall be buffered and acknowledged with a TransferResp packet with status code set to 2

INVALID_EP_HANDLE_STATE. 3

This state exits when: 4

 The MA USB device receives an EPResetReq packet (Section 6.3.12) from the MA USB host. 5

 The MA USB device receives a DevResetReq packet (Section 6.3.18). 6

NOTE — rules for entering and exiting the Halted state for endpoints are as defined in USB specification; 7
specifically as defined in Section 5.6.5 of [USB 2.0] for isochronous endpoints and Section 5.5.5 of [USB 2.0] for 8
control endpoints. 9

7.2.3 Inactive state 10

This state is entered, 11

 From Active State, if the MA USB device receives an EPInactivateReq packet (Section 6.3.10) from 12

the MA USB host. 13

 From Halted State, if the MA USB device receives an EPResetReq packet (Section 6.3.12) from the 14

MA USB host. 15

While in Inactive State the endpoint is not capable of USB transactions. Any TransferReq packet 16

received targeting the EP shall be buffered and acknowledged with a TransferResp packet with status 17
code set to INVALID_EP_HANDLE_STATE. The transition to Inactive state does not clear outstanding 18
transfers. The MA USB host may transmit ClearTransfersReq (Section 6.3.14) or CancelTransferReq 19

(Section 6.3.42) packets to request clearing (cancelling) outstanding transfers on an endpoint with an 20
endpoint handle in Inactive State. The MA USB device is not required to transmit TransferResp packets 21

for the cleared pending requests. 22

The MA USB host may transmit an EPHandleDeleteReq packet (Section 6.3.16) to transition the EP 23
Handle to Not Assigned state; the MA USB device shall cancel any pending requests for the EP Handle. 24

The MA USB device is not required to transmit TransferResp packets for the cleared pending requests. 25

NOTE — Status Code value of INVALID_EP_HANDLE returned in the EPHandleDeleteResp packet indicates 26
successful completion of the EPHandleDeleteReq packet. 27

This state exits when: 28

 The MA USB device receives an EPActivateReq packet (Section 6.3.8) from the MA USB host. 29

 The MA USB device receives an EPHandleDeleteReq packet (Section 6.3.16) from the MA USB host. 30

NOTE — The MA USB host will issue this command when modifying established device configurations (e.g., in 31
preparation to set up for an alternate USB interface or configuration) or de-configuring a USB device which usually 32
occurs when a USB device is disconnected. 33

 The MA USB device receives a DevResetReq packet (Section 6.3.18). 34

7.2.4 Unassigned state 35

This state is entered 36

 On power-on-reset. 37

 From any state if the MA USB device receives a DevResetReq packet (Section 6.3.18) from the MA 38

USB host. 39

 From Inactive State if the MA USB device receives an EPHandleDeleteReq packet (Section 6.3.16) 40

from the MA USB host. 41

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 146

 If the MA USB device receives a USBDevDisconnectReq packet (Section 6.3.26) from the MA USB 1

host targeting a device to which the EP handle belongs. 2

 If the MA USB device receives a DevDisconnectReq packet (Section 6.3.36) from the MA USB host. 3

This state exits when the MA USB device receives an EPHandleReq packet (Section 6.3.6) from the MA 4

USB host. 5

If the MA USB PAL receives a TransferReq packet targeting an EP handle in the Unassigned state, then 6

the MA USB device shall respond with a TransferResp packet with status code set to 7
INVALID_EP_HANDLE. 8

7.3 Device set up 9

7.3.1 Discovery mechanism 10

MA USB host and MA USB device discover one another using device discovery mechanism provided 11

by lower layers. 12

7.3.2 USB device enumeration 13

This specification defines the over the air MA USB management packets related to 14

USB device enumeration. These packets are normative. The order of these management packets, 15
however, may be different for different implementations as the sequence of the Management actions in 16

the USB system of the MA USB host may be different for different USB host systems and 17
implementations. These actions trigger the MA USB host to transmit MA USB management packets. 18
Table 69 lists the USB system management actions, events, and entities with a general description as a 19

reference. 20

Table 69—USB system management actions, events, and entities 21

Action Description

Open USB device In response to a USB port connect event, the USB host core system
software will create a new context (sometimes called a device object)
for the device that is connected downstream of the port. This device
object will be populated with information extracted from the device
(descriptors etc.) and is typically used by the host system to store the
state of the device.

USB device
removal

In response to a USB port disconnect event, the USB host core
system software will initiate clearing all the states related to the USB
device.

Open EP When a USB Client device driver issues a SetConfiguration request
to USB system software, the USB host core system software will
create a new endpoint context (sometimes called an endpoint object)
for each endpoint in the configuration referenced by the
SetConfiguration request. The endpoint object is typically used by
the host system software to store the state of the endpoint.

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 147

Modify EP0 USB Full-speed devices are allowed to implement a default control
endpoint maximum packet size of 8, 16, 32 or 64 bytes. The device
reports the size of the implementation in its device descriptor. An
operational nuance is that the host system must read the device
descriptor before knowing the size of the endpoint. Many host
implementations make an assumption about the size of the control
endpoint, read the device descriptor and then modify the endpoint
object to set the new packet size.

Address device A USB host core system manages the state of an attached device
based on the canonical device state diagram in Chapter 9 of the
Universal Serial Bus Specification, revision 1.0. A USB port reset
drives the device attached to that port to device address zero (called
the Default device state). The host system will then initiate an action
to assign a nonzero address to the device and transition it to the
Address state.

Evaluate device There are situations where additional device parameters are
determined by policies of the host system software or are obtained in
the later phases of enumeration. This event represents the projection
of host system policies that need to be recorded in the device object
for proper operation on the bus.

Configure device Before a device can be used (other than the default control endpoint),
it must be explicitly configured. In typical USB host systems, the
client device driver requests USB system software to set a specific
configuration on the device. The USB host system software will
allocate endpoint objects for the endpoints described in the selected
configuration and will issue a SetConfiguration request to the device.

Port manipulation USB core system software provides standard methods for upper level
entities (like the hub driver) to manipulate fields in downstream
facing port registers (e.g. read status, write control bits). Port
manipulation represents the use of any of these methods activated by
USB host system software.

 1

Event Description

Port status change USB downstream facing ports in Hosts and Hubs have associated
port registers in which are contained control, status and status change
bits. Whenever a status bit in a port register changes as a result of a
device interaction, the event is recorded in a corresponding status
change bit. A status change bit usually results in a notification being
delivered to the USB host system software that a status change bit is
set in a particular port.

 2

Entity Description

MA USB host USB
core system

This represents the USB system software on the host platform that
provides enumeration, device and endpoint management, and transfer
services to USB client drivers.

 3

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 148

Integrated USB device enumeration follows successful establishment of MA USB device connection 1
with the MA USB host, i.e., following completion of capability exchange. 2

Example generalized sequences of the integrated USB device enumeration procedure is shown in Figure 3
47. 4

MA USB host PAL MA USB device PAL

USBDI MA Link Interface USB Logic EP

Open USB device action

USBDevHandleReq

USBDevHandleResp

Open EP action (for EP0)

EPHandleReq(EP0)

EPHandleResp(EP0)

Control URB (Read device descriptor)

Control Transfer Request

Control Transfer Response

Modify EP0 act ion

Only occurs if the integrated USB device

is full speed.

ModifyEP0Req

ModifyEP0Resp

Port reset (port manipulat ion action)

Handled locally by MA USB host

Address device act ion

SeUSBtDevAddressReq

SetUSBDevAddressResp

Control URB (Read device descriptor)

Control Transfer Request

Control Transfer Response

Evaluate device action

UpdateDevReq

UpdateDevResp
Control URB (Read configuration

descriptor)

Control Transfer Request

Control Transfer Response

Open EP and conf igure device act ions

EPHandleReq

EPHandleResp

Control URB (set configuration)

Control Transfer Request

Control Transfer Response

Device level resources allocated

Get Descriptor

Address Device

Get Descriptor

Get Descriptor

Set Configuration

USB Device in

Configured state

USB Device in

Address state

USB Device in

Default state

ModifyEP0Req

ModifyEP0Resp(EP0Handle)

MA Link Interface

 5

Figure 47—Enumeration of an integrated USB device 6

Following the MA USB session establishment, the MA USB host PAL emulates a port status change 7

event equivalent of connecting a wired USB device to one of the root ports, which will trigger port 8
manipulation actions by the MA USB host USB core system. These actions are handled locally by the 9
MA USB host PAL. 10

7.3.2.1 USB device handle allocation 11

The Open Device action triggers the MA USB host to transmit a USB Device Handle Request 12

(USBDevHandleReq) packet (Section 6.3.4) to the MA USB device managing the target USB device. 13
The USBDevHandleReq packet carries the USB route string (as defined in [USB 3.1]) for the USB 14

device, the port number on which the USB device is connected to its parent hub (root port for the 15

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 149

integrated USB device on MA USB device), and the speed of the USB device which is learnt as part of 1
the capability exchange. 2

Upon receipt of the USBDevHandleReq packet, the target MA USB device shall respond with a USB 3
Device Handle Response (USBDevHandleResp) packet (Section 6.3.5) to inform the MA USB host 4

whether the request was successfully completed. If the target USB device is already allocated a device 5
handle, then the MA USB device shall respond with a USBDevHandleReq packet carrying the device 6
handle of the USB device and the value of the Status Code field set to INVALID_REQUEST. 7

The MA USB host shall ensure that at any given time there is only one USBDevHandleReq packet 8
pending a response. 9

7.3.2.2 Endpoint handle allocation 10

Both Open EP and Configure device actions trigger the MA USB host to transmit an EP Handle Request 11

(EPHandleReq) packet (Section 6.3.6) to the MA USB device managing the target USB device 12
(identified by the Device Handle field in the EPHandleReq packet). 13

The EPHandleReq packet is only valid after USB device handle allocation has been successfully 14

completed. 15

When triggered by an Open EP action, the EPHandleReq packet is transmitted to request an EP handle 16

for the default control endpoint (endpoint 0) on the target USB device. In this case, the EPHandleReq 17
packet carries a single EP descriptor, corresponding to the default control endpoint on the device. The 18
USB descriptor fields embedded inside the EP descriptor are set as follows: bLength=7, 19

bDescriptorType=5 (ENDPOINT), bEndpointAddress =00h, bmAttributes=0, wMaxPacketSize=8 for an 20
LS or FS device, 64 for an HS device and 512 for an Enhanced SuperSpeed device, and bInterval=0. 21

When triggered by a Configure Device action, the EPHandleReq packet is transmitted to request EP 22
handles for a number of endpoints on the target USB device. In this case, the EPHandleReq packet 23
carries an EP descriptor for each of the endpoints activated under the selected device configuration. 24

Upon receipt of the EPHandleReq packet, the target MA USB device shall respond with an EP Handle 25
Response (EPHandleResp) packet (Section 6.3.7) to inform the MA USB host whether the request was 26

successfully completed, and also to return MA USB attributes of the EP handle such as the credit 27
consumption unit (Section 5.5.1). Note that for EP0 the USB Address subfield in EP handle is set to the 28
default value 0. 29

7.3.2.3 Modification of EP0 parameters 30

The Modify EP0 action has two usages, 31

 It may be invoked to modify the maximum packet size for the default control endpoint of an FS 32

USB device from its initial value. 33

 It is also invoked to request an updated EP0 handle after the USB device has been assigned a 34
USB address, i.e., after the MA USB host receives a Set USB Device Address Response 35

(SetUSBDevAddrResp) packet (Section 6.3.22). 36

The action triggers the MA USB host to transmit a Modify EP0 Request (ModifyEP0Req) packet 37

(Section 6.3.20) to the MA USB device in control of the target USB device, which includes the device 38
handle of the target USB device, as well as the EP0 handle and the maximum packet size for endpoint 0. 39
The MA USB host shall transmit a ModifyEP0Req packet after receiving the response to a Set USB 40

Device Address Request packet sent to a USB device in Default or Address states. 41

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 150

Upon receipt of the ModifyEP0Req packet, the target MA USB device shall respond with a Modify EP0 1
Response (ModifyEP0Resp) packet (Section 6.3.21) to inform the MA USB host whether the request 2

was successfully completed. The ModifyEP0Resp packet shall include a new EP0 handle if the EP0 3
handle in the ModifyEP0Req packet carried the default USB address (00h) (refer to the EP handle 4

structure in Section 6.2.1.5), and the target USB device is in Address state. The MA USB host PAL shall 5
return the result of the ModifyEP0Req to the MA USB host USB core system. 6

7.3.2.4 USB device address allocation 7

The address device action triggers the MA USB host to transmit a Set USB Device Address Request 8
(SetUSBDevAddrReq) packet (Section 6.3.22) to the MA USB device managing the target USB device. 9

The SetUSBDevAddrReq packet carries the device handle of the USB device for which the set address 10
request is targeted. 11

Upon receipt of a SetUSBDevAddrReq packet, the target MA USB device shall respond with a Set USB 12
Device Address Response (SetUSBDevAddrResp) packet (Section 6.3.23) to inform the MA USB host 13
whether the request was successfully completed and return the USB device address to the MA USB 14

host. 15

7.3.2.5 Update of USB device parameters 16

The evaluate device action triggers the MA USB host to transmit an Update Device Request 17
(UpdateDevReq) packet (Section 6.3.24) to the target MA USB device. The UpdateDevReq packet 18

includes the USB device handle for which the request and the USB device parameters are targeted. 19

NOTE — The host may choose not to transmit an Update Device Request packet when enumerating a non-hub 20
integrated USB device. 21

Upon receipt of the UpdateDevReq packet, the target MA USB device shall respond with an Update 22
Device Response (UpdateDevResp) packet (Section 6.3.25) to inform the MA USB host whether the 23

request was successfully completed. The MA USB host shall return the result of Update Device Request 24
to MA USB host USB core system. 25

7.3.3 Enumeration of a USB device downstream of an MA USB hub 26

Enumeration of a non-integrated USB device behind an MA USB hub (or behind an external hub 27
downstream of an MA USB hub) follows the same procedure as the integrated device with the following 28

differences: 29
1) Port status change event is not emulated by MA USB host and is a notification event delivered to 30

MA USB host over the air. 31

2) The port manipulation actions are not handled locally by MA USB host and are transferred over 32
the medium to the MA USB hub as control transfer requests. 33

Example generalized sequences of the enumeration of a USB device downstream of an MA USB hub is 34
shown in Figure 48. 35

 36

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 151

MA USB host PAL MA USB dock PAL

USBDI MA Link Interface USB Logic EP

Open USB device action

USBDevHandleReq

USBDevHandleResp

Open EP action (for EP0)

EPHandleReq(EP0)

EPHandleResp(EP0)

Control URB (Read device descriptor)

Control Transfer Request

Control Transfer Response

Modify EP0 action

Only occurs if the USB device is full

speed.

ModifyEP0Req

ModifyEP0Resp

Port reset (port manipulation action)

Address device action

SetUSBDevAddressReq

SetUSBDevAddressResp

Control URB (Read device descriptor)

Control Transfer Request

Control Transfer Response

Evaluate device action

UpdateDevReq

UpdateDevResp

Control URB (Read device descriptor)

Control Transfer Request

Control Transfer Response

Open EP and configure device actions

EPHandleReq

EPHandleResp

Control URB (set configuration)

Control Transfer Request

Control Transfer Response

Device level resources allocated

Get Descriptor

Address Device

Get Descriptor

Get Descriptor

Set Configuration

USB Device in

“configured state”

USB Device in

“address state”

USB Device in

“default state”

ModifyEP0Req

ModifyEP0Resp(EP0Handle)

Port manipulation actions

Port status change event (connect event)

Pending Interrupt URB (Read notification)

Interrupt Transfer Request

Interrupt Transfer Response

Control Transfer Request

Control Transfer Response

Port manipulation

Control Transfer Request

Control Transfer Response

Port manipulation

MA Link Interface

 1

Figure 48—Enumeration of a USB device downstream of an MA USB hub 2

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 152

7.3.4 Support of Stream Protocol 1

In order to use the Enhanced SuperSpeed Stream Protocol [USB 3.1] on a bulk endpoint, the MA USB 2

host first opens the streams on the endpoint by transmitting an Endpoint Open Streams Request 3
(EPOpenStreamReq) packet (Section 6.3.44) indicating the number of streams to be opened. The MA 4

USB host shall ensure that the requested number of streams is supported by the MA USB device (as 5
indicated in CapResp packet). The MA USB device shall respond to an EPOpenStreamReq packet with 6
an Endpoint Open Streams Response (EPOpenStreamResp) packet (Section 6.3.45) and inform the MA 7

USB host whether the Endpoint Open Streams Request was successfully completed and return the 8
Stream IDs for the opened streams. If the number of streams requested by the host is larger than the 9

value supported by the MA USB device, the MA USB device shall set the value of the Status Code field 10
in EPOpenStreamResp packet to INSUFFICIENT_RESOURCES. The number of streams that are 11
included in the EPOpenStreamResp may be less than the number of streams requested by the MA USB 12

host to meet the MA link MTU size. An MA USB host that receives a smaller number of Stream IDs 13
than it asked for may transmit additional EPOpenStreamReq packets with the Open Stream field set to 0 14
to retrieve the remaining Stream IDs. Figure 49 illustrates an example in which the MA USB host 15

transmits multiple EPOpenStreamReq packets to retrieve all the requested Stream IDs. 16

MA USB host PAL MA USB device PAL

USBDI USB Logic EPMA Link InterfaceMA Link Interface

EPOpenStreamResp(Device Handle, EP

Handle, Number of Streams 40, Number

of Stream ID blocks 1, Stream ID interval

block {1,40})

EPOpenStreamReq(Device Handle, EP

Handle, Number of Streams 100, Open

Stream 1)

EPOpenStreamResp(Device Handle, EP

Handle, Number of Streams 40, Number of

Stream ID blocks 1, Stream ID interval block

{41,80})

EPOpenStreamReq(Device Handle, EP

Handle, Number of Streams 60, Stream ID

Index 41, Open Stream 0)

EPOpenStreamResp(Device Handle, EP

Handle, Number of Streams 20, Number of

Stream ID blocks 1, Stream ID interval block

{81,100})

EPOpenStreamReq(Device Handle, EP

Handle, Number of Streams 20, Stream ID

Index 81, Open Stream 0)

 17

Figure 49—Example of Open Stream Request and Response packet exchanges 18

For the MA USB host to change the number of open streams on an endpoint, or to change the USB 19
device configuration, or any other action that requires the endpoint to cease operation, it shall first close 20

the open streams on the endpoint. To do so, the MA USB host transmits an Endpoint Close Streams 21
Request (EPCloseStreamReq) packet (Section 6.3.46) to the MA USB device; the endpoint handle of the 22
target endpoint shall be in Inactive state prior to receiving the EPCloseStreamReq packet and all 23

pending transfers are considered cancelled following closing of the streams. The MA USB device shall 24
respond to an EPCloseStreamReq packet with an Endpoint Close Streams Response 25

(EPCloseStreamResp) packet (Section 6.3.47) and inform the MA USB host whether the Endpoint Close 26
Streams Request was successfully completed. 27

7.3.5 USB device reset 28

The MA USB host transmits a USB Device Reset Request (USBDevResetReq) packet (Section 6.3.48) 29
to the target MA USB device to request reset of the integrated USB device. In case of an MA USB hub, 30
it informs the MA USB hub of the reset of a downstream USB device (Figure 50). If the USB device is 31

connected to a physical USB controller implemented in the MA USB device, the USBDevResetReq 32
packet informs the controller of transition of a USB device under its control to Default state and triggers 33

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 153

relevant actions if applicable (in case of an xHCI, for example, the USB controller would initiate USB 1
Reset Device command). If the MA USB device does not implement a physical USB controller then the 2

USBDevResetReq packet may result in no operation by the MA USB device. 3

The MA USB device shall respond to a USBDevResetReq packet with a USB Device Reset Response 4

(USBDevResetResp) packet (Section 6.3.49). 5

MA USB host PAL MA USB device PAL

USBDI MA Link Interface USB Logic EP

USBDevResetReq

Control URB (USB port reset)

Control Transfer Request

Control Transfer Response

USBDevResetResp

USB Bus reset

USB Device in

“default state”

USB controller, if present, is notified of the

USB device transition to Default state; relevant

actions, if applicable, are taken (in case of an

xHCI implementatio USB Device Reset

command is issued).
ModifyEP0Req

ModifyEP0Resp(EP0Handle)

MA Link Interface

 6

Figure 50—USB device reset 7

Note that with transitioning of a USB device to Default state, its USB device address is set to 0 and 8

hence the EP0 Handle for the USB device is modified. The MA USB host shall follow a 9
USBDevResetResp packet with ModifyEP0Req packet to receive the updated EP0 Handle from the MA 10

USB device. The receipt of the USBDevResetReq packet results in transition of the assigned EP0 11
Handle to Active state and returns the state of the endpoint to the initial state. It is expected that next 12
“address device action” in the MA USB host would trigger transmission of SetUSBDevAddrReq packet 13

and consequently transition the MA USB device to Address state (Section 7.3.2). 14

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 154

8 MA USB host implementation 1

8.1 Session management 2

8.1.1 Session states 3

MA USB session is defined between an MA USB host and an MA USB device. The state diagram of 4
MA USB session is depicted in Figure 51 and the states are described below. 5

Session Down
Session

Connecting
Session Active Session Inactive

Discovery completed DevHandleReq/Resp SleepReq/Resp

DevResetReq/RespSession Down trigger*

Session Down trigger*

WakeReq/Resp

Connection loss indication from lower layers or

management packet transmission failure

*Session Down trigger:
-Management packet transmission failure
-DevDisconnectReq/Resp packet exchange

 6

Figure 51—MA USB session state diagram 7

8.1.1.1 Session Down state 8

The Session Down state is entered on any of the following events: 9

 Power-on-reset. 10

 Management packet transmission failure (Section 5.2.1.1). 11

 DevDisconnectReq/Resp packet exchange (Section 8.1.3). 12

While in Session Down state, there is no communication between the MA USB host and the MA USB 13
device and neither MA USB host nor MA USB device is active. In this state the lower layers of the MA 14

USB device and the MA USB host are involved in discovery of either an MA USB host or MA USB 15
devices with which the MA USB device and the MA USB host may connect, respectively. 16

The state exits when: 17

 The MA USB host/MA USB device receives an indication from the lower layers that discovery of an 18

MA USB device/MA USB host is completed. 19

8.1.1.2 Session Connecting state 20

The Session Connecting state is entered on following events: 21

 The MA USB host/MA USB device receives an indication from the lower layers that discovery of an 22

MA USB device/MA USB host is completed. 23

 From the Active state, following DevResetReq/Resp packet exchange (Section 6.3.18). 24

Entering this state triggers the session setup procedure by the MA USB host, consisting of MA USB 25
reset and capability exchange mechanisms (Section 8.1.2). While in this state, the MA USB host may 26

optionally initiate the MA USB session teardown mechanism (Section 8.1.3). 27

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 155

While in this state the MA USB device waits for either session setup related packets (Section 8.1.2) or 1
MA USB session teardown related packets (Section 8.1.3) from the MA USB host. 2

The state exits on the following events: 3

 USBDevHandleReq/Resp packet exchange (Section 6.3.4), following completion of Session setup 4

(Section 8.1.2) and the decision to continue the session with the MA USB device. 5

 There is a management packet transmission failure (Section 5.2.1). 6

 DevDisconnectReq/Resp packet exchange (Section 8.1.3). 7

8.1.1.3 Session Active state 8

The Session Active state is entered on the following events: 9

 USBDevHandleReq/Resp packet exchange (Section 6.3.4), following completion of session setup 10

procedure (Section 8.1.2) and the decision to continue the session with the MA USB device. 11

 WakeReq/Resp packet exchange (Section 6.3.58). 12

 An implicit WakeReq/Resp packet exchange (Section 8.2). 13

While in this state, the MA USB host and the MA USB device may exchange management, control, or 14

data packets. 15

The state exits on following events: 16

 DevResetReq/Resp packet exchange (Section 8.1.2). 17

 There is a management packet transmission failure (Section 5.2.1.1). 18

 DevDisconnectReq/Resp packet exchange (Section 8.1.3). 19

 SleepReq/Resp packet exchange (Section 8.2). 20

8.1.1.4 Session Inactive state 21

The Session Inactive state is entered on the following event: 22

 SleepReq/Resp packet exchange (Section 8.2). 23

While in this state, there is no communication between the MA USB host and the MA USB device 24
except for the power management related packets including implicit WakeReq/Resp packets (Section 25
8.2) and the MA USB host and/or the MA USB device may be in a low power state. The state exits on 26

the following events: 27

 There is an indication of loss of connection from lower layers. 28

 There is a management packet transmission failure (Section 5.2.1.1). 29

 WakeReq/Resp packet exchange (Section 8.2). 30

 An implicit WakeReq/Resp packet exchange (Section 8.2). 31

8.1.2 Session setup 32

After the device discovery is completed, the establishment of a secure communication link between MA 33
USB host and MA USB device triggers the initiation of the MA USB host PAL on the MA USB host, 34

and the MA USB device PAL on the device. After being initiated MA USB device PAL takes no action 35
and waits for packets from the host, while the MA USB host initiates MA USB device reset and MA 36

USB capability exchange (Figure 52). 37

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 156

MA USB host PAL MA USB device PAL

DevResetReq

USBDI USB Logic EP

DevResetResp

Discovery completed

Secure communication link established

CapReq

CapResp

MA Link InterfaceMA Link Interface

 1

Figure 52—MA USB device session setup 2

8.1.2.1 MA USB device reset 3

The MA USB host transmits an MA USB Device Reset Request (DevResetReq) packet (Section 6.3.18) 4
to the target MA USB device, to request the MA USB device to clear all its internal states and join the 5

MSS operated by the MA USB host. 6

The target MA USB device is reached through a network address normally determined after media-7

specific discovery. The DevResetReq packet includes the SSID selected by the MA USB host (in the 8
SSID field), as well as the nonzero address assigned to the MA USB device by the MA USB host (in the 9
Device Address field). The SSID value selected by the MA USB host shall be a random integer between 10

1 and 254, and shall be different from any SSID values that the MA USB host has possibly observed 11
during media-agnostic discovery as well as during normal operation after discovery. SSID values 0 and 12

255 are reserved for future protocol extensions, including diagnostics. The MA USB device address 13
carried in the Device Address field shall be unique within the MSS in which the MA USB device is 14
operating. 15

The target MA USB device shall respond to a DevResetReq packet with an MA USB Device Reset 16
Response (DevResetResp) packet (Section 6.3.19) to indicate its willingness to join the MSS (i.e., move 17

the state of its session with the MA USB host to Session Connecting), and whether the reset operation 18
was successfully completed. A target MA USB device that responds to a DevResetReq packet and 19
indicates successful reset shall store the SSID and the device address it received in the DevResetReq 20

packet, and shall ignore any MA USB packets, other than possibly another DevResetReq packet, which 21
does not carry the same SSID and device address values (with the exception of PingReq packets with the 22

Device Address field set to 0xFF). The MA USB host shall use the same SSID and device address 23
values in all following packet exchanges with the target MA USB device. The MA USB host shall not 24
transmit any packet other than DevResetReq packet to a target MA USB device unless it receives a 25

DevResetResp packet from the device with the status code of SUCCESS. 26

NOTE — An MA USB device may choose not to respond to a DevResetReq packet if it is not willing to join the 27
MSS indicated in the DevResetReq packet. For example, an active MA USB device may choose to ignore a 28
DevResetReq packet indicating a different MSS from what the device is operating in. The context for a received 29
DevResetReq packet is normally made available through media-specific discovery mechanisms and is beyond the 30
scope of this specification. 31

NOTE — MA USB device reset is different from USB device reset (Section 7.3.5). 32

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 157

8.1.2.2 Capability exchange 1

For MA USB capability exchange, the MA USB host transmits an MA USB Capability Request 2
(CapReq) packet (Section 6.3.2) to the target MA USB device. The MA USB device shall respond with 3

an MA USB Capability Response (CapResp) packet (Section 6.3.3) to inform the MA USB host whether 4
the MA USB Capability Request was successfully completed on the MA USB device, and if yes include 5
the maximum number of devices and the maximum number of endpoints for which the MA USB device 6

can track state. 7

After a successful MA USB device capability exchange the session between the MA USB host and the 8
MA USB device is considered established. 9

Establishment of MA USB session shall trigger emulation of one Port Status Change event (Section 10
7.3.2) in the MA USB host if the session is established with an MA USB device or an MA USB hub 11

with an integrated USB 2.0 hub, and two Port Status Change events if the session is established with an 12
MA USB hub with an integrated USB 3.1 hub. 13

8.1.3 Session tear down 14

The MA USB session is torn down when data communications are no longer available or needed 15
between the MA USB host and the MA USB device. The session tear down can occur either explicitly, 16

where either the MA USB host or device chooses to tear down an MA USB session, or implicitly when 17
the communication between the MA USB host and the MA USB device is inhibited. 18

The explicit tear down may occur, for example, when the user performs a platform specific operation to 19

indicate the session tear down. In case of an explicit tear down, the initiator shall notify the peer MA 20
USB entity the MA USB session is being torn down. 21

The implicit tear down occurs with loss of connectivity between the MA USB host and the MA USB 22
device (In a wireless medium this may happen when the MA USB host and device platforms move out 23
of communication range, or when persistent interference exists). When a loss of connectivity is detected, 24

the MA USB host and device shall each locally initiate session tear down procedures. 25

8.1.3.1 Implicit session tear down 26

Implicit tear down (Figure 53) is initiated locally by the MA USB host and the MA USB device. The 27
implicit tear down is initiated when either the MA USB host or the MA USB device is notified by the 28

lower layers of the loss of connectivity or when the transmission failure of a management packet 29
indicates a connection loss. 30

In implicit session tear down the MA USB host emulates a port status change event equivalent to 31

unplugging of a wired USB device from one of the root ports. However, all the actions resulting from 32
the port status change event are handled locally by the MA USB host. Following the port status change 33

event, the MA USB host initiates the USB device removal; again, all the actions resulting from the USB 34
device removal are handled locally by the MA USB host. As a final step, the host clears all the resources 35
allocated to the USB device as well as all the resources allocated to the MA USB device. 36

Similar to the MA USB host, in an implicit session tear down the MA USB device PAL emulates USB 37
device removal, which is handled locally in the MA USB device, followed by clearance of all the 38

allocated resources for the session. 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 158

MA USB host PAL MA USB device PAL

USBDI USB Logic EP

All allocated resources are removed

All port manipulation actions created as

a result of port status change event are

handled locally by MA USB host.

Port status change event

All actions created as a result of USB

device removal event are handled locally

by MA USB host.

USB device removal action

All actions required for USB device removal event are

initiated locally by MA USB device.

USB device removal action

All allocated resources are removed

MA Link InterfaceMA Link Interface

 1

Figure 53—Implicit session tear down 2

8.1.3.2 Host initiated session tear down 3

In a host initiated session tear down (Figure 54), the tear down of the MA USB session is initiated by the 4
user or an application on the MA USB host platform. This trigger prompts the MA USB host to emulate 5

a port status change event equivalent to unplugging of a wired USB device from one of the root ports. 6
All the actions resulting from the port status change event are handled locally by the MA USB host. 7

The port status change triggers the USB device removal and consequently the USB device removal 8
procedure (specified in Section 8.1.3.4) between the MA USB host and the MA USB device. Following 9
successful completion of the USB device removal procedure the host transmits MA USB Device 10

Disconnect Request (DevDisconnectReq) packet (Section 6.3.36) to the MA USB device to explicitly 11
terminate the session between the MA USB host and the MA USB device. The MA USB device shall 12

respond to a DevDisconnectReq packet with an MA USB Device Disconnect Response 13
(DevDisconnectResp) packet (Section 6.3.37). Following receipt of the DevDisconnectResp packet the 14
MA USB host clears all the resources allocated to the USB device as well as all the resources (handles, 15

etc.) allocated to the MA USB device. Similarly, the MA USB device clears all the allocated resources 16
after successful transmission of DevDisconnectResp packet. 17

NOTE — An INVALID_DEVICE_HANDLE status code value returned in DevDisconnectResp packet indicates 18
successful completion of DevDisconnectReq packet. 19

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 159

DevDisconnectReq

MA USB host PAL MA USB device PAL

USBDI USB Logic EP

All allocated resources are removed

All port manipulation actions created as

a result of port status change event are

handled locally by MA USB host.

Port status change event

All allocated resources are removed

DevDisconnectResp

Explicit MA USB disconnect trigger detected

USB device removal action

USB device removal procedure

MA Link InterfaceMA Link Interface

 1

Figure 54—Host initiated session tear down 2

8.1.3.3 Device initiated session tear down 3

In device initiated session tear down (Figure 55), the MA USB device notifies the MA USB host of the 4
MA USB device’s intention of tearing down the session by transmitting an MA USB device Initiated 5

Disconnect Request (DevInitDisconnectReq) packet (Section 6.3.38) to the MA USB host. The MA 6
USB host shall respond to a DevInitDisconnectReq packet with an MA USB device Initiated Disconnect 7

Response (DevInitDisconnectResp) packet (Section 6.3.39). 8

Following receipt of a DevInitDisconnectReq, the MA USB host shall initiate the session teardown, as 9
specified in Section 8.1.3.2. 10

DevDisconnectReq

MA USB host PAL MA USB device PAL

USBDI USB Logic EP

All allocated resources are removed

All port manipulation actions created as

a result of port status change event are

handled locally by MA USBB host.

Port status change event

All allocated resources are removed

DevDisconnectResp

DevInitDisconnectResp

DevInitDisconnectReq

USB device removal action

USB device removal procedure

Explicit MA USB disconnect trigger

MA Link Interface MA Link Interface

 11

Figure 55—Device initiated session tear down 12

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 160

8.1.3.4 USB device removal procedure 1

The USB device removal procedure (Figure 56) consists of four steps: 2
1. The MA USB host inactivates and clears all the outstanding transfers on all the active endpoints. 3

This step can occur in two different ways; in alternative 1 the host uses CancelTransferReq and 4

EPInactivateReq packets (Sections 6.3.42 and 6.3.10) to stop the endpoint and clear the transfers; 5

and in alternative 2 the host uses the EPInactivateReq packet (Section 6.3.10) followed by 6

ClearTransfersReq packet (Section 6.3.14). 7

2. The MA USB host deletes all the EP handles, except for EP handle of EP 0. 8

3. The MA USB host deletes the EP handle of EP0. 9

4. The MA USB host sends a USB Disconnect Device Request (USBDevDisconnectReq) packet 10

(Section 6.3.26) to the MA USB device to trigger the MA USB device to remove all the resources 11

allocated to the USB device, including the device handle. 12

MA USB host PAL MA USB device PAL

USBDI USB Logic EP

Allocated resources for the EP are removed

CancelTransferReq(Request ID act ive)

CancelTransferResp(Request ID active,

Status Code SUCCESS)

A
p

p
li
c
a
b

le
 t
o

 a
ll

a
c
ti
v
e

 t
ra

n
s
fe

rs

A
lt

e
rn

a
ti
v

e
 1

EPInactivateReq(EPHandle act ive)

EPInactivateResp(EPHandle active,

Status Code SUCCESS)

A
lt

e
rn

a
ti
v

e
 2

Stop EP

Clear outstanding transfer

Stop EP

EPClearTransferReq(EPHandle active)

EPClearTransferResp(EPHandle act ive,

Status Code SUCCESS)

Clear all outstanding transfers

A
p

p
li
c
a
b

le
 t
o

 a
ll

a
c
ti
v
e

 E
P

s

EPInactivateReq(EPHandle active)

EPInactivateResp(EPHandle active,

Status Code SUCCESS)

EPHandleDeleteReq(EPHandle active)

EPHandleDeleteResp(EPHandle act ive,

Status Code SUCCESS)

A
p

p
li
c
a
b

le
 t
o

 a
ll

E
P

s
 e

x
c
e

p
t

fo
r

E
P

0

Allocated resources to the EP are removed

EPInactivateReq(EPHandle 0)

EPInactivateResp(EPHandle 0,

Status Code SUCCESS)

EPHandleDeleteReq(EPHandle 0)

EPHandleDeleteResp(EPHandle 0,

Status Code SUCCESS)

USBDevDisconnectReq

USBDevDisconnectResp

All allocated resources to the device are removed

MA Link InterfaceMA Link Interface

 13

Figure 56—USB Device Removal Procedure 14

8.2 Power management 15

The MA USB power management framework defines mechanisms for the MA USB host and a target 16
MA USB device to move their session states between Session Active and Session Inactive. The 17

framework supports and is consistent with USB device-level power management, i.e., USB power 18
management functions inside an MA USB host or device are not affected by the MA USB power 19

management functions. 20

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 161

8.2.1 Transition to Session Inactive state 1

8.2.1.1 Initiation by the MA USB host 2

The MA USB host may initiate the process to move its session state to Session Inactive by following 3
these steps in order: (1) inactivating all EP handles on the target MA USB device, (2) suspending the 4

integrated USB device behind the target MA USB device, and (3) transmitting a SleepReq packet 5
(Section 6.3.56) to the target MA USB device. To inactivate EP handles on the target MA USB device, 6

the MA USB host transmits one or more EPInactivateReq packets (Section 6.3.10) to the MA USB 7
device; the MA USB device responds to each EPInactivateReq packet with an EPInactivateResp packet 8
(Section 6.3.11) to indicate whether the inactivate request was successful. To suspend the integrated 9

USB device behind the target MA USB device the MA USB host transmits a USBSuspendReq packet 10
(Section 6.3.28) to the MA USB device; the MA USB device responds to a USBSuspendReq packet 11

with a USBSuspendResp packet (Section 6.3.29) to indicate whether the suspend request was successful. 12

The SleepReq packet carries the timeout values the target MA USB device has to observe when it 13
initiates a management, control or data packet exchange in Session Inactive state. Upon receiving the 14

SleepReq packet, the target MA USB device shall respond with a SleepResp packet with the Status 15
Code field set to 0 (NO_ERROR) if it grants the transition request, and set to REQUEST_DENIED 16

otherwise. Should the target MA USB device accept the request to move its session state to Session 17
Inactive, through the SleepResp packet it shall indicate its own timeout values for management, control 18
and data packet exchanges initiated by the MA USB host in Session Inactive state, with all timeout 19

values less than or equal to the corresponding timeout values in the SleepReq packet. 20

NOTE — The MA USB device is not allowed to deny the SleepReq packet with the timeout fields set to zero 21
following the transition of the integrated USB device to suspend state. 22

After the target MA USB device transmits a SleepResp packet with the Status Code field set to 0 23
(NO_ERROR), it will move its session state to Session Inactive, and instruct its local management entity 24

for the MA link connecting the MA USB device and the MA USB host to perform required actions to 25
put the MA link in a suitable low-power mode that meets the timeout values specified in the SleepResp 26
packet. 27

NOTE — The MA USB device is still required to respond to a possible SleepReq packet retried by the MA USB 28
host. The MA USB host should use the Management Request Timeout value indicated in the SleepReq packet for 29
the retried SleepReq packets. 30

Once the MA USB host receives a SleepResp packet with the Status Code field set to 0 (NO_ERROR), 31
it will move its session state to Session Inactive, and instruct its local management entity for the MA 32

link connecting the MA USB host and the target MA USB device to perform required actions to put the 33
MA link in a suitable low-power mode that meets the timeout values specified in the SleepReq packet. 34

Figure 57 illustrates the steps to move the session state to Session Inactive. 35

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 162

 1

MA USB host PAL moves its

session state to Session Inactive

MA USB host PAL MA USB device PAL

USBDI USB Logic EPMA Link InterfaceMA Link Interface

The MA USB host PAL instructs its local MA

link management entity to perform required

actions to enter low-power mode

The MA USB device PAL instructs its local

MA link management entity to perform

required actions to enter low-power mode

EPInactivateReq(EP Handle list)
EPInactivateResp(EP handle list,

Status Code NO_ERROR)
USBSuspendReq(Device Handle)

USBSuspendResp(Device Handle,

Status Code NO_ERROR)

SleepReq()

SleepResp(Status Code NO_ERROR)

MA USB device PAL moves its

session state to Session Inactive

Suspend

indication

With the Link Sleep Capability support, the

MA USB host PAL may transmit a SleepReq

packet without suspending the integrated

USB device behind the MA USB device PAL

 2

Figure 57—Transition to Session Inactive state initiated by the MA USB host 3

When transmitting the EPInactivateReq packet, the MA USB host sets the Suspend (SP) Flag field set to 4
1 to indicate to the MA USB device an EP handle is being inactivated in preparation for the transition 5

(of the USB device the endpoint belongs to) to the Suspend state. The MA USB host shall not transmit 6
an EPInactivateReq packet with the Suspend Flag field set to 1 to target EP handles that are already in 7
the Inactive state. 8

NOTE — The MA USB device may use the Suspend Flag value for internal power management related to the 9
endpoint. For example, an MA USB device that includes a physical USB host controller may use the Suspend Flag 10
value to reduce the controller power consumption. 11

When both the MA USB host and the target MA USB device indicate support for Link Sleep capability 12
(Sections 6.3.2.2 and 6.3.3.6), the MA USB host may initiate the process to move its session state to 13

Session Inactive by transmitting a SleepReq packet to the target MA USB device without suspending the 14
integrated USB device behind the MA USB device. 15

NOTE — An MA USB device may deny the request to move its session state to Session Inactive for a number of 16
reasons, including for example, an upcoming IN transfer when its integrated USB device has not been s uspended. 17

8.2.1.2 Initiation by the MA USB device 18

When both the MA USB host and the target MA USB device indicate support for Link Sleep capability 19
(Sections 6.3.2.2 and 6.3.3.6), the MA USB device may initiate the process to move its session state to 20

Session Inactive if it has only control or non-isochronous IN endpoints behind it, all IN endpoints are in 21
the pending state, and it has had the pending state for each IN endpoint acknowledged by the MA USB 22
host PAL. 23

NOTE — Examples of where a device-initiated move to Session Inactive state may be applicable are a native MA 24
USB device with non-isochronous IN endpoints only, an MA USB hub with no USB device downstream, and an 25
MA USB hub with USB devices downstream with non-isochronous IN endpoints only. 26

NOTE — To receive the MA USB host acknowledgement, an MA USB device PAL transmits a null TransferResp 27
packet with the ARQ bit set to 1 and the Status Code field set to TRANSFER_PENDING. See Section 5.4 for 28
details. 29

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 163

Once the MA USB device receives the MA USB host acknowledgement to the pending state for all its 1
IN endpoints, it may initiate the process to move its session state to Session Inactive by transmitting a 2

SleepReq packet (Section 6.3.56) to the MAUSB host, which also carries the timeout values the MA 3
USB host has to observe in Session Inactive state when it initiates a management, control or data packet 4

exchange. Upon receiving the SleepReq packet, the MA USB host shall respond with a SleepResp 5
packet with the Status Code field set to 0 (NO_ERROR) if it grants the transition request, and set to 6
REQUEST_DENIED otherwise. Should the MA USB host accept the request to move its session state to 7

Session Inactive, through the SleepResp packet it shall indicate its own timeout values for management, 8
control and data packet exchanges initiated by the target MA USB device in Session Inactive state, with 9

all timeout values less than or equal to the corresponding timeout value in the SleepReq packet. 10

NOTE — The MA USB host may deny the MA USB device request to move the session state to Session Inactive for 11
any reason, including for example, an upcoming control transfer that targets the MA USB device. 12

After the MA USB host transmits a SleepResp packet with the Status Code field set to 0 (NO_ERROR), 13
it will move its session state to Session Inactive, and instruct its local management entity for the MA 14
link connecting the MA USB host and the MA USB device to perform required actions to put the MA 15

link in a suitable low-power mode that meets the timeout values specified in the SleepResp packet. 16

NOTE — The MA USB host is still required to respond to a possible SleepReq packet retried by the MA USB 17
device. 18

Once the MA USB device receives a SleepResp packet with the Status Code field set to 0 19
(NO_ERROR), it will move its session state to Session Inactive, and instruct its local management entity 20

for the MA link connecting the MA USB device and the MA USB host to put the MA link in a suitable 21
low-power mode that meets the timeout values specified in the SleepReq packet. 22

Figure 58 illustrates the method to move the session state to Session Inactive through a SleepReq packet. 23

MA USB device PAL moves its

session state to Session Inactive

N
o

n
e

 o
f
th

e
 n

o
n

-i
s
o

c
h

ro
n

o
u

s
 I
N

 e
n

d
p

o
in

ts

(t
h

e
 o

n
ly

 e
n

d
p

o
in

ts
 o

th
e

r
th

a
n

 c
o

n
tr

o
l

e
n

d
p

o
in

ts
)

h
a

s
 d

a
ta

 t
o

 s
e

n
d

MA USB host PAL MA USB device PAL

USBDI USB Logic EP

SleepReq()

SleepResp(Status Code NO_ERROR)

MA Link InterfaceMA Link Interface

TransferResp(EP Handle EP1, ..., ARQ 1,

Status Code TRANSFER_PENDING)TransferAck(EP Handle EP1, ...,

Status Code TRANSFER_PENDING)
TransferResp(EP Handle EP2, ..., ARQ 1,

Status Code TRANSFER_PENDING)TransferAck(EP Handle EP2, ...,

Status Code TRANSFER_PENDING)

The MA USB host PAL is aware of the

pending state for all IN endpoints

MA USB host PAL moves its

session state to Session Inactive

The MA USB device PAL instructs its local

MA link management entity to perform

required actions to enter low-power mode

The MA USB host PAL instructs its local

MA link management entity to perform

required actions to enter low-power mode

 24

Figure 58—Transition to Session Inactive state initiated by an MA USB device 25

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 164

8.2.2 Transition to Session Active state 1

8.2.2.1 Initiation by the MA USB host 2

The MA USB host may move its session state from Session Inactive to Session Active (and trigger a 3
similar transition in a target MA USB device) to resume exchange of a broader set of packets with the 4

target MA USB device PAL. 5

The method to move the session state to Session Active is explicit, as it makes use of dedicated 6

management packets. 7

The MA USB host instructs its local management entity for the MA link connecting the MA USB host 8
and the target MA USB device to perform required actions to exit the low-power mode, and transmits a 9

WakeReq packet (Section 6.3.58) to the target MA USB device. In response to a WakeReq packet, the 10
target MA USB device shall release a WakeResp packet (Section 6.3.59) with the Status Code field set 11

to 0 (NO_ERROR) to the management channel, move its session state to Session Active, and instruct its 12
local management entity for the link connecting the MA USB device and the MA USB host to perform 13
required actions to exit the low-power mode. The MA USB host moves its session state to Session 14

Active after it receives a WakeResp packet. 15

Figure 59 illustrates the session state transition to Session Active when initiated by the MA USB host 16

PAL. 17

MA USB host PAL MA USB device PAL

USBDI USB Logic EPMA Link InterfaceMA Link Interface

The MA USB host PAL instructs the local MA

link management entity to perform required

actions to exit low-power mode

The MA USB device PAL may be notified

by the local MA link management entity

that the MA link is not in low-power mode;

the MA USB device PAL does not move

the session state to Session Active yetWakeReq()

WakeResp(Status Code NO_ERROR)MA USB host PAL moves its

session state to Session Active

MA USB device PAL moves its

session state to Session Active

USBResumeReq(Device Handle)

USBResumeResp(Device Handle)

The MA USB host PAL can activate endpoints

and move the integrated USB device behind

the MA USB device PAL out of Suspend state

if it has inactivated the endpoints before

moving to Session Inactive state

The MA USB device PAL instructs the local

MA link management entity to perform

required actions to exit low-power mode

EPActivateReq(EP Handle list)

EPActivateResp(EP Handle list)

 18

Figure 59—Transition to Session Active state initiated by the MA USB host 19

After receiving a WakeResp packet and moving its session state to Session Active, the MA USB host 20
PAL can exchange management packets including USBResumeReq and EPActivateReq to move the 21
integrated USB device out of the Suspend state and activate the relevant endpoints on the MA USB 22

device. 23

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 165

8.2.2.2 Initiation by an MA USB device 1

An MA USB device with session in Session Inactive state may initiate the process to move its session 2
state to Session Active for a number of reasons described below. 3

Move to Session Active state through a WakeReq packet (explicit request) 4

If both the MA USB host and the MA USB device indicate support for the Link Sleep capability 5
(Sections 6.3.2.2 and 6.3.3.6), and the MA USB device has moved its session state to Session Inactive, 6

the MA USB device may transmit a WakeReq (Section 6.3.58) packet to initiate the process to move its 7
session state to Session Active. The MA USB device instructs its local management entity for the MA 8
link connecting the MA USB device and the MA USB host to perform required actions to exit the low-9

power mode, and transmits a WakeReq packet to the MA USB host. In response to a WakeReq packet, 10
the MA USB host shall release a WakeResp packet with the Status Code field set to 0 (NO_ERROR) to 11

the management channel, move its session state to Session Active, and instruct its local MA link 12
management entity to perform required actions to exit the low-power mode. The exchange of WakeReq 13
and WakeResp packets follows the management packet exchange behavior defined in Section 5.2.1.1 14

except that the timeout value is the value of the Management Request Timeout field in the SleepReq or 15
SleepResp packet that the MA USB host PAL transmitted when moving its session state to Session 16

Inactive. 17

Figure 60 illustrates the explicit method to move the session state to Session Active through a WakeReq 18
packet. 19

MA USB host PAL MA USB device PAL

USBDI USB Logic EPMA Link InterfaceMA Link Interface

The MA USB device PAL instructs its local

MA link management entity to perform

required actions to exit low-power mode

The MA USB host PAL instructs its local MA

link management entity to perform required

actions to exit low-power mode

WakeReq()

WakeResp(Status Code NO_ERROR) MA USB device PAL moves its

session state to Session Active

MA USB host PAL moves its

session state to Session Active

The MA USB host PAL may be notified by

the local MA link management entity that

the MA link is not in low-power mode; the

MA USB host PAL does not move the

session state to Session Active yet

 20

Figure 60—Transition to Session Active state initiated by an MA USB device (explicit 21
request) 22

USB Remote wake (implicit request) 23

An MA USB device with integrated USB device in Suspend state may transmit a RemoteWakeReq 24

(Section 6.3.32) packet. In response to a remote wake indication by the integrated USB device, the MA 25
USB device instructs its local management entity for the MA link connecting the MA USB device and 26
the MA USB host to perform required actions to exit the low-power mode, and transmits a 27

RemoteWakeReq packet to the MA USB host, with the Device Handle field in the packet identifying the 28
USB device that initiated the remote wake function. The exchange of RemoteWakeReq and 29

RemoteWakeResp packets follows the management packet exchange behavior defined in Section 30
5.2.1.1, except that the timeout value is the value of the Management Request Timeout field in the 31
SleepReq or SleepResp packet that the MA USB host PAL transmitted when moving its session state to 32

Session Inactive. 33

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 166

NOTE — An MA USB device does not transmit a RemoteWakeReq packet unless the USB 1
DEVICE_REMOTE_WAKEUP feature is set for its integrated USB device [USB 2.0]. 2

NOTE — An MA USB device that receives a remote wake indication after it has initiated the process to move its 3
session state to Session Inactive completes the move to Session Inactive state before transmitting a RemoteWakeReq 4
packet. 5

Upon receiving a RemoteWakeReq packet while in Session Inactive session state, the MA USB host 6
shall move its session state to Session Active (i.e., the RemoteWakeReq packet serves as an implicit 7
WakeReq packet). The MA USB host shall acknowledge a received RemoteWakeReq packet with a 8

Remote Wake Response (RemoteWakeResp) packet (Section 6.3.33), with the Device Handle field set 9
to the same value as the Device Handle field in the corresponding RemoteWakeReq packet. 10

In response to a RemoteWakeReq packet with the USB Device Resumed field set to 0, the MA USB 11
host shall first move the integrated USB device behind the MA USB device PAL out of the Suspend 12
state by transmitting a USBResumeReq packet (Section 6.3.30), and then activate the relevant endpoints 13

on the MA USB device by transmitting one or more EPActivateReq packets (Section 6.3.8). 14

In response to a RemoteWakeReq packet with the USB Device Resumed field set to 1, the MA USB 15

host shall directly activate the relevant endpoints on the MA USB device without transmitting the 16
USBResumeReq packet to the MA USB device. 17

Figure 61 illustrates the implicit method to move the session state to Session Active through the USB 18

remote wake function. 19

MA USB device PAL moves its

session state to Session Active

MA USB host PAL MA USB device PAL

USBDI

USBResumeResp(Device Handle,

Status Code NO_ERROR)

USBResumeReq(Device Handle)

Resume

indication

EPActivateResp(EP Handle list,

Status Code NO_ERROR)

EPActivateReq(EP Handle list)

RemoteWakeResp(Device Handle)

RemoteWakeReq(Device Handle)

USB Logic EPMA Link InterfaceMA Link Interface

The MA USB device PAL instructs its local

MA link management entity to perform

required actions to exit low-power mode

The MA USB host PAL may be notified by the

local MA link management entity that the MA

link is not in low-power mode; the MA USB host

PAL does not move the session state to

Session Active yet

MA USB host PAL moves its

session state to Session Active (implicit)

The MA USB host PAL instructs the local MA

link management entity to perform required

actions to exit low-power mode

 20

Figure 61—Transition to Session Active state initiated by an MA USB device (remote 21

wake) 22

Data or management packet exchange (implicit request) 23

When both the MA USB host and the target MA USB device indicate support for Link Sleep capability 24

(Sections 6.3.2.2 and 6.3.3.6), the MA USB device may move its session state from Session Inactive to 25
Session Active (and trigger a similar transition in the MA USB host) by transmitting any packet that 26

requires a response. The timeout applicable to the initial exchange is given by the Management Request 27
Timeout or Data Request Timeout field in the SleepReq or SleepResp packet transmitted by the MA 28
USB host when it moved its session state to Session Inactive. For example, an MA USB device with 29

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 167

pending IN endpoints may initiate the process to move its session state to Session Active once an IN 1
endpoint in pending state has data to transmit to the MA USB host. 2

NOTE — This method is exclusive to an MA USB device with control or non-isochronous IN endpoints only (e.g., 3
a native MA USB device with non-isochronous IN endpoints only, an MA USB hub with no USB device 4
downstream, or an MA USB hub with USB devices downstream with non-isochronous IN endpoints only) that has 5
all IN endpoints in the pending state, and has had the pending state for each IN endpoint acknowledged by the MA 6
USB host. 7

In response to detecting traffic from a previously pending IN endpoint, the MA USB device instructs its 8

local management entity for the MA link connecting the MA USB device and the MA USB host to 9
perform required actions to exit the low-power mode, and resumes a pending IN transfer by transmitting 10

one or more TransferResp packets belonging to the transfer, with the EoT field set to 1in at least the first 11
TransferResp packet that the MA USB device PAL transmits. 12

NOTE — The follow-on TransferResp packets may have the ARQ field set to 1 to solicit the MA USB host for a 13
TransferReq or TransferAck packet that serves as an implicit WakeReq packet. 14

In response to the first TransferResp packet received while its session is in Session Inactive state, the 15

MA USB host shall move its session state to Session Active (i.e., the TransferResp packet serves as an 16
implicit WakeReq packet), instruct its local management entity for the MA link connecting the MA USB 17
host and the MA USB device to perform required actions to exit the low-power mode, and reset the 18

transfer timers for the pending transfer request the received TransferResp packet identifies through its 19
Request ID field. The exchange of the first TransferResp packet and the corresponding TransferAck 20

packet follows the data packet exchange behavior defined in Section 5.2.1.2, except that the timeout 21
value is the value of the Data Request Timeout field in the SleepReq or SleepResp packet that the MA 22
USB host transmitted when moving its session state to Session Inactive. 23

NOTE — For example, if the received TransferResp packet has the EoT field set to 0, the MA USB host will expect 24
to receive a follow-on TransferResp packet no later than aTransferKeepAlive after it receives the first TransferResp 25
packet, or the MA USB host will transmit a TransferReq packet to inquire about the transfer status. 26

Figure 62 illustrates the implicit method to move the session state to Session Active through resuming a 27
pending IN transfer. 28

MA USB device PAL moves its

session state to Session Active

MA USB host PAL moves its

session state to Session Active (implicit)

MA USB host PAL MA USB device PAL

USBDI USB Logic EPMA Link interfaceMA Link interface

TransferResp(Sequence Number SN,

EoT 1 or ARQ 1)
TransferResp(Sequence Number SN+1,

EoT 1 or ARQ 1)

The MA USB device PAL resumes

transmitting data for the IN endpoint

The MA USB device PAL instructs its local

MA link management entity to perform

required actions to exit low-power mode

The MA USB host PAL may be notified by its

local MA link management entity that the MA

link is not in low-power mode; the MA USB

host PAL does not move the session state to

Session Active yet

New data

available

from a

pending

IN

endpoint

TransferAck or TransferReq packet

acknowledging at least one of the

TransferResp packets transmitted by the

MA USB device PAL

The MA USB host PAL instructs its local MA

link management entity to perform required

actions to exit low-power mode

 29

Figure 62—Transition to Session Active state initiated by an MA USB device (IN 30
transfer) 31

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 168

9 MA USB hub 1

9.1 MA USB hub enumeration 2

The enumeration of an integrated USB hub on MA USB device is the same as enumeration of a non-hub 3

integrated USB device, except for the case that the integrated hub is a USB 3.1 hub. In that case the 4
following modifications apply: 5

The integrated USB device enumeration procedure will occur twice, i.e., the MA USB host learns 6

whether the integrated USB device is a USB 3.1 hub as part of the capability exchange. If it is a USB 3.1 7
hub, then the MA USB host emulates two port status change events. 8

NOTE—For a fully compliant hub it does not matter which hub is enumerated first, but it is recommended that the 9
Enhanced SuperSpeed hub be enumerated first. 10

Hence, enumeration of the MA USB hub with an integrated USB 3.1 hub consists of the enumeration of 11

the Enhanced SuperSpeed hub as a standalone integrated USB device (as described in Section 7.3.2 and 12
depicted in Figure 47) followed by the enumeration of the USB 2.0 hub as a standalone integrated USB 13

device (again as described in Section 7.3.2 and depicted in Figure 47). 14

9.2 MA USB hub session tear down 15

The session teardown for an MA USB hub is similar to the MA USB device as described in Section 16

8.1.3 with the following changes: 17

 If the MA USB hub integrates a USB 3.1 hub, i.e., a USB 2.0 hub and an Enhanced SuperSpeed 18

hub, there are two port status change events and USB device removal events and procedures 19
instead of one. Note, however, that only one DevInitDisconnectReq and/or DevDisconnectReq is 20

sufficient for the MA USB hub. 21

 The USB device removal procedure is first carried out for all the USB devices downstream of the 22

integrated hub(s), and then for the integrated hub(s) on the MA USB hub. 23

9.2.1 Removal procedure for a USB device downstream of an MA USB hub 24

Removal of a USB device connected downstream of an MA USB hub is as captured in Section 8.1.3.4, 25

except for the fact that the host is notified of the port status change event (the disconnect event) on the 26
MA USB hub via USB control transfers. Following the completion of the port manipulations action 27
triggered by the host, the USB device removal procedure as depicted in Figure 56 follows. 28

9.3 MA USB hub power management 29

The power management mechanisms defined for an MA USB device in Section 8.2 also apply to an MA 30

USB hub. The following clarifications, however, may be found useful: 31

For transition of session state of an MA USB hub to Inactive State, all the endpoints on and behind the 32
integrated USB 2.0 and the Enhanced SuperSpeed hubs shall be first in the Suspend state and the 33

corresponding endpoint handles deactivated. Following that, one USBSuspendReq packet is transmitted 34
for each integrated hub to transition the hub to the Suspend state. A single SleepReq packet then moves 35

the session state to the Inactive State. 36

Similarly, for session state transition of an MA USB hub out of Inactive State, one WakeReq packet is 37
transmitted by the MA USB host to the MA USB hub. This packet is followed by USBResumeReq 38

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 169

packets for each integrated hub and the transition of all the endpoints (and their corresponding endpoint 1
handles) on and behind the integrated USB 2.0 and/or the Enhanced SuperSpeed hubs to Active state. 2

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 170

10 Protocol constants 1

Table 70 lists the MA USB protocol constants. 2

Table 70—MA USB protocol constants 3

Protocol constant Value

aDataChannelDelay Media dependent

aManagementChannelDelay Media dependent

aMaxIsochLinkDelay Media dependent

aMaxFrameDistance 895 frames

aManagementResponseTime 5 msec

aManagementRequestTimeout aManagementResponseTime + 2×aManagementChannelDelay

aTransferResponseTime 10 msec

aTransferTimeout aTransferResponseTime + 2×aDataChannelDelay

aTransferKeepAlive aTransferResponseTime + aDataChannelDelay

aDefaultKeepAliveDuration 0

aMaxTransferLifetime 1 sec

aTransferRepeatTime 10 msec

aMaxMediaTimeError 10 µs

aMaxMediaTimeSamplingError 10 µs

aMaxTransmissionDelayError 10 µs

aMinSynchFrequencyActive 20 msec

aMinSynchFrequencyIdle 1 sec

aMaxRequestID 28 – 1

aMaxSequenceNumber 224 – 2

aInvalidSequenceNumber 224 – 1

aMaxDialogToken 210 – 1

aMinControlTransferBufferSize 4,104 Bytes

Table 71 lists the MA USB protocol variables. 4

Table 71—MA USB protocol variables 5

Protocol variables Value

aBulkTransferRetries Minimum value 5

aControlTransferRetries Minimum value 5

aInterruptTransferRetries Minimum value 3

aManagementRetries Minimum value 4

aTransferSetupRetries Minimum value 4

 6

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 171

Appendix A – Discovery information prior to establishing a 1

secure connection 2

When connecting devices for the first time it is necessary to go through a process of discovery before 3
establishing a secure connection. As part of the discovery process an MA USB host should present to a 4
user a list of devices which are available for association. This list can be filtered by a discovery 5

application to only include devices suited to a particular application or which can be supported by a 6
given MA USB host. 7

USB hosts fall into two main categories: 8

 Standard Hosts with a full OS which can support the majority of devices available on the market. 9

o These hosts will have a large number of built in drivers as well as the option to install 10

third party drivers e.g. from the internet. 11

 Embedded Hosts, with support targeted at a sub-set of products 12

o These hosts will have a limited set of device classes which can be supported, and 13

potentially limited support within those classes. 14

o They typically have a Targeted Peripheral List [OTG&EH3] which is the list of 15

peripherals they are guaranteed to support. 16

o They may have limited hardware in terms of the number of supported endpoints. 17

The intention of this section is to outline the information which should be provided by an MA USB 18
device in order to facilitate the process of discovery for different types of host in order to enable the best 19
user experience. This section does not detail the exact mechanism which is to be used for the 20

information since this is a media specific decision. 21

There are two key aspects to this process: 22

 Users are able to successfully identify the device they wish to connect to. 23

 Hosts are able to determine which devices they can support with a minimal number of either 24

false positive or false negative detections. 25

A.1 User identification of a device 26

The most basic information that a user needs e.g. to match the MA USB device “on their desk” to the 27
MA USB device listed on their screen is the manufacturer name and a description of the device. 28

The following USB related information should be made available: 29

 Manufacturer name string 30

o As indexed in the Standard Device Descriptor by iManufacturer 31

 Product name string 32

o As indexed in the Standard Device Descriptor by iProduct 33

 Device Release Number 34

o As defined in the Standard Device Descriptor by bcdDevice 35

 Device Serial Number 36

o As indexed in the Standard Device Descriptor by iSerialNumber 37

It would also be helpful to identify the category and sub-category of device to the user. This feature is 38
not supported by USB but may be part of the Media being used. 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 172

A.2 Platform driver matching 1

The information and process required to successfully determine driver support for a given host is 2
complex. However, it is potentially possible to determine driver support with a minimal amount of 3
information. 4

A.2.1 Driver Identification 5

Initial driver identification in [USB3.1] is currently either carried out by matching a Vendor ID and 6
Product ID or by using Device Class. Devices may support multiple classes, each representing a 7

different function, and so multiple tuples of information should be provided. 8

The minimal information required to perform initial discovery is the following: 9

 Vendor ID 10

o As defined in the Standard Device Descriptor by idVendor 11

 Product ID 12

o As defined in the Standard Device Descriptor by idProduct 13

 A list of the supported device classes in the form of tuples of the following: 14

o Device class, Sub-Class, Protocol 15

 As defined in the Standard Device, IAD [USB 3.1], WHCM [WMC 1.1] or 16

Interface Descriptors 17

For simple devices, when the device class tuple used in combination with a category or sub-category 18

provided by a particular Media this may be sufficient to identify which part of the device class will be 19
needed. 20

A.2.2 Configuration Descriptor Set 21

Real USB devices are described by their descriptors. These provide the major of information about what 22
the device requires in terms of driver support. 23

In the ideal case the MA USB Device will expose sufficient functionality prior to secure connection, to 24
allow multiple GET_DESCRIPTOR requests to be made and responded to in sequence. If multiple 25
requests cannot be made on a given media then a two-step process should be used. In the first step 26

information is provided which provides sufficient information to request the descriptors in the second 27
step. 28

To facilitate this process the driver should provide the following information as part of initial discovery: 29

 Number of Configurations 30

o As defined in the Standard Device Descriptor by bNumConfigurations 31

 Total size of all Configuration Descriptor Sets combined in bytes. 32

 Number of Strings in all configurations 33

o Total number of strings defined to enable indexing/retrieval of strings. 34

 Maximum size of string table in bytes for any given language. 35

 String descriptor zero 36

o As defined in [USB3.1] contains the list of LANGID codes supported by the device. 37

It is recommended that a request is made available in order to retrieve the appropriate descriptors rather 38
than these being broadcast. This request should contain the following information based on the Standard 39

Get Descriptor device request: 40

 bmRequestType = 10000000B 41

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 173

o Only required if a Control Endpoint is being emulated otherwise some other means can 1

be used to identify GET_DESCRIPTOR requests. 2

 bRequest=8 (GET_DESCRIPTOR) 3

o Only required if a Control Endpoint is being emulated otherwise some other means can 4

be used to identify GET_DESCRIPTOR requests. 5

 wValue: 6

o High Byte=Descriptor Type (as defined in Table 9-6 of [USB3.1]) 7

o Low Byte=Index into required configuration or string descriptor 8

 wIndex=zero or Language ID (see list on http://www.usb.org/developers/docs/) 9

 wLength=Descriptor Length 10

Multiple of these GET_DESCRIPTOR requests can be aggregated at one time in order to retrieve 11

multiple descriptors. 12

Devices support one or more Configurations; a “bundle” of descriptors describing a particular set of 13
functions which can be selected. Each of these descriptor sets can typically be up to 4 KB long. By using 14

the Number of Configurations value it is possible to retrieve all available Configurations if required. 15

Devices may support multiple strings contained in an indexed table of strings. For each string there can 16

be multiple languages supported. It is possible to retrieve all strings for a given language or all available 17
strings if required. 18

A.2.3 Morphing devices 19

Some devices will determine heuristically the characteristics of the host operating system they are 20
attached to and then present descriptors which are appropriate. After the descriptors have been obtained 21
they will retain their settings until they are power cycled. This is particularly an issue for an MA USB 22

hub which wants to present information on attached USB devices which may morph differently when 23
interrogated by the MA USB hub and by the MA USB host. MA USB hubs should therefore power 24

cycle USB devices once they have obtained descriptor information to present prior to secure connection, 25
in order to ensure that the USB devices interoperate correctly on full enumeration. 26

http://www.usb.org/developers/docs/

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 174

Appendix B – WiGig specific requirements 1

B.1 Recommended MAC and PHY features for MA USB products using 2

WiGig Certified radios 3

Table 72 lists some 802.11ad MAC and PHY features that vendors are recommended to provide for MA 4
USB products using WiGig Certified radios. These features are not strictly required for MA USB 5

operation but can result in improved performance or functionality. 6

NOTE — Mandatory MAC and PHY features for WiGig Certified radios are defined in Annex B (Protocol 7
Implementation Conformance Statement (PICS) pro forma) of the IEEE 802.11ad standard [IEEE 802.11]. 8

NOTE — Improvements in performance or functionality may depend on feature availability in both the MA USB 9
host and a target MA USB device. 10

Table 72—Recommended 802.11ad MAC and PHY features for MA USB products 11

802.11ad PICS item Protocol capability

MAC protocol capabilities

PC39 Multi-band operation

PC39.3.1 Transmission of FST Tear down

QoS base functionality

QB4.3.2 Extended Compressed Block Ack

QoS enhanced distributed channel access (EDCA)

QD3 Multiple frame transmission support

DMG MAC features

DMG-M4.4 Transmission of A-MPDU

DMG-M6 Reverse direction aggregation exchange

DMG-M7.3.2 CBAP allocation

DMG-M7.4.2.2 Support for four transmit queues with a separate channel

access entity associated with each

DMG-M7.5.1 Scheduling of pseudo-static allocation

DMG-M10 DMG Block Ack with flow control

DMG-M11 DMG link adaptation

DMG-M14.2 STA power management with wakeup schedule

DMG-M14.3 PCP power management

DMG-M18 Changing DMG BSS parameters

DMG PHY features

DBandP2.5.2.2 MCS 5-12

 12

B.2 WiGig MA USB Protocol Constants 13

Table 73 lists the recommended MA USB protocol constants when implemented over the WiGig radio. 14

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 175

Table 73—MA USB protocol constants for WiGig 1

Protocol constant Value (802.11 mode) Value (IP mode)

aDataChannelDelay 25 msec 100 msec

aMaxIsochLinkDelay 25 msec 100 msec

aManagementChannelDelay 25 msec 100 msec

B.3 Synchronization in WiGig 2

WiGig devices shall use the transmission delay mechanism for synchronization. 3

MEDIA DEPENDENT NOTE — In 802.11 mode, if the MA USB packet is transmitted as part of a MAC-level A-4
MSDU aggregation and is not the first MSDU in the aggregation, the transmitter may choose not to initialize the 5
Transmission Delay field in the outgoing packet. In this case, the transmitter shall set the MTD Valid subfield (in the 6
I-Flags field or in SynchReq packet) to 0 to indicate an invalid Transmission Delay field. 7

MEDIA DEPENDENT NOTE — In 802.11 mode, if the receiving MA USB device determines that the MA USB 8
packet may have experienced considerable latency (e.g., as a result of retransmission at the MAC layer), it may set 9
the MTD Valid subfield in the I-Flags of the received packet to 0 to invalidate the Transmission Delay field. 10

B.4 WiGig implementation of L-managed OUT transfer 11

With WiGig radio, the reliable, in-order and flow-controlled delivery required for a link-managed 12
transfer can be achieved by sending all the data-bearing packets belonging to the transfer (TransferReq 13

packets for OUT transfers, TransferResp packets for IN transfers) through a dedicated Traffic Identifier 14
(TID) with normal or block acknowledgement policy. In order to achieve the best performance, it is 15

recommended to use the first acknowledgement policy from the following list that is supported by and 16
available to both the MA USB host MAC and the target MA USB device MAC: (1) Block Ack with 17
flow control, (2) any other Block Ack variant, and (3) Normal Ack. 18

For l-managed OUT transfers, the MA USB host PAL instructs the local MAC to set up a Block or 19
Normal Ack agreement from the MA USB host MAC to the target MA USB device MAC on a 20

dedicated Traffic identifier (TID). All TransferReq packets carrying the transfer payload shall be sent 21
over the established session. Other packets may be sent using any control or data channel available to 22
MA USB communication. 23

NOTE — If the session is a TC, the actual User Priority (UP) applied to the TransferResp packets in l-managed IN 24
transfers, and TransferReq packets in l-managed OUT transfers may be imposed by TID availability. 25

The 4-bit Traffic Identifier (TID) designated for the l-managed transfer serves as the flow-controlled 26

connection ID indicated in the TransferSetupReq and TransferSetupResp packets. TID is always 27
selected by the MA USB host and communicated through the TransferSetupReq Packet. As part of the 28

connection set up process, the MA USB host may create airtime allocations in the form of Service 29
Periods (SPs) or Contention-based Access Periods (CBAPs), and one or more Traffic Streams (TSs), and 30
map the TSs to the created allocations. When using SPs, packets sent using the Block Ack with flow 31

control session (TransferResp packets for IN transfers, TransferReq packets for OUT transfers) may 32
make use of the MAC-level Reverse Direction (RD) mechanism to increase the transmit opportunity for 33

TransferReq or TransferResp packets in the opposite direction. 34

Figure 63 illustrates two l-managed OUT transfers over the WiGig link. The first OUT transfer goes 35
through set up and data phases. The MA USB host receives a flow-control event in the middle of the 36

transfer, and momentarily stops the flow of TransferReq packets. The flow is resumed once the flow 37
control event clears, and ultimately the data phase completes with no error. In anticipation of more OUT 38

transfers, the MA USB host keeps the resources allocated to the transfer in place, and starts the second 39

Media Agnostic Universal Serial Bus Specification Release 1.0

 Page 176

OUT transfer without going through the set up phase. The second transfer experiences a STALL 1
condition on the target endpoint, which triggers the MA USB device to send a TransferResp packet 2

reporting the error. The MA USB host in this case releases the resources allocated to the transfer and 3
sends a TransferTearDownConf packet to the target MA USB device. 4

MA USB host PAL MA USB device PAL

Write request

Pipe interface p

Write buffer B1

Write size 30 KB

MA USB OUT transfer

Request Id 1

Transfer size 30 KB

TransferSetupReq(MA USB EP Handle

ep, TID 13)

TransferResp(Request Id 1, Sequence No. 4,

EoT 1, Status Code SUCCESS)Write response

Status OK

Data transfer phase complete with no error; MA

USB host keeps the allocated link resources in

place in anticipation of more transfers

Optional airtime allocation, traffic

stream set up (in one or both

directions) and mapping traffic

stream(s) to airtime allocations

TransferSetupResp

(MA USB EP Handle ep, TID 13)

Acknowledgement for

data delivery over the air

(not shown)

TransferReq(Request Id 1, Sequence No. 0,

Remaining Size 24 KB)

TransferReq(Request Id 1, Sequence No. 1,

Remaining Size 18 KB)

TransferReq(Request Id 1, Sequence No. 2,

Remaining Size 12 KB)

TransferReq(Request Id 1, Sequence No. 3,

Remaining Size 6 KB)

TransferReq(Request Id 1, Sequence No. 4,

Remaining Size 0 KB)

Write request

Pipe interface p

Write buffer B2

Write size 36 KB

Write response

Status STALL

TransferReq(Request Id 2, Sequence No. 5,

Remaining Size 30 KB)

MA USB OUT transfer

Request Id 2

Transfer size 36 KB

TransferResp(Request Id 2, Sequence No. 5,

Status Code STALL)

TransferTearDownConf(MA USB EP Handle

ep, TID 13)

S
e

t u
p

 p
h

a
s
e

D
a

ta
 p

h
a

s
e

 (m
a

y
 c

o
n

tin
u

e
 a

c
ro

s
s
 m

u
ltip

le
 tra

n
s
fe

rs
)

T
e

a
r d

o
w

n

p
h

a
s
e

MA USB host flow-controlled

ADDTS Request
ADDTS Response

Block or normal acknowledgment

(block acknowledgment with flow

control preferred) set up in the

direction of the data transfer (and

optionally in the reverse direction)

Tear down of the acknowledged

session, and deletion of

possible airtime and traffic

streams allocated to the transfer

ADDTS Request
ADDTS Response

ADDBA Request
ADDBA Response

DELBA Request

DELTS Request

DELTS Request

All TransferReq

packets are

carrying 6 KB of

USB payload

NRDY

USB endpoint

flow-controlled

ERDY

STALL

USB data flow

resumes

Data transfer phase complete with STALL error;

MA USB host PAL chooses to release the

resources (it may also keep them in place in

anticipation of more transfers)

Receive buffer capacity (RBUFCAP) = 0 (when

block acknowledgment with flow control is used),

or rejection of received MAC Protocol Data Units

(when another acknowledgment policy is used)

TransferAck(Request Id r)

MA Link Interface MA Link InterfaceUSBDI USB Logic EP

 5

Figure 63—Link-managed OUT transfer in WiGig implementation 6

 7

