USB4™ Configuration Layer, USB3 Tunneling, DP Tunneling and PCIe Tunneling

Gal Yedidia – Architect, Intel Corporation

USB Developer Days 2019 – Taipei, Taiwan
November 20, 2019
Agenda

• Configuration Layer
 • USB3 Tunneling
 • DP Tunneling
 • PCIe Tunneling
Configuration Layer Agenda

- Roles
- Control Adapter
- Topology ID
- Control Packets
- Configuration Spaces
- Operations
Configuration Layer Roles

• Provides the control plane, used by Connection Manager and Routers
 • Discovery
 • Configuration
 • Notification

• Provides Control channel between two Connection Managers
Control Adapter

- Exists as Adapter 0 at every Router
- Attends all control requests received from the Connection Manager
- Generates all needed control responses and notifications to the Connection Manager
- Participates in Control Packets Routing through Path 0
Topology ID

- Uniquely assigned for each Router by the Connection Manager along with the Depth.
Topology ID

- Uniquely assigned for each Router by the Connection Manager along with the Depth
- Once written, a Router is Enumerated
- Represents the position of the Router within the Domain
- Uses for Control Packets routing
- The TopologyID at depth ‘X’ is denoted as 0,...,0,Px-1,Px-2,...,P0 where Pn is the Adapter Number of the Downstream Facing Adapter at Depth ‘n’.

![Diagram of Topology ID with labeled routers and their positions](image)
Control Packets

- **Header**
 - **HopID = 0**
 - **PDF sets the Type**

<table>
<thead>
<tr>
<th>PDF</th>
<th>HopID = 0</th>
<th>Length</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route String High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route String Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Data (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PDF Type**
 - 1 Read Request & Read Response
 - 2 Write Request & Write Response
 - 3 Notification
 - 4 Notification Acknowledgment
 - 5 Hot Plug Event
 - 6 Inter-Domain Request
 - 7 Inter-Domain Response
Control Packets

<table>
<thead>
<tr>
<th>PDF</th>
<th>HopID = 0</th>
<th>Length</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Route String**
 - **TopologyID + CM bit**

Route String
- **Route String High**
- **Route String Low**
- **Control Data (optional)**
- **CRC**

Control Data

<table>
<thead>
<tr>
<th>Downstream-Bound</th>
<th>Upstream-Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiated By</td>
<td>CM bit</td>
</tr>
<tr>
<td>Connection Manager</td>
<td>0b</td>
</tr>
<tr>
<td>Router (Control Adapter)</td>
<td>1b</td>
</tr>
<tr>
<td>TopologyID</td>
<td>Target Router</td>
</tr>
<tr>
<td>Initiated Router</td>
<td></td>
</tr>
</tbody>
</table>

Topology ID

```
CM Reserved Level 6 Adapter # Level 5 Adapter # Level 4 Adapter # Level 3 Adapter # Level 2 Adapter # Level 1 Adapter # Level 0 Adapter #
1 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6
```

Topology ID

- **Downstream-Bound**
- **Upstream-Bound**
- **Initiated By**
- **CM bit**
- **TopologyID**

Initiated Router

Connection Manager

Router (Control Adapter)

Target Router

Reserved

CM

2

Reserved

7

CM
Control Packets

- **Routing – Downstream-Bound** to Router C
 - Route String = 00000057h
 - Control Adapters of the ‘Host Router’ and ‘Router-B’ are forwarding the Packet
 - Control Adapter in ‘Router-C’ consumes the Packet

<table>
<thead>
<tr>
<th>PDF</th>
<th>HopID = 0</th>
<th>Length</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route String High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route String Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Data (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control Packets

<table>
<thead>
<tr>
<th>PDF</th>
<th>HopID = 0</th>
<th>Length</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Route String High</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Route String Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Data (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Routing** – Upstream-Bound From Router C
 - *Route String* = \(80000057h\) \((CM = 1b)\)
 - Control Adapter in ‘Router-C’ initiates the Packet
 - Control Adapters of the ‘Host Router’ and ‘Router-B’ are forwarding the Packet
Control Packets

<table>
<thead>
<tr>
<th>PDF</th>
<th>HopID = 0</th>
<th>Length</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Route String High</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Route String Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Data (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Reliability**

• **CRC** – 32 bits CRC covers the entire Control Packet Payload

• Response **time** to a Control Packet is bounded

• Notification Packets are retransmitted by Routers until acknowledgment is received
Configuration Spaces (CS)

- Accessed by a Connection Manager, using **Read Request & Write Request** Control Packets.
 - Used for Discovery and Configuration
 - Read Write Registers

Read Request

<table>
<thead>
<tr>
<th>Header</th>
<th>Route String High</th>
<th>Route String Low</th>
<th>Rsvd</th>
<th>SN</th>
<th>CS</th>
<th>Adapter Num</th>
<th>Read Size</th>
<th>Address</th>
<th>CRC</th>
</tr>
</thead>
</table>

Write Request

<table>
<thead>
<tr>
<th>Header</th>
<th>Route String High</th>
<th>Route String Low</th>
<th>Rsvd</th>
<th>SN</th>
<th>CS</th>
<th>Adapter Num</th>
<th>Write Size</th>
<th>Address</th>
<th>CRC</th>
</tr>
</thead>
</table>

Write Data (1-60 DWs)
Configuration Spaces

- **Router CS**
 - One per Router
 - Information and Control at the Router level
 - Link list: Basic + TMU + Vendor specific

- **Adapter CS**

- **Path CS**

- **Counters CS**
Configuration Spaces

• **Router CS**
• **Adapter CS**
 • One per Adapter
 • Information and Control at Adapter level
 • Link list: Basic + Adapter specific + Vendor specific
• **Path CS**
• **Counters CS**
Configuration Spaces

- **Router CS**
- **Adapter CS**
- **Path CS**
 - One per Adapter
 - Size is according to the number of supported Paths
 - One entry per Path – 2 DWs
 - Entry attributes are different for
 - Path 0 Vs Non zero
 - Lane Adapter Vs Protocol Adapter
- **Counters CS**

![Path 0 Diagram](image-url)
Configuration Spaces

- **Router CS**
- **Adapter CS**
- **Path CS**

Counters CS

- One per Adapter
- Optional
- Size is according to number of supported Counter Sets
- Each Counter Set counts Path(s) statistics

![Counter Set Diagram]

- Counter Set 0
 - Received Packets Low
 - Received Packets High
 - Dropped Packets

- Counter Set 1
 - Received Packets Low
 - Received Packets High
 - Dropped Packets

- Counter Sets 2 to \(\{\text{Max Counter Sets} - 1\}\)
Operations

- Initiated by a Connection Manager, targeting a Router or a Port
- A request for an elaborated task which might require or return a data structure

Router Operations
- CM uses the Router CS to initiate a Router Operation
 - DP Operations
 - NVM Operations
 - Discovery Operations
 - Port Control Operations

Port Operations

<table>
<thead>
<tr>
<th>Router Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query DP Resource Availability</td>
</tr>
<tr>
<td>Allocate DP Resource</td>
</tr>
<tr>
<td>De-allocate DP Resource</td>
</tr>
<tr>
<td>NVM Write</td>
</tr>
<tr>
<td>NVM Authenticate Write</td>
</tr>
<tr>
<td>NVM Read</td>
</tr>
<tr>
<td>NVM Set Offset</td>
</tr>
<tr>
<td>DROM Read</td>
</tr>
<tr>
<td>Get NVM Sector Size</td>
</tr>
<tr>
<td>Get PCIe Downstream Entry Mapping</td>
</tr>
<tr>
<td>Get Capabilities</td>
</tr>
<tr>
<td>Set Capabilities</td>
</tr>
<tr>
<td>Buffer Allocation Request</td>
</tr>
<tr>
<td>Get Container-ID</td>
</tr>
<tr>
<td>Block Sideband Port Operations</td>
</tr>
<tr>
<td>Unblock Sideband Port Operations</td>
</tr>
<tr>
<td>Vendor Specific Router Operations</td>
</tr>
</tbody>
</table>
Operations

• Initiated by a Connection Manager, targeting a Router or a Port
• A request for an elaborated task which might requires or returns a data structure

• Router Operations

• Port Operations
 • CM uses the SB Register Space to initiate a Port Operation
 • The Target Port could be in a local Router, Re-timer or a remote Router
 • Set special modes Operations
 • Execute compliance tests Operations
 • Lane Margining Operations

<table>
<thead>
<tr>
<th>Port Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET_TX_COMPLIANCE</td>
</tr>
<tr>
<td>SET_RX_COMPLIANCE</td>
</tr>
<tr>
<td>ROUTER_OFFLINE_MODE</td>
</tr>
<tr>
<td>START_BER_TEST</td>
</tr>
<tr>
<td>END_BER_TEST</td>
</tr>
<tr>
<td>END_BURST_TEST</td>
</tr>
<tr>
<td>READ_BURST_TEST</td>
</tr>
<tr>
<td>ENTER_EI_TEST</td>
</tr>
<tr>
<td>ENUMERATE_RE-TIMERS</td>
</tr>
<tr>
<td>READ_LANE_MARGIN_CAP</td>
</tr>
<tr>
<td>RUN_HW_LANE_MARGINING</td>
</tr>
<tr>
<td>RUN_SW_LANE_MARGINING</td>
</tr>
<tr>
<td>READ_SW_MARGIN_ERR</td>
</tr>
</tbody>
</table>
Time for Q&A
Agenda

• Configuration Layer
• USB3 Tunneling
• DP Tunneling
• PCIe Tunneling
USB3 Tunneling Agenda

- System View
- Internal USB3 Device
- Protocol Stack
- USB3 Adapter
 - Paths
 - Encapsulation
System View

- **Native USB Enhanced SuperSpeed (USB3)** is Tunneled over USB4 Fabric

- Originates and consumed as Native Enhanced SuperSpeed protocol

- From USB3 SW perspective, the USB3 topology remains the same

- **USB3 Adapters** are the translators within each Router that allows USB3 protocol to travel back and forth from Native to Tunneled
System View

- **Native USB Enhanced SuperSpeed (USB3)** is Tunneled over USB4 Fabric

- Originates and consumed as **Native Enhanced SuperSpeed protocol**

- From USB3 SW perspective, the USB3 topology remains the same

- **USB3 Adapters** are the translators within each Router that allows USB3 protocol to travel back and forth from **Native to Tunneled**
System View

• **Native USB Enhanced SuperSpeed (USB3)** is **Tunneled** over USB4 Fabric

• Originates and consumed as **Native Enhanced SuperSpeed protocol**

• From USB3 SW perspective, the USB3 topology remains the same

• **USB3 Adapters** are the translators within each Router that allows USB3 protocol to travel back and forth from **Native to Tunneled**
System View – USB4™ Host

- **USB4 Host** must support USB3 Tunneling

- **USB4 Host** implements an Enhanced SuperSpeed Host controller

- **Host Router** has ‘N’ USB3 Downstream Adapters
 - ‘N’ – Number of Downstream USB Type-C connectors

- **USB4 Host** maintains backward compatibility and is also a USB3 Host
• **USB4 Hub** must support USB3 Tunneling

• **USB4 Hub** implements an Enhanced SuperSpeed Hub

• **Device Router** implements a USB3 Upstream Adapter

• **Device Router** has ‘N’ USB3 Downstream Adapters
 - ‘N’ – Number of Downstream USB Type-C connectors

• **USB4 Hub** maintains backward compatibility and is also a USB3 Hub
• **USB4 Peripheral Device** can optionally support USB3 Tunneling

• If the **USB4 Peripheral Device** supports USB3 Tunneling then:
 • *It* implements a SuperSpeed Plus Hub or a USB 3.2 peripheral device
 • *It* maintains backward compatibility and is also a USB3 Hub or a USB 3.2 peripheral device
 • **Device Router** implements a USB3 Upstream Adapter
Internal USB3 Device

- **Internal USB3 device** refers to either an *internal USB SuperSpeed Plus hub*, internal USB peripheral device, or internal host controller.

- **Internal USB3 device ports** that interface with a USB3 Adapter differ from the USB 3.2 Spec, mainly at the Physical and Link Layers behavior.
Internal USB3 Device

• **Internal USB3 device ports** that interface with a USB3 Adapter differ from the USB 3.2 Spec
 • No *Physical* Layer
 • No Scrambling
 • No SKIP Ordered-Set
 • **Link** Layer
 • Must support *Gen 2* Single-Lane (2x1)
 • May support *Gen 2* Dual-Lane (2x2)
 • *Gen 1* not supported
 • U1 not supported
 • tPortConfiguration, PENDING_HP_TIMER and few more timers extended
Protocol Stack

- The Internal USB3 Device interfaces to the USB3 Adapter layer after the Link Layer

- The USB3 Adapter encapsulates the Native USB3 protocol into USB4 Transport Layer Packets
Protocol Stack

- The Internal USB3 Device interfaces to the USB3 Adapter layer after the Link Layer

- The USB3 Adapter encapsulates the Native USB3 protocol into USB4 Transport Layer Packets
USB3 Adapter - Paths

• A USB3 **Downstream** Adapter encapsulates USB3 events and constructs into USB4 Transport Layer Packets, and sends them through the **Outbound** Path.

• A USB3 **Downstream** Adapter receives USB4 Transport Layer Packets from the **Inbound** Path, and translates them into USB3 events and constructs.

• A USB3 **Upstream** Adapter encapsulates USB3 events and constructs into USB4 Transport Layer Packets, and sends them through the **Inbound** Path.

• A USB3 **Upstream** Adapter receives USB4 Transport Layer Packets from the **Outbound** Path, and translates them into USB3 events and constructs.
USB3 Adapter - Encapsulation

- The PDF defines the construct being tunneled
- Idle Symbols are not tunneled
- The bytes and bits in a Tunneled Packet payload, other than LFPS and Ordered Set, are packed in the same order as the original USB3 construct, including the USB3 framing

<table>
<thead>
<tr>
<th>PDF</th>
<th>Type</th>
<th>Payload of Tunneled Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0h</td>
<td>LFPS</td>
<td>Indication for an LFPS sequence</td>
</tr>
<tr>
<td>1h</td>
<td>Ordered Set</td>
<td>One TS1, TS2, or SDS Ordered Set</td>
</tr>
<tr>
<td>2h</td>
<td>Link Command</td>
<td>One USB3 Link Command</td>
</tr>
<tr>
<td>3h</td>
<td>LMP / TP / ITP</td>
<td>One LMP, TP, Deferred DPH, or ITP header packet</td>
</tr>
<tr>
<td>4h</td>
<td>Start DP Segment</td>
<td>The first segment of a USB3 Data Packet (DPH and DPP)</td>
</tr>
<tr>
<td>5h</td>
<td>Middle DP Segment</td>
<td>A segment of a USB3 Data Packet that is not the first segment and is not the last segment</td>
</tr>
<tr>
<td>6h</td>
<td>End DP Segment</td>
<td>The last segment of a USB3 Data Packet that is broken into more than one segment</td>
</tr>
</tbody>
</table>
USB3 Adapter – Encapsulation – LFPS & OS

• The LFPS and Ordered-Set (OS) count/duration is not maintained over the tunnel

• Upon new LFPS/OS event from the Internal USB3 device, a USB3 Adapter sends 3 identical LFPS/OS Tunneled Packets

• A USB3 Adapter receiving LFPS/OS Tunnel Packet will indicate the LFPS/OS reception to the Internal USB3 device until receiving a different Tunneled Packet.
USB3 Adapter – Encapsulation - LFPS

<table>
<thead>
<tr>
<th>PDF = 0</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>LBP M En</td>
<td>W R</td>
<td>U3 Wa</td>
</tr>
</tbody>
</table>

- **PDF** = 0 ; Length is constant = 4 ; CRC protects the Payload
- **RX Term Enable**
- **SCD1, SCD2, U2 Exit, U3 Wakeup, Warm Reset, LBPM Enable**
- **LBPM**
USB3 Adapter – Encapsulation - LFPS

<table>
<thead>
<tr>
<th>PDF = 0</th>
<th>*</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>R</td>
<td>LBP M En</td>
<td>LBPM</td>
<td>Rsvd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W R U3 Wa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U2 Ex SCD 2</td>
<td>S C D 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RX T En</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PDF** = 0 ; Length is constant = 4 ; CRC protects the Payload
- **RX Term Enable**
 - LFPS Tunneled Packet is generated when value changes
 - Represents the current state of the local low-impedance receiver termination in every LFPS Tunneled Packet
- **SCD1, SCD2, U2 Exit, U3 Wakeup, Warm Reset, LBPM Enable**
- **LBPM**
USB3 Adapter – Encapsulation - LFPS

<table>
<thead>
<tr>
<th>PDF = 0</th>
<th>*</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>R</td>
<td>LBP M En</td>
<td>W R U3 Wa U2 Ex SCD1 SCD2 RX T En</td>
<td>LBPM</td>
</tr>
</tbody>
</table>

- **PDF** = 0 ; Length is constant = 4 ; CRC protects the Payload
- **RX Term Enable**
- **SCD1, SCD2, U2 Exit, U3 Wakeup, Warm Reset, LBPM Enable**
 - LFPS Tunneled Packet is generated when the LFPS indication from the Internal USB3 device changes
 - Only one of the bits can be set to 1b
 - When all equal to 0b – It is LFPS stop
- **LBPM**
USB3 Adapter – Encapsulation - LFPS

<table>
<thead>
<tr>
<th>PDF = 0</th>
<th>*</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>R</td>
<td>LBPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCD1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCD2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>En</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rsvd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LBPM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PDF** = 0 ; Length is constant = 4 ; CRC protects the Payload
- **RX Term Enable**
- **SCD1, SCD2, U2 Exit, U3 Wakeup, Warm Reset, LBPM Enable**
- **LBPM**
 - LFPS Tunneled Packet is generated when a new LBPM PHY Capability byte is sent the Internal USB3 device
 - **LBPM Enable** is set to 1b
USB3 Adapter – Encapsulation – Ordered Set

• **TS1, TS2, SDS**
 - Ordered Set Tunneled Packet is generated when the Ordered Set indication from the Internal USB3 device changes
 - One bit and only one is set to 1b
 - **Link Functionality** contains the value received from the Internal USB3 device

• No other Ordered Set is sent over the Tunnel
• Only Ordered Set for Lane 0 are sent

<table>
<thead>
<tr>
<th>PDF = 1</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td>Rsvd</td>
<td>Link Functionality</td>
<td>Rsvd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S D S T S 2 T S 1</td>
</tr>
</tbody>
</table>
USB3 Adapter – Encapsulation

- **Link Commands (PDF = 2) ; LMP, TP, ITP (PDF = 3)**
 - Each is encapsulated into a single separate Tunneled Packet
 - Packed in the same order as the original USB3 construct, including the USB3 framing symbols.
 - The **first** byte (i.e. the least-significant byte of the encapsulated construct) is mapped to **B0** in the Tunneled Packet payload

Link Command Example

<table>
<thead>
<tr>
<th>PDF = 2</th>
<th>*</th>
<th>HOP ID</th>
<th>Length = 8</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC</td>
<td></td>
<td>SLC</td>
<td>SLC</td>
<td>EPF</td>
</tr>
<tr>
<td>Link Command Word Byte 0</td>
<td>Link Command Word Byte 1</td>
<td>Link Command Word Byte 0</td>
<td>Link Command Word Byte 1</td>
<td></td>
</tr>
</tbody>
</table>
USB3 Adapter – Encapsulation – Data Packets

• A USB3 Data Packet and its USB3 framing symbols are segmented into one or more Tunneled Packets

• For a USB3 Data Packet with 252 bytes or less, a single Tunneled Packet of type **Start DP Segment** is sent

![Diagram of data packet structure]

- **PDF** = 4h
- HopID
- Length = n
- HEC

First Data Packet DW
...
...
Last Data Bytes
First payload DW
...
...
Padding
USB3 Adapter – Encapsulation – Data Packets

- A USB3 Data Packet with more than 252 bytes is segmented into multiple Tunnelled Packets

- All Tunnelled Packets except the last packet includes 252 bytes of payload
USB3 Adapter – Encapsulation – Data Packets

- The first Tunneled Packet is of type **Start DP Segment** \((PDF = 4)\)

- Any following Tunneled Packets other than the last Tunneled Packet is of type **Middle DP Segment** \((PDF = 5)\)
• The last Tunneled Packet is of type **End DP Segment** (*PDF = 6*)

• Padding is added to be DW aligned
Time for Q&A
Agenda

- Configuration Layer
- USB3 Tunneling
- DP Tunneling
- PCIe Tunneling
DP Tunneling Agenda

- System View
- Protocol Stack
- Paths and Packet Types
- AUX Handling
- Link Training
- Main-Link Tunneling
 - Basic Concepts
 - SST
 - MST
System View

- **Native DisplayPort™** is Tunneled over USB4 Fabric
- Originates and consumed as **Native DP** protocol
- From DP Source perspective, the USB4 Fabric and the Adapters are either totally transparent or act as an LTTPR
- DP Adapters are the translators within each Router that allow DP protocol to travel back and forth from **Native** to **Tunneled**
System View

• **Native DisplayPort™** is Tunneled over USB4 Fabric

• Originates and consumed as Native DP protocol

• From DP Source perspective, the USB4 Fabric and the Adapters are either totally transparent or act as an LTTPR

• DP Adapters are the translators within each Router that allow DP protocol to travel back and forth from Native to Tunneled
System View

• **Native DisplayPort™** is Tunneled over USB4 Fabric

• Originates and consumed as **Native DP** protocol

• From DP Source perspective, the USB4 Fabric and the Adapters are either totally transparent or act as an LTTPR

• **DP Adapters** are the translators within each Router that allow DP protocol to travel back and forth from **Native to Tunneled**
System View – USB4™ Host

- **USB4 Host** must support DP Tunneling

- **Host Router** has at least one DP IN Adapter
 - It can additionally support multiple DP IN and DP OUT Adapters

- **USB4 Host** must support **DP Alternate Mode**
System View – USB4™ Hub

- Two ways that a **USB4 Hub** must support DP Tunneling:
 - **Pass Through** – DP Traffic routed directly between UFP and DFP
 - **DP OUT** – **Device Router** has at least one DP OUT Adapter

- **Device Router** can additionally support one or more DP OUT and/or DP IN Adapters

- **USB4 Hub** must support **DP Alternate Mode** on its DFP
System View – USB4™ Peripheral Device

- **USB4 Peripheral Device** can optionally support DP Tunneling

- **Device Router** can support one or more DP IN and/or DP OUT Adapters
DP Adapter Protocol Stack

- A DP Adapter connects on one side to a Native DP PHY and on the other to the Transport Layer.
- A DP Adapter implements only the Physical Layer of the DP Protocol Stack.
- A DP Adapter encapsulates the Native DP protocol into USB4 Tunneled Packets.
DP Adapter Protocol Stack

• A DP Adapter connects on one side to a Native DP PHY and on the other to the Transport Layer.

• A DP Adapter implements only the Physical Layer of the DP Protocol Stack

• A DP Adapter encapsulates the Native DP protocol into USB4 Tunneled Packets
A **DP IN** Adapter uses 2 Paths to send Transport layer Packets to the **DP OUT** Adapter

- **DP Main-Link Path** encapsulates
 - DP High Speed Constructs
 - DP Clock Sync
- **DP IN Aux Path** encapsulates
 - AUX Request from DP Source
 - Configuration and Status messages to the **DP OUT** Adapter

A **DP OUT** Adapter uses 1 Path to send Transport layer Packets to the **DP IN** Adapter

- **DP OUT Aux Path** encapsulates
 - AUX Responses from DP Sink
 - HPD & IRQ from Sink
 - Configuration and Status messages to the **DP IN** Adapter
DP Adapter – Paths & Packet Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AUX</td>
</tr>
<tr>
<td>1</td>
<td>HPD</td>
</tr>
<tr>
<td>2</td>
<td>SET_CONFIG</td>
</tr>
<tr>
<td>3</td>
<td>ACK</td>
</tr>
</tbody>
</table>
DP Adapter – Paths & Packet Types

<table>
<thead>
<tr>
<th>PDF</th>
<th>Type</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SST Video</td>
<td>Active Video data</td>
</tr>
<tr>
<td>2</td>
<td>SST Blank Start</td>
<td>Blank Start and Scrambler Reset</td>
</tr>
<tr>
<td>3</td>
<td>SST MSA</td>
<td>Main Stream Attribute</td>
</tr>
<tr>
<td>4</td>
<td>SST Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>5</td>
<td>DP Clock Sync</td>
<td>DP TMU clock synchronization</td>
</tr>
<tr>
<td>6</td>
<td>MST</td>
<td>Multi Stream</td>
</tr>
<tr>
<td>7</td>
<td>FEC</td>
<td>FEC Enable and FEC Disable</td>
</tr>
</tbody>
</table>

PDF Type Usage

1 SST Video Active Video data
2 SST Blank Start Blank Start and Scrambler Reset
3 SST MSA Main Stream Attribute
4 SST Secondary Secondary
5 DP Clock Sync DP TMU clock synchronization
6 MST Multi Stream
7 FEC FEC Enable and FEC Disable
AUX Handling – LTTPR Mode

- DP Adapters act as one LTTPR, where the **DP IN Adapter** is the UFP and the **DP OUT Adapter** is DFP
- **DP IN Adapter** maps the AUX Transactions to *Target, Snoop, and Pass Through*
- **Target** - AUX transactions which target the LTTPR
AUX Handling – LTTPR Mode

- DP Adapters act as one LTTPR, where the **DP IN Adapter** is the UFP and the **DP OUT Adapter** is DFP.

- **DP IN Adapter** maps the AUX Transactions to Target, Snoop, and Pass Through.

- **Snoop** - AUX transactions which hold valuable information for the LTTPR.

- **DP IN Adapter** will snoop the data of the Request or the Response and may update the **DP OUT Adapter** with the snooped data.
AUX Handling

- **Non LTTPR** is similar to LTTPR Mode, except:
 - AUX Transactions related to Link Training are terminated and responded by the **DP IN Adapter**
 - A **DP IN Adapter** maintains the AUX Timeout towards the DP Source and may issue DEFER Transaction if response does not arrive on time from DP Sink

- A **DP IN Adapter** aggregates the capabilities of the DP Sink and the DP Adapters and reflects the lowest common option to the DP Source
 - DPCD Revision, Link Rate, Lane Count, MST, FEC, DSC, SDP Split
Link Training - LTTPR

• DP Source trains **both** of the DP Links according to DP Spec, where both DP Adapters appear as a single LTTPR

 • The **DP IN Adapter** keeps the **DP OUT Adapter** updated on the Link Training progress using SET_CONFIG Packets.

 • DP Training Patterns are not tunneled over the Main-Link Path. SET_CONFIG Packets sent from **DP IN Adapter** to **DP OUT Adapter**, reflecting the current received Training Pattern.
Link Training – Non LTTPR

- DP Source trains a single DP Link (DP Link 1), and is unaware of DP Link 2
- **DP OUT Adapter** trains DP Link 2 in parallel
- **DP IN Adapter** aggregates the link training status of both Adapters
 - DP Source can react to link training failures and activate fallback
 - When DP Source is done with Link Training, both DP Links are trained

![Diagram of Link Training](image)
Main-Link Tunneling – Base Concepts

• MST and SST share the following base concepts

 • All Main-Link Symbols generated by the DP OUT Adapter are identical to the Symbols received by the DP IN Adapter

 • The total number of Main-Link Symbol clock cycles, over time, is identical on both DP Links
 • The DP OUT Adapter corrects any drift with respect to the DP IN Adapter recovered clock

 • Main-Link Symbols are 8b/10 ANSI decoded and de-scrambled by the DP IN Adapter and packed into Tunneled Packets as 8-bit data characters
Main-Link Tunneling – Base Concepts

- MST and SST share the following base concepts
 - Main-Link Stuffing Symbols are discarded by the **DP IN Adapter** and reconstructed by the **DP OUT Adapter**
 - FEC RS parity symbols are not packed into Tunneled Packets. A **DP IN Adapter** performs FEC Decoding while a **DP OUT Adapter** performs FEC Encoding
 - HDCP is supported. Encryption and decryption are not performed
 - In order to reconstruct DP Main-Link traffic **without any interruptions**, a **DP OUT Adapter** implements a buffer that compensates for the jitter in the latency of the received Tunneled Packets.
Main-Link Tunneling – SST

• The continuous Main-Link data stream is encapsulated into Tunneled Packets

• **Control Link Symbols** are discarded by the **DP IN Adapter** and reconstruct by the **DP OUT Adapter** based on the SST Tunnel Packet type

 • *Example:* **SS & SE Symbols will be discarded when Secondary Data is encapsulated into a Secondary Tunneled Packet*
Main-Link Tunneling – SST

• *Fill Count* field exists in every SST Tunneled Packet to inform **DP OUT Adapter** on the number of discarded **Stuffing Symbols**

• DP IN Adapter discards Dummy Symbols during horizontal and vertical Blanking and Stuffing Symbols during Active Video
Main-Link Tunneling – MST

• The Native DP MST Link is built out of continually transported Multi Stream Transport Packets (MTP)

• The *Native DP MTPs* are broken up by the **DP IN Adapter** into *Sub-MTP Transfers Units (TU)* before being encapsulated in MST Tunnellel Packets

• A **DP OUT Adapter** recreates *Native DP MTPs* out of the *Sub-MTP TUs*

• A **DP IN Adapter** performs encapsulation regardless of Virtual Channels boundaries
Main-Link Tunneling – MST

• An MST Tunneled Packet starts with a Sub-MTP TU header

• An MST Tunneled Packet may include up to 17 Sub-MTP TUs
Main-Link Tunneling – MST

• A **Sub-MTP TU** has a 3 byte header, optional parameters and optional data
 • The header includes the type, the length and the start Slot inside the Native MTP
 • The Parameters may include Data or K-Symbol index

Map a 4 Lanes MTP with BE, ‘n’ slots of active video and the rest is unallocated
Main-Link Tunneling – MST

• A *Sub-MTP TU* has a 3 byte header, optional parameters and optional data
 • The header includes the type, the length and the start Slot inside the Native MTP
 • The Parameters may include Data or K-Symbol index

Map a 1 Lane unallocated sequence
Main-Link Tunneling – MST

- A **Sub-MTP TU** has a 3 byte header, optional parameters and optional data
 - The header includes the type, the length and the start Slot inside the Native MTP
 - The Parameters may include Data or K-Symbol index

Map a 4 Lanes MTP with 2 cycles of Active pixel data followed by SF and unallocated slots

<table>
<thead>
<tr>
<th>Slots</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n</th>
<th>n+1</th>
<th>...</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 0</td>
<td>00</td>
<td>V_{10}</td>
<td>V_{20}</td>
<td>C4</td>
<td>⋯</td>
<td>C4</td>
<td>⋯</td>
<td></td>
</tr>
<tr>
<td>Lane 1</td>
<td>00</td>
<td>V_{11}</td>
<td>V_{21}</td>
<td>C4</td>
<td>⋯</td>
<td>C4</td>
<td>⋯</td>
<td></td>
</tr>
<tr>
<td>Lane 2</td>
<td>00</td>
<td>V_{12}</td>
<td>V_{22}</td>
<td>C4</td>
<td>⋯</td>
<td>C4</td>
<td>⋯</td>
<td></td>
</tr>
<tr>
<td>Lane 3</td>
<td>00</td>
<td>V_{13}</td>
<td>V_{23}</td>
<td>C4</td>
<td>⋯</td>
<td>C4</td>
<td>⋯</td>
<td></td>
</tr>
</tbody>
</table>
Time for Q&A
Agenda

• Configuration Layer
• USB3 Tunneling
• DP Tunneling
• PCIe Tunneling
PCIe Tunneling Agenda

- System View
- Internal PCIe Device
- Protocol Stack
- PCIe Adapter
 - Paths
 - Encapsulation
System View

• **Native PCIe is Tunneled** over USB4 Fabric

• Originates and consumed as **Native PCIe** protocol

• From PCIe SW perspective, the PCIe tree remains the same

• **PCIe Adapters** are the translators within each Router that allows PCIe protocol to travel back and forth from **Native** to **Tunneled**
System View

- Native PCIe is Tunneled over USB4 Fabric
- Originates and consumed as Native PCIe protocol
- From PCIe SW perspective, the PCIe tree remains the same
- PCIe Adapters are the translators within each Router that allows PCIe protocol to travel back and forth from Native to Tunneled
System View

- **Native PCIe is Tunneled** over USB4 Fabric
- Originates and consumed as **Native PCIe protocol**
- From PCIe SW perspective, the PCIe tree remains the same

- **PCIe Adapters** are the translators within each Router that allows PCIe protocol to travel back and forth from **Native** to **Tunneled**
System View – USB4™ Host

• **USB4 Host** can optionally support PCIe Tunneling

• If **USB4 Host** supports PCIe Tunneling then:
 • *It* implements a PCIe controller
 • **Host Router** has ‘*N*’ PCIe Downstream Adapters
 • ‘*N*’ – Number of Downstream USB Type-C connectors
System View – USB4™ Hub

- **USB4 Hub** must support PCIe Tunneling

- **USB4 Hub** implements a PCIe Switch

- **Device Router** implements a PCIe Upstream Adapter

- **Device Router** has ‘*N*’ PCIe Downstream Adapters
 - ‘*N*’ – Number of Downstream USB Type-C connectors
System View – **USB4™ Peripheral Device**

- **USB4 Peripheral Device** can optionally support PCIe Tunneling

- If the **USB4 Peripheral Device** supports PCIe Tunneling then:
 - *It* implements an internal PCIe Endpoint or Switch
 - **Device Router** implements a USB3 Upstream Adapter
Internal PCIe Port

- **Internal PCIe Port** refers to either a Root Complex PCIe port, internal PCIe Switch Port, or internal PCIe Endpoint port.

- **Internal PCIe Ports** that interface with a PCIe Adapter differ from the PCIe Spec, mainly at the Physical-Logical and Transaction Layers behavior.
Internal PCIe Port

- **Internal PCIe Ports** that interface with a PCIe Adapter differ from the PCIe Spec
 - No **Physical Electrical** Sub-Block Layer
 - **Physical Logical** Sub-Block Layer
 - Operates and support Gen 1 only
 - As this is a virtual link, the actual speed and throughput could be higher than *Gen 1*
 - *Link width* Negotiation is not applicable
 - Only TS for Lane0 are present over the tunnel
 - No Scrambling
 - *L0s and L1 PM Sub-states* are not supported
Internal PCIe Port

• **Internal PCIe Ports** that interface with a PCIe Adapter differ from the PCIe Spec

 • **Transaction Layer**
 • A Max Payload Size of 128 Bytes
 • *LTR* must be supported
 • *Hot-add* and *hot-removal* must be supported

 • A USB4 Hub must support
 • Access Control Services (*ACS*)
 • Flattening Portal Bridge (*FPB*)
Protocol Stack

• The Internal PCIe Port interfaces to the PCIe Adapter layer after the Physical Logical Sub-block

• The PCIe Adapter encapsulates the Native PCIe protocol into USB4 Transport Layer Packets
Protocol Stack

• The Internal PCIe Port interfaces to the PCIe Adapter layer after the Physical Logical Sub-block

• The PCIe Adapter encapsulates the Native PCIe protocol into USB4 Transport Layer Packets

PCle Adapter - Paths

- A PCle **Downstream** Adapter encapsulates PCle events and constructs into USB4 Transport Layer Packets, and sends them through the **Outbound** Path.

- A PCle **Downstream** Adapter receives USB4 Transport Layer Packets from the **Inbound** Path, and translates them into PCle events and constructs.

- A PCle **Upstream** Adapter encapsulates PCle events and constructs into USB4 Transport Layer Packets, and sends them through the **Inbound** Path.

- A PCle **Upstream** Adapter receives USB4 Transport Layer Packets from the **Outbound** Path, and translates them into PCle events and constructs.
PCIe Adapter - Encapsulation

<table>
<thead>
<tr>
<th>PDF</th>
<th>Type</th>
<th>Payload of Tunneled Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1h</td>
<td>Ordered Set</td>
<td>One PCIe EIOS, TS1, or TS2 Ordered Set.</td>
</tr>
<tr>
<td>2h</td>
<td>Electrical Idle State</td>
<td>Indication of an Electrical Idle state on PCIe.</td>
</tr>
<tr>
<td>3h</td>
<td>TLP/DLLP</td>
<td>PCIe TLPs and/or DLLPs.</td>
</tr>
<tr>
<td>5h</td>
<td>PERST Active</td>
<td>PCIe Reset (PERST) in active state.</td>
</tr>
<tr>
<td>6h</td>
<td>PERST Inactive</td>
<td>PCIe Reset (PERST) in inactive state.</td>
</tr>
</tbody>
</table>

• The PDF defines the construct being tunneled

• Logical Idle Symbols are not tunneled

• Each Ordered Set and PCIe out-of-band event is encapsulated into a separate Tunneled Packet

• The order of bytes and bits in the Tunneled Packet are identical to the original PCIe construct. The least-significant byte of the encapsulated construct is mapped to B0 in the Tunneled Packet Payload.
PCIe Adapter – Encapsulation – Ordered Set

• Only **TS1**, **TS2** and **EI** Ordered Set are tunneled
• Only Ordered Set for **Lane 0** are tunneled
• The Ordered Set is tunneled in its **entirety**
• K-Chars are replaced with 8 bit representation. Example of **EIOS**:

<table>
<thead>
<tr>
<th>PDF = 1</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCh (COM)</td>
<td>7Ch (IDL)</td>
<td>7Ch (IDL)</td>
<td>7Ch (IDL)</td>
</tr>
</tbody>
</table>

• When a PCIe Adapter receives one or more identical Ordered Sets from the Internal PCIe Port it transmits **N** Ordered-Set Tunneled PCIe Packets
 • **TS** – N is **at least 16**
 • **EI** – N is **2**

• When a PCIe Adapter receives an Ordered Set Tunneled PCIe Packets it sends the Ordered Set content to the Internal PCIe Port
PCIe Adapter – Encapsulation – EI State

• When an Internal PCIe Port indicates that it is in Electrical Idle state, a PCIe Adapter sends at least 3 **Electrical Idle State** Tunneled Packets:

<table>
<thead>
<tr>
<th>PDF = 2</th>
<th>*</th>
<th>HOP ID</th>
<th>Length = 4</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

• A PCIe Adapter indicates Rx Electrical Idle to the Internal PCIe Port on those events:
 • Receiving **Electrical Idle State** Tunneled Packet
 • Receiving **Ordered-Set Tunneled Packet** with EI content

• A PCIe Adapter **stops** indicating Rx Electrical Idle to the Internal PCIe Port if it receives a Tunneled Packet which is not one of the above
PCIe Adapter – Encapsulation – PERST

• Upon detecting an assertion of PERST#, a Host Router sends at least 3 **PERST Active** Tunneled Packets on all Downstream PCIe Adapters:

<table>
<thead>
<tr>
<th>PDF</th>
<th>HOP ID</th>
<th>Length</th>
<th>HEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
</tbody>
</table>

• A Device Router which receives **PERST Active** Tunneled Packet on its Upstream PCIe Adapter:
 • Sends at least 3 **PERST Active** Tunneled Packets on all Downstream PCIe Adapters
 • Assert PERST# on all Physical and internal PCIe Ports

• Same flow is executed when detecting de-assertion of PERST# using the **PERST Inactive** Tunneled Packet.
A PCIe Adapter removes **STP Symbol**, 4 leading **reserved** bits and **END Symbol**. It prepends a **pre-header**, containing a marker (**Fh**) and length (**LEN**) in **DWs**.
PCIe Adapter – Encapsulation – DLLP

- A PCIe Adapter removes the STP Symbol, and the END Symbol. It prepends a pre-header, containing a marker (0FACh)
PCIe Adapter – Encapsulation – Mixed TLP/DLLP

- A PCIe TLP/DLLP Tunneled Packet may contain:
 - Single TLP
 - Single DLLP
 - DLLP followed by a DLLP
 - DLLP followed by a TLP
Time for Q&A