

Universal Serial Bus Type-C™ Authentication
Functional Test Specification for Authentication Responders

Date: September 19, 2017

Revision: 0.9

Copyright © 2017, USB Implementers Forum, Inc.

Compliance Rev 0.9

2

All rights reserved.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE

ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED OR

INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR

INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, RELATING TO IMPLEMENTATION OF

INFORMATION IN THIS SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO

DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE THE

INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED "AS IS" AND WITH NO WARRANTIES, EXPRESS OR IMPLIED,

STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. NO WARRANTY

OF MERCHANTABILITY, NO WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR

ANY PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT OF ANY PROPOSAL,

SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER FOR THE COST OF

PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR

ANY INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER

CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS

SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF

SUCH DAMAGES.

Revision History

9/19/2017

3

Revision Issue Date Comments

0.9 September 19,

2017

Initial draft

Compliance Rev 0.9

4

Significant Contributors:

Intel Abdul Ismail

Intel Stephanie Wallick

Intel Enrique Fernandez

MicroChip Richard Petrie

Renesas Dan Aoki

Renesas Kiichi Muto

Renesas Philip Leung

Renesas Bob Dunstan

Renesas Toshifumi Yamaoka

Specwerkz Diane Rose

Specwerkz Søren Petersen

9/19/2017

5

Contents
Introduction ... 6

Terminology .. 6

Assertions .. 7

Test Requirements .. 17

Software .. 17

Hardware .. 17

PD .. 17

USB .. 17

Timing.. 17

Certificates .. 17

Test Setup ... 17

PD .. 17

USB .. 19

Vendor Checklist .. 20

Product Information ... 20

Vendor Attestations .. 21

Tests .. 22

Authentication Responder Tests ... 22

PD Product Authentication Responder Tests.. 32

USB Product Tests ... 32

Product Key Tests .. 35

Compliance Rev 0.9

6

Introduction
These tests check that a USB Type-C™ Authentication Responder is compliant to the USB Type-C™

Authentication Specification assertions and functional requirements.

Terminology
The following table describes the terms used in this document.

ACB Authentication Compliance Bridge – test equipment used to transfer authentication messages

between an RVS and UUT. Authentication Compliance Bridge specification is available at

TBD.

CVT Certificate Verification Tool – test equipment capable of parsing certificates and verifying

certificate fields.

UUT Unit Under Test – the Authentication Responder that subject to the tests defined in this

document.

RVS Authentication Responder Verification System – test equipment capable of performing the tests

defined in this document.

9/19/2017

7

Assertions
Compliance criteria are provided as a list of assertions that describe specific characteristics or behaviors that must be

met. Assertions are organized according to the section of the USB Type-C™ Authentication Specification from

which they were derived. Each assertion provides a reference to the specific test description(s) where the assertion is

tested.

Each assertion is formatted as follows:

Assertion # Test # Assertion Description

Assertion#: Unique identifier for each assertion. The identifier is in the form

USBAUTH_SPEC_SECTION_NUMBER#X, where X is a unique integer for a requirement in that section.

Assertion Description: Specific requirement from the USB Type-C™ Authentication Specification

Test #: A label that identifies which test (if any) is used to test an assertion. Test # can have one of the following

values:

NT This item is not explicitly tested in a test description. Items can be labeled NT for several reasons –

including items that are not testable, not important to test for interoperability, or are indirectly tested

by other operations performed by the compliance test.

X.X This item is covered by the test described in test description X.X in this specification.

IOP This assertion is verified by the USB Type-C™ Authentication Interoperability Test Suite.

BC This assertion is applied as a background check in all test descriptions.

TBD This assertion will be tested in a later phase of compliance testing.

The following Table presents the USB Type-C™ Authentication Specification assertions.

Assertion # Test # Assertion Description

1.5.2.8 Reserved

1.5.2.8#1 NT The use and interpretation of reserved bits, bytes, words, and code values

may be specified by future extensions to this specification and, unless

otherwise stated, shall not be utilized or adapted by vendor

implementation.

1.5.2.8#2 TD 1.2

General Test

Procedure

A Reserved bit, byte, word, or field shall be set to zero by the sender and

shall be ignored by the receiver.

1.5.2.8#3 General Test

Procedure

Reserved field values shall not be sent by the sender and, if received, shall

be ignored by the receiver.

3 Authentication Architecture

3.1 Certificates

3.1.1 Format

3.1.1#1 TD 1.3 All Certificates shall use the X509v3 ASN.1 structure.

Compliance Rev 0.9

8

Assertion # Test # Assertion Description

3.1.1#2 TD 1.3 All Certificates shall use binary DER encoding for ASN.1.

3.1.1#3 TD 1.3 All Certificates shall use ECDSA Using the NIST P256, secp256r1 curve,

uncompressed format for digital signing of certificates and Authentication

Messages.

3.1.1#4 TD 1.1

TD 1.3

All Certificates shall use SHA256 for all cryptographic hashes.

3.1.1#5 TD 1.3 Leaf certificates shall not exceed MaxLeafCertSize in length.

3.1.1#6 TD 1.3 Intermediate Certificates shall not exceed MaxIntermediateCertSize in

length.

3.1.2 Textual Format

3.1.2#1 TD 1.3 All textual ASN.1 objects contained within Certificates, including

DirectoryString, GeneralName, and DisplayText, shall be specified as

either a UTF8String, PrintableString, or IA5String.

3.1.2#2 TD 1.3 The length of any textual object shall not exceed 64 bytes excluding the

DER type and DER length encoding.

3.1.3 Attributes and Extensions

3.1.3.1 Distinguished Name

3.1.3.1#1 NT A Certificate Authority shall not issue Certificates with the same

distinguished name to different Entities.

3.1.3.1.1 Common Name (OID 2.5.4.3)

3.1.3.1.1#1 TD 1.3 The common name attribute shall appear in every Certificate.

3.1.3.1.1#2 TD 1.3 The common name attribute shall contain a string matching one of the

following three patterns: “USB::” “USB:<vid>:” “USB:<vid>:<pid>”

3.1.3.1.1#3 TD 1.3 When present, <vid> and <pid> shall be left zero padded and big endian.

3.1.3.1.1#4 TD 1.3 Uppercase letters shall not be used in the hex encoding of a VID or PID.

3.1.3.1.1#5 TD 1.3 The common name attribute in the Leaf Certificate of a Certificate Chain

shall contain both a VID and a PID.

3.1.3.1.1#6 TD 1.3 If a VID value appears in a Certificate in the Chain, then the same VID

value shall be used in all subsequent Certificates.

3.1.3.1.1#7 TD 1.3 If a PID value appears in a Certificate in the Chain, then the same PID

value shall be used in all subsequent Certificates.

3.1.3.1.2 Organization Name (OID 2.5.4.10)

3.1.3.1.2#1 NT The organization name attribute shall be present in a Root Certificate.

3.1.3.1.2#2 TD 1.3 When present, the organization name attribute shall contain the human-

readable name of the organization that owns the private key that

corresponds to the Certificate.

3.1.3.1.3 Serial Number (OID 2.5.4.5)

3.1.3.2 Basic Constraints (OID 2.5.29.19)

9/19/2017

9

Assertion # Test # Assertion Description

3.1.3.2#1 TD 1.3 The basic constraints extension shall be present and marked as critical.

3.1.3.2#2 TD 1.3 The cA component of the basic constraints exception shall be false in a

Leaf Certificate.

3.1.3.2#3 TD 1.3 The cA component of the basic constraints exception shall be true for a

non-Leaf Certificate.

3.1.3.2#4 TD 1.3 No other component of the basic constraints exception shall be included.

3.1.3.3 Key Usage (OID 2.5.29.15)

3.1.3.3#1 TD 1.3 The key usage extension shall be present.

3.1.3.3#2 TD 1.3 Leaf Certificates shall have the digitalSignature bit of the key usage

extension set, and all other bits cleared.

3.1.3.3#3 TD 1.3 Non-Leaf Certificates shall have the keyCertSign bit of the key usage

extension set, may optionally have the cRLSign bit of the key usage

extension set, and shall have all other bits cleared.

3.1.3.4 Extended Key Usage (OID 2.5.29.37)

3.1.3.4#1 TD 1.3 The extended key usage extension shall be present and marked as critical.

3.1.3.4#2 TD 1.3 The extended key usage extension shall contain the USB-IF issued OID

2.23.145.1.1 for the “USB-Auth” extended key usage.

3.1.3.5 Validity

3.1.3.5#1 NT/checklist Certificate notBefore and notAfter validity times shall be ignored.

3.1.3.5#2 TD 1.3 Certificate notBefore and notAfter validity times shall be specified using

either ASN.1 GeneralizedTime for any year, or ASN.1 UTCTime for years

prior to 2050.

3.1.3.6 USB-IF ACD (OID 2.23.145.1.2)

3.1.3.6#1 TD 1.3 Leaf certificates shall contain the USB-IF ACD extension.

3.1.3.6#2 TD 1.3 Non-Leaf certificates shall not contain the USB-IF ACD extension.

3.1.3.7 Additional Attributes and Extensions

3.2 Certificate Chains

3.2#1 TD 1.4 A Certificate Chain shall not exceed MaxCertChainSize bytes.

3.2#2 TD 1.4 Each slot shall either be empty or contain one complete certificate chain.

3.2#3 NT/checklist A Product shall not contain more than 8 slots.

3.2#4 TD 1.4 Slots 0 through 3 shall only be used for Certificate Chains rooted with a

USB-IF Root Certificate and shall not contain any other Certificate Chains.

3.2.1 Provisioning

3.3 Private Keys

3.3#1 TD 4.1 All private keys in a Product shall be different from one another.

3.3#2 NT/checklist All private keys in a Product shall be generated, provisioned, and stored in

a manner that adequately protects the confidentiality of the key.

3.3#3 NT/checklist A private key used by one Product shall not be used by any other Products.

Compliance Rev 0.9

10

Assertion # Test # Assertion Description

4 Authentication Protocol

4#1 TD 1.1

TD 1.4

TD 1.5

A Product shall not act as an Authentication Responder unless it contains a

Certificate Chain in slot 0.

4.1 Digest Query

4.1#1 TBD If an error condition is encountered, the Authentication Responder shall

respond with the appropriate ERROR Response.

4.1#2 TD 1.1

TD 1.3

TD 1.4

TD 1.9

If an error condition is not encountered, the Authentication Responder shall

respond with a DIGESTS Response.

4.2 Certificate Chain Read

4.2#1 TD 1.6 If an Authentication Responder receives a GET_CERTIFICATE request

that targets an offset that is outside the Certificate Chain (i.e. offset >

length) or attempts to read beyond the length of the target Certificate Chain

(i.e. (offset + length) > Certificate Chain length), then the Authentication

Responder shall return an ERROR Authentication Response with Param1

set to INVALID_REQUEST and Param2 set to 00h.

4.2#2 TD 1.4 If an error condition is encountered, the Authentication Responder shall

respond with the appropriate ERROR Response.

4.2#3 TD 1.1

TD 1.3

TD 1.4

TD 1.9

If an error condition is not encountered, the Authentication Responder shall

respond with a CERTIFICATE Response.

4.3 Authentication Challenge

4.3#1 TD 1.4

If an error condition is encountered, the Authentication Responder shall

respond with the appropriate ERROR Response.

4.3#2 TD 1.4

TD 1.5

TD 1.9

If an error condition is not encountered, the Authentication Responder shall

respond with a CHALLENGE_AUTH Response

4.4 Errors and Alerts

4.4.1 Invalid Requests

4.4.1#1 TD 1.7 If an Authentication Responder receives an Authentication Request with

one or more invalid fields, it shall respond to that Authentication Request

with an ERROR Response that has Param1 set to INVALID_REQUEST

and Param2 set to 00h.

4.4.2 Unsupported Protocol Version

4.4.2#1 TD 1.8 If an Authentication Responder receives an Authentication Request that

contains an unsupported Security Protocol Version in the ProtocolVersion

field, it shall respond to that Authentication Request with an ERROR

Response that has ProtocolVersion set to the minimum Security Protocol

Version it supports, Param1 set to UNSUPPORTED_PROTOCOL, and

Param2 set to the maximum Security Protocol Version it supports.

4.4.3 Busy

9/19/2017

11

Assertion # Test # Assertion Description

4.4.3#1 General Test

Procedure

If an Authentication Responder receives an Authentication Request but is

unable to meet either the timing requirements listed in Section 6.4 (for PD

Products) or Section 7.4 (for USB Products), it shall respond to that

Authentication Request with an ERROR Response that has Param1 set to

BUSY and Param2 set to 00h

4.4.4 Unspecified

4.4.4#1 General Test

Procedure

If an Authentication Responder, upon receiving an Authentication Request,

encounters an error that is not covered by any condition that is not

otherwise covered in section 4.4 of the USB Type-C™ Authentication

specification, it shall respond to that Authentication Request with an

ERROR Response that has Param1 set to UNSPECIFIED and Param2 set

to 00h.

5 Authentication Messages

5.1 Header

5.1#1 IOP All Authentication Messages shall start with the 4-byte header defined in

Table 5-1 of the USB Type-C™ Authentication specification.

5.1.1 USB Type-C Authentication Protocol Version

5.1.1#1 General Test

Procedure

A Product shall not use a USB Type-C™ Authentication Protocol Version

value corresponding to a specification revision that it does not support.

5.1.2 Message Type

5.1.2#1 General Test

Procedure

The Message Type field shall contain one of the Authentication Message

Types listed in Tables 5-3 or 5-9 of the USB Type-C™ Authentication

specification.

5.1.3 Param1

5.1.4 Param2

5.2 Authentication Requests

5.2#1 NT Authentication Message types 00h - 7Fh shall only be used for

Authentication Responses.

5.2.1 GET_DIGESTS

5.2.2 GET_CERTIFICATE

5.2.2#1 NT The value in the Param1 field shall be between 0 and 7 inclusive.

5.2.3 CHALLENGE

5.3 Authentication Responses

5.3#1 General Test

Procedure

Authentication Message types 80h - FFh shall only be used for

Authentication Requests.

5.3.1 DIGESTS

5.3.1#1 TD 1.1 The Capabilities Field shall be set to 01h.

5.3.1#2 TD 1.4 The bit in position K of the Param2 field shall be set if and only if slot

number K contains a Certificate Chain for the protocol version in the

ProtocolVersion field. (Bit 0 is the least significant bit of the byte.)

5.3.1#3 TD 1.1 The number of digests returned shall be equal to the number of bits set in

Param2.

5.3.1#4 TD 1.1 The digests shall be returned in order of increasing slot number.

5.3.2 CERTIFICATE

Compliance Rev 0.9

12

Assertion # Test # Assertion Description

5.3.3 CHALLENGE_AUTH

5.3.3#1 TD 1.5 The value in the Param1 field shall contain the Slot number in the

Param1 field of the corresponding CHALLENGE Request.

5.3.3#2 TD 1.4 The bit in position K of the Param2 field shall be set if and only if slot

number K contains a Certificate Chain for the protocol version in the

ProtocolVersion field. (Bit 0 is the least significant bit of the byte.)

5.3.3.1 Signature

5.3.4 ERROR

6 Authentication of PD Products

6.1 Transfers less than or equal to MaxExtendedMsgLen

6.2 Transfers greater than MaxExtendedMsgLen

6.2#1 NT An Authentication Initiator shall break up a security transfer into

Authentication Messages that don’t exceed MaxExtendedMsgLen.

6.3 Examples

6.4 Timing Requirements for PD Security Extended Messages

6.4.1 Authentication Initiator

6.4.2 Authentication Responder

6.4.2#1 PD Timing

Test

An Authentication Responder shall send an Authentication Response

within tDigestSent of receiving a GET_DIGESTS Authentication Request.

6.4.2#2 PD Timing

Test

An Authentication Responder shall send an Authentication Response

within tCertSent of receiving a GET_CERTIFICATE Authentication

Request.

6.4.2#3 PD Timing

Test

An Authentication Responder shall send an Authentication Response

within tChallengeAuthSent of receiving a CHALLENGE Authentication

Request.

6.5 Context Hash

6.5#1 TD 1.5 The Context Hash field in a CHALLENGE_AUTH Authentication

Response shall be zero for PD Sources, Sinks and Cable Plugs.

6.5#2 TD 1.5 The Context Hash field in a CHALLENGE_AUTH Authentication

Response shall be zero for PD Alternate Mode devices.

7 Authentication of USB Products

7#1 NT/checklist A USB Device shall not act as an Authentication Initiator.

7.1 Descriptors

7.1.1 Authentication Capability Descriptor

7.1.1#1 TD 3.1 The Authentication Capability Descriptor shall be returned as part of the

BOS Descriptor set for a USB Device that supports Authentication.

7.1.1#2 TD 3.1 Bit 0 in the bmAttributes field of the Authentication Capability Descriptor

shall be set to 1 if firmware can be updated. Otherwise, set to zero.

7.1.1#3 TD 3.1 Bit 1 in the bmAttributes field of the Authentication Capability Descriptor

shall be set to 1 to indicate that Device changes interfaces when updated.

Otherwise, set to zero.

9/19/2017

13

Assertion # Test # Assertion Description

7.1.1#4 TD 3.1 The bcdProtocolVersion in an Authentication Capability Descriptor shall

be set to USB Type-C™ Authentication Protocol Version (01h).

7.1.1#5 TD 3.1 The bcdCapability field in an Authentication Capability Descriptor shall be

set to 01h.

7.2 Mapping Authentication Messages to USB

7.2.1 Authentication IN

7.2.1#1 IOP A Device shall respond to an Authentication IN Request when in the

Address state.

7.2.1#2 TD 3.2 A Device shall respond to an Authentication IN Request with a Request

Error when in the Configured state.

7.2.1#3 TD 3.2 A Device shall respond to an Authentication IN Request with a Request

Error when in the Configured state.

7.2.1#4 TD 3.4 A USB Device shall respond with a Request Error if wLength for a

particular Response type does not match the values set forth in this section.

7.2.2 Authentication OUT

7.2.2#1 IOP A Device shall respond to an Authentication OUT Request when in the

Address state.

7.2.2#2 TD 3.2 A Device shall respond to an Authentication OUT Request with a Request

Error when in the Configured state.

7.2.2#3 TD 3.2 A Device shall respond to an Authentication IN Request with a Request

Error when in the Configured state.

7.2.2#4 TD 3.4 A USB Device shall respond with a Request Error if wLength for a

particular Response type does not match the values set forth in this section.

7.3 Authentication Protocol

7.3.1 Digest Query

7.3.2 Certificate Read

7.3.3 Authentication Challenge

7.3.4 Errors

7.3.4#1 IOP If a USB Device encounters an Authentication-related error condition

during an AUTH_IN control transfer, it shall respond with an ERROR

Response.

7.3.4#2 IOP If a USB Device encounters an Authentication-related error condition

during an AUTH_OUT control transfer, it shall respond to the next

AUTH_IN control transfer with an ERROR Response.

7.4 Timing Requirements for USB

7.4#1 IOP All Authentication Message exchanges over USB shall follow the timing

for control transfers set forth in USB2.0 and USB3.1.

7.4.1 USB Host Timing Requirements

7.4.1#1 NT If a USB Host does not receive an Authentication Response within

tDigestIN (100 ms) of sending a GET_DIGESTS Authentication Request,

it is considered an error.

Compliance Rev 0.9

14

Assertion # Test # Assertion Description

7.4.1#2 NT If a USB Host does not receive an ACK within tCertOUT (100 ms) of

sending a GET_CERTIFICATE Authentication Request to an

Authentication Responder, it is considered an error.

7.4.1#3 NT If a USB Host does not receive an Authentication Response within tCertIN

(500 ms) of sending a CERTIFICATE Authentication Request to an

Authentication Responder, it is considered an error.

7.4.1#4 NT If a USB Host does not receive an ACK within tChallengeOUT (100 ms)

of sending a CHALLENGE Authentication Request to an Authentication

Responder, it is considered an error.

7.4.1#5 NT If a USB Host does not receive an Authentication Response within

tChallengeIN (600 ms) of sending a CHALLENGE_AUTH Authentication

Request to an Authentication Responder, it is considered an error.

7.4.2 USB Device Timing Requirements

7.4.2#1 USB Timing

Test
A USB Device shall respond to an Authentication Initiator within

tDigestSent (95 ms) of receiving an AUTH_IN control transfer carrying a

GET_DIGESTS Authentication Request.

7.4.2#2 USB Timing

Test
A USB Device shall ACK an AUTH_OUT control transfer carrying a

GET_CERTIFICATE Request within tCertACK (95 ms) of receiving it.

7.4.2#3 USB Timing

Test
A USB Device shall respond to an Authentication Initiator within tCertSent

(495 ms) of receiving an AUTH_IN control transfer carrying a

CERTIFICATE Authentication Request.

7.4.2#4 USB Timing

Test
A USB Device shall ACK an AUTH_OUT control transfer carrying a

CHALLENGE Request within tChallengeACK (95 ms) of receiving it.

7.4.2#5 USB Timing

Test
A USB Device shall respond to an Authentication Initiator within

tChallengeAuthSent (595 ms) of receiving an AUTH_IN control transfer

carrying a CHALLENGE_AUTH Authentication Request.

7.5 Context Hash

7.5#1 TD 3.3 The Context Hash field in a CHALLENGE AUTH Authentication

Response shall contain a 32-byte SHA256 hash of the following USB

Descriptor data (as defined in USB2.0 and USB3.1) for current operating

speed, concatenated together in following order: 1) Device Descriptor 2)

Complete BOS Descriptor (if present) 3) Complete Configuration 1

Descriptor 4) Complete Configuration 2 Descriptor (if present) 5) ... 6)

Complete Configuration N Descriptor (if present).

7.5#2 TD 3.3 The contents of each descriptor used to create the hash in the Context Hash

shall match that which the device presents during enumeration at the USB

Device’s current connection.

8 Protocol Constants

A ACD

A.1 ACD Formatting

A.1#1 TD 1.3 No TLV type shall occur more than once.

A.1#2 TD 1.3 Each TLV shall appear in increasing order by TLV value.

A.1.1 Version TLV

9/19/2017

15

Assertion # Test # Assertion Description

A.1.2 XID TLV

A.1.3 Power Source Capabilities TLV

A.1.4 Power Source Certifications TLV

A.1.5 Cable Capabilities TLV

A.1.6 Security Description TLV

A.1.6#1 TD 1.3 The certifications claimed in the Security Description TLV shall be

relevant and appropriate to the security functions used in the product.

A.1.6#2 TD 1.3 The IC Vendor Identified field in a Security Description TLV shall contain

either the USB-IF assigned VID that identifies that IC vendor or zero if not

used.

A.1.7 Playpen TLV

A.1.7#1 TD 1.3 The Playpen TLV shall not be used or interpreted by any Products.

A.1.8 Vendor Extension TLV

A.1.8#1 TD 1.3 The first two bytes of the Data field in a Vendor Extension TLV shall

contain the Vendor ID of the vendor defining the field.

A.1.9 Extension TLV

A.1.9#1 TD 1.3 The Extension TLV shall not be used.

A.2 ACD for a PD Product

A.2#1 TD 1.3 VERSION, XID, POWER_SOURCE_CAPABILITIES, and

SECURITY_DESCRIPTION TLVs shall be present in the ACD of a PD

Source or PD Sink.

A.2#2 TD 1.3 The CABLE_CAPABILITIES TLV shall not be used in the ACD of a PD

Source or PD Sink.

A.2#3 TD 1.3 VERSION, XID, CABLE_CAPABILITIES, and

SECURITY_DESCRIPTION TLVs shall be present in the ACD of a USB

Type-C™ Cable.

A.2#4 TD 1.3 POWER_SOURCE_CAPABILITIES and

POWER_SOURCE_CERTIFICATIONS TLVs shall not be used in the

ACD of a USB Type-C™ Cable.

A.3 ACD for a USB Product

A.3#1 TD 1.3 VERSION and SECURITY_DESCRIPTION TLVs shall be present in the

ACD of a USB Product.

A.3#2 TD 1.3 CABLE_CAPABILITIES TLV shall not be used in the ACD of a USB

Product.

B Cryptographic Examples

B.1 Example Authentication Sequence

B.2 Example Certificate Chain Topology

B.2.1 Certificate Chain

B.2.1.1 Intermediate Certificate

 B.2.1.2 Leaf Certificate

Compliance Rev 0.9

16

Assertion # Test # Assertion Description

B.2.2 Root Certificate

B.2.3 Key Pairs

B.2.3.1 Root Key Pair

B.2.3.2 Intermediate Key Pair

B.2.3.3 Leaf Key Pair

B.3 Example Authentication Signature Verification

B.3.1 CHALLENGE Request

B.3.2 CHALLENGE_AUTH Response

C Potential Attack Vectors

9/19/2017

17

Test Requirements

Software

The RVS is a Windows-based software solution capable of testing the assertions defined in this document. The RVS

appears to a UUT as an Authentication Initiator. The RVS is capable of testing a UUT over both the PD bus and

USB data bus depending on the underlying hardware.

Hardware

PD

The RVS uses an Authentication Compliance Bridge (ACB) device to communicate with a UUT over the PD bus.

USB

TBD

Timing

Timing is measured in Milliseconds (ms)

Certificates

At a minimum, a UUT must contain a certificate chain in slot 0 that is rooted with a USB-IF Root certificate. A

UUT may also contain certificate chains in slots 1 through 7.

Unless specified otherwise in the test description, all certificate chain slots are subject to compliance testing.

Test Setup

PD

PD Products are tested first with chunking (i.e. ACB indicates to UUT that it does not support Unchunked PD

Extended Messages). If UUT supports unchunked PD messages, UUT is also tested using unchunked PD messages

(i.e. both ACB and UUT indicate support for Unchunked PD Extended Messages).

The figure below show test setups for a UUT as SOP, SOP’, or SOP”. Note that the test setups for SOP’ and SOP”

require either a PD3.0 Sink or USB Type-C-to-Type-A Adapter downstream in order to establish PD

communications.

Compliance Rev 0.9

18

Figure 1 UUT as SOP

Figure 2 UUT as SOP’

RVS

ACB

UUT (SOP)

Certified USB Cable

Certified USB Type-C Cable

RVS

ACB

PD 3.0 Sink or
USB Type-C-to-Type-A

Adapter

UUT (SOP)

Electronically
Marked Type-C Cable

Certified USB Cable

9/19/2017

19

Figure 3 UUT as SOP”

USB

Unless otherwise specified, compliance tests are run with a UUT in the Addressed state. The figure below shows the

test setup for a UUT that is a USB device.

Figure 4 UUT as USB Device

RVS

ACB

PD 3.0 Sink or
USB Type-C-to-Type-A

Adapter

Electronically
Marked Type-C Cable

Certified USB Cable

UUT (SOP)

RVS UUT

Certified USB Cable

Compliance Rev 0.9

20

Vendor Checklist

Product Information

Field --All fields must be filled in--

Date

Vendor Name

Vendor ID (VID) Assigned by USB-IF

Vendor Street Address

Vendor City, State, Postal Code

Vendor Country

Vendor Phone Number

Vendor Contact Name

Vendor Contact Title

Vendor Contact Email Address

Product Name

Product Model Number

Product Revision Level

Certifications Claimed in Security Description TLV

Name of Preparer

Signature of Preparer

9/19/2017

21

Vendor Attestations

ID Question Response Reference Assertion

A1 Product ignores notBefore and notAfter validity
times in all certificates

 yes no 3.1.3.5#1

A2 Product does not have more than 8 certificate
chain slots

 yes no 3.2#3

A3 Product keys were generated, provisioned, and
stored in a manner that adequately protects
them.

 yes no 3.3#2

A4 Product keys are not used by any other Products yes no 3.3#3

A5 If Product is a USB device, it does not act as an
Authentication Initiator

 yes no
 N/A

7#1

Compliance Rev 0.9

22

Tests

Authentication Responder Tests

Application: All Authentication Responders participate in the tests defined in this section.

Pass/Fail Criteria: The UUT passes a test if all steps are successfully executed and RVS verifies all listed criteria.

Unless otherwise specified, each test assumes a non-error response from the UUT. If the UUT sends an unexpected

ERROR Response, the UUT fails that particular test.

General Test Procedure

The following test steps are run in conjunction with the tests defined in this chapter anytime an Authentication

Response is received from the UUT.

1. For any Authentication Message from the UUT, RVS verifies that:

a. The ProtocolVersion field in set to 01h (5.1.1#1)

b. The ProtocolVersion field contains neither 00h nor values 02h through FFh (1.5.2.8#3)

c. The MessageType set to either 01h, 02h, 03h, or 7Fh and no other value (5.1.2#1, 5.3#1)

d. The MessageType field contains neither 00h nor values 04h through 7Eh (1.5.2.8#3)

2. For each CERTIFICATE Response from the UUT, the RVS verifies that the Param2 field is 00h (reserved)

(1.5.2.8#2)

3. For any ERROR Responses from the UUT that have Param1 set to INVALID_REQUEST, BUSY, or

UNSPECIFIED, RVS verifies that the Param2 field is 00h (reserved) (1.5.2.8#2)

4. For any ERROR Responses from the UUT, RVS verifies that Param1 (Error Code) contains neither 00h

nor values 05h through EFh (1.5.2.8#3)

5. If UUT sends an ERROR Response with Param1 set to UNSPECIFIED, RVS verifies that the ERROR

Response has Param2 set to 00h (4.4.4#1)

6. If UUT sends an ERROR Response with Param1 set to BUSY, RVS verifies that the ERROR Response

has Param2 set to 00h (4.4.3#1)

TD 1.1 Digest Query and Certificate Chain Read Test

A. Purpose:

1. Verify that the UUT responds to a GET_DIGEST Request

2. Verify that a DIGEST Response has the correct fields and values

3. Verify that the contents of a DIGEST Response do not vary

4. Verify that the UUT responds to a GET_CERTIFICATE Request

5. Verify that Certificate Chains do not vary

B. Asserts:

1. 3.1.1#4

2. 4#1

3. 4.1#2

4. 4.2#3

5. 5.3.1#1

6. 5.3.1#3

7. 5.3.1#4

C. Procedure:

1. RVS sends a GET_DIGESTS Request to the UUT

9/19/2017

23

2. RVS verifies that the UUT responds with a DIGESTS Response (4.1#2)

3. RVS saves the Slot Mask from the DIGESTS response for further use.

4. RVS verifies that:

a. The DIGESTS Response has bit 0 of the slot mask set to 1 (to indicate a valid

certificate chain in slot 0) (4#1)

b. The Capabilities field in the DIGESTS Response is set to 01h (5.3.1#1)

c. The number of digests returned in the DIGESTS Response is equal to the

number of bits set in Param2 (slot mask) (5.3.1#3)

d. The digests returned in the DIGESTS Response are in order of increasing slot

number. (5.3.1#4)

5. RVS sends a series of GET_CERTIFICATE Requests to read the full Certificate Chains

in each populated slot of the UUT as follows:

a. RVS sends a GET_CERTIFICATE Request to the UUT with Offset set to 0 and

Length set to 4.

b. RVS verifies that the UUT responds with a CERTIFICATE Response

containing a response header and the first 4 bytes of the Certificate Chain.

(4.2#3)

i. Save the Length field of the Certificate Chain for further use.

c. RVS sends sufficient valid GET_CERTIFICATE requests to read the remaining

contents of the Certificate Chain (as determined by the Certificate Chain Length

field) in 256 byte chunks, other than possibly the last request which shall request

the smaller of 256 and the number of bytes remaining in the Certificate Chain.

i. Note: a valid GET_CERTIFICATE request is one in which Offset +

Length is not greater than the Length field of the Certificate Chain.

ii. RVS verifies that UUT responds to each request with a CERTIFICATE

Response containing a response header followed by the request Length

field number of bytes of the Certificate Chain. (4.2#3)

6. RVS creates a SHA256 hash for each Certificate Chain.

7. The RVS verifies that each digest returned in the DIGESTS Response matches the 32-

byte SHA256 hash of the Certificate Chain in its corresponding slot (3.1.1#4)

8. The RVS sends a Second GET_DIGESTS Request to the UUT.

9. The RVS verifies that the second DIGESTs Response returned by the UUT is identical to

the first DIGESTS response sent by the UUT.

10. Unplug/disconnect the UUT, then replug/reconnect UUT to RVS

11. RVS sends a third GET_DIGESTS Request to the UUT

12. RVS sends a second series of GET_CERTIFICATE Requests to read the full Certificate

Chains in each populated slot of the UUT.

13. RVS creates a SHA256 hash for each Certificate Chain.

14. The RVS verifies that the SHA256 hash of each Certificate Chain read during the second

series of GET_CERTIFICATE Requests matches the SHA256 hash of the Certificate

Chains read during the first series of GET_CERTIFICATE Requests (i.e. first and second

SHA256 hash of certificate chain in Slot 0 are identical, first and second SHA256 hash of

certificate chain in Slot 1 are identical, etc.).

15. The RVS verifies that the third DIGESTs Response returned by the UUT is identical to

the first DIGESTS response sent by the UUT.

TD 1.2 Reserved Fields Ignored Test

A. Purpose:

1. Verify that reserved fields are ignored

B. Asserts:

1. 1.5.2.8#2

C. Procedure:

1. RVS sends a GET_DIGESTS Request to the UUT.

2. RVS saves the Slot Mask from the DIGESTS response for further use.

Compliance Rev 0.9

24

3. RVS sends a GET_DIGESTS Request to the UUT

a. GET_DIGESTS Request has the Param1 field (reserved) set to F0h.

b. GET_DIGESTS Request has the Param2 field (reserved) set to 0Fh.

4. RVS verifies that the UUT responds with a DIGESTS Response (1.5.2.8#2).

5. RVS repeats the following steps for each populated slot:

a. RVS sends a GET_CERTIFICATE Request to the UUT targeting the first 36

bytes of the certificate chain:

i. GET_CERTIFICATE Request has the Param1 field set to the target

slot number.

ii. GET_CERTIFICATE Request has the Param2 field (reserved) set to

FFh.

iii. GET_CERTIFICATE Request has the Offset field set to 0 to target the

start of the chain.

iv. GET_CERTIFICATE Request has the Length field set to 36 to read 36

bytes of the chain.

b. RVS verifies that the UUT responds with a CERTIFICATE Response

(1.5.2.8#2).

c. RVS sends a CHALLENGE Request to the UUT:

i. CHALLENGE Request has the Param1 field set to the target slot

number.

ii. CHALLENGE Request has the Param2 field (reserved) set to FFh

d. RVS verifies that the UUT responds with a CHALLENGE_AUTH Response

(1.5.2.8#2).

TD 1.3 Certificate Format Test

A. Purpose:

1. Verify that Certificates are in X509v3 format

2. Verify that Certificates use ASN.1 with binary DER encoding

3. Verify that Certificates use SHA256 for all cryptographic hashes

4. Verify that Certificates do not exceed the maximum length

5. Verify that Certificates contain the required fields and values

6. Verify that Certificates do not contain prohibited fields and values

7. Verify that the ACD in a Certificate is properly formatted

B. Asserts:

1. 3.1.1#1

2. 3.1.1#2

3. 3.1.1#3

4. 3.1.1#4

5. 3.1.1#5

6. 3.1.1#6

7. 3.1.2#1

8. 3.1.2#2

9. 3.1.3.1.1#1

10. 3.1.3.1.1#2

11. 3.1.3.1.1#3

12. 3.1.3.1.1#4

13. 3.1.3.1.1#5

14. 3.1.3.1.1#6

15. 3.1.3.1.1#7

16. 3.1.3.1.2#2

17. 3.1.3.2#1

18. 3.1.3.2#2

19. 3.1.3.2#3

20. 3.1.3.2#4

9/19/2017

25

21. 3.1.3.3#1

22. 3.1.3.3#2

23. 3.1.3.3#3

24. 3.1.3.3#4

25. 3.1.3.4#1

26. 3.1.3.4#2

27. 3.1.3.5#2

28. 3.1.3.6#1

29. 3.1.3.6#2

30. 4.1#2

31. 4.2#3

32. A.1#1

33. A.1#2

34. A.1.6#1

35. A.1.6#2

36. A.1.7#1

37. A.1.8#1

38. A.1.9#1

39. A.2#1

40. A.2#2

41. A.2#3

42. A.2#4

43. A.3#1

44. A.3#2

C. Procedure:

1. RVS sends a GET_DIGESTS Request to the UUT.

2. RVS verifies that the UUT responds with a DIGESTS response (4.1#2).

3. RVS records which Certificate Chains slots are populated (i.e. bit corresponding to slot is

set in the slot mask returned from the UUT in the DIGESTS Response) and performs the

following steps for each populated slot:

4. RVS reads the target Certificate Chain from the UUT

a. RVS sends a series of GET_CERTIFICATE Requests that read the full length of

the target Certificate Chain

b. RVS verifies that the UUT responds to each GET_CERTIFICATE Request with

a CERTIFICATE Response (4.2#3)

5. RVS passes the certificate chain to the CVT.

6. CVT parses the Certificate Chain.

7. For each non-Root Certificate in the Certificate Chain CVT verifies that:

a. Certificate uses X509v3 ASN.1 structure (3.1.1#1)

b. Certificate uses binary DER encoding for ASN.1 (3.1.1#2)

c. Certificate was signed using ECDSA using NIST P256 secp256r1 curve with

uncompressed format (3.1.1#3)

d. If certificate is in Slot 0 through 3, verify that the certificate is signed using the

key in the preceding certificate in the chain.

e. If the certificate is in Slot 4 through 7 and is a second intermediate or leaf

certificate, verify that the certificate is signed using the key in the preceding

certificate in the chain.

f. The length of any textual object is not more than 64 bytes (excluding DER type

and DER length encoding) (3.1.2#2)

g. Certificate contains a common name attribute (3.1.3.1.1#1)

h. The common name attribute:

i. Contains a string with one of the three patterns (excluding quotation

marks): “USB::” , “USB:<vid>” , or “USB:<vid>:<pid>” (3.1.3.1.1#2)

ii. If the string above contains a <vid> and/or <pid>, each is left zero

padded and big endian (3.1.3.1.1#3)

Compliance Rev 0.9

26

iii. If the string above contains a <vid> and/or <pid>, neither contains

uppercase letters (3.1.3.1.1#4)

i. In the common name attribute, the <vid> represents a 4-character lowercase

hexadecimal string encoding the 16-bit VID of the UUT vendor (3.1.3.1.1#6)

j. In the common name attribute:

i. If the <pid> is not present in the preceding certificate, the <pid> is

either not present or is represented by a 4-character lowercase

hexadecimal string encoding the 16-bit PID of the UUT

ii. If the <pid> is present in the preceding certificate, the current <pid> is

identical (3.1.3.1.1#7)

k. Certificate has the basic constraints extension (3.1.3.2#1)

l. The basic constraints extension is marked as critical (3.1.3.2#1)

m. Only the cA component is included in the basic constraints extension (3.1.3.2#4)

n. Certificate has the key usage extension (3.1.3.3#1)

o. Certificate has the extended key usage extension (3.1.3.4#1)

p. The extended key usage extension is marked as critical (3.1.3.4#1)

q. The extended key usage extension contains the value 2.23.145.1.1 (USB-ID

issued OID for extended key usage) (3.1.3.4#2)

r. notBefore and notAfter times in the Certificate are specified using either ASN.1

GeneralizedTime for any year, or ASN.1 UTCTime for years prior to 2050

(3.1.3.5#2)

8. For slots 0 through 3, CVT verifies that:

a. The hash of the Root Certificate in the Certificate Chain matches the SHA256

hash of the USB-IF Root Certificate. (3.1.1#4)
9. For each Intermediate Certificate, CVT verifies that:

a. Certificate does not exceed MaxIntermediateCertSize in length. (3.1.1#6)

b. The cA component of the basic constraints extension is true (3.1.3.2#3)

c. The keyCertSign bit is set in the key usage extension and all other bits except

the cRLSign bit are cleared (3.1.3.3#3)

d. Certificate does not contain the USB-IF ACD extension (3.1.3.6#2)

10. For the Leaf Certificate, CVT verifies that:

a. Certificate does not exceed MaxLeafCertSize in length. (3.1.1#5)

b. The common name attribute contains both a VID and a PID value (3.1.3.1.1#5)

c. The cA component of the basic constraints extension is false (3.1.3.2#2)

d. The digitalSignature bit in the key usage extension is set and all other bits are

cleared (3.1.3.3#2)

e. Certificate contains the USB-IF ACD extension (3.1.3.6#1)

f. The ACD extension has:

i. No more than one TLV of any given type (A.1#1)

ii. Each TLV appearing in increasing order by TLV value (A.1#2)

g. If UUT is a PD Source or PD Sink:

i. CVT verifies that the ACD contains the following type TLVs: (A.2#1)

01 VERSION

02 XID

03 POWER_SOURCE_CAPABILITIES

04 SECURITY_DESCRIPTION

ii. CVT verifies that the ACD does not contain a

CABLE_CAPABILITIES TLV (A.2#2)

h. If UUT is a USB Type-C™ Cable:

i. CVT verifies that the ACD contains the following type TLVs: (A.2#3)

01 VERSION

02 XID

03 CABLE_CAPABILITIES

04 SECURITY_DESCRIPTION

9/19/2017

27

ii. CVT verifies that the ACD contains neither a

POWER_SOURCE_CAPABILITIES TLV nor a

POWER_SOURCE_CERTIFICATIONS TLV (A.2#4)

i. If UUT is a USB Product:

i. CVT verifies that the ACD contains both a VERSION and a

SECURITY_DESCRIPTION TLV (A.3#1)

ii. RVS verifies that the ACD does not contain a

CABLE_CAPABILITIES TLV (A.3#2)

j. CVT verifies that the certifications claimed in the Security Description TLV

match what is claimed in the

k. or zero (A.1.6#2)

l. CVT verifies that the ACD does not contain a Playpen TLV (A.1.7#1)

m. If a Vendor Extension TLV is present, CVT verifies that the first two bytes

contain a VID that matches either the VID of the UUT vendor or the VID

declared in the Test Setup

PD

PD Products are tested first with chunking (i.e. ACB indicates to UUT that it does not support Unchunked PD

Extended Messages). If UUT supports unchunked PD messages, UUT is also tested using unchunked PD messages

(i.e. both ACB and UUT indicate support for Unchunked PD Extended Messages).

The figure below show test setups for a UUT as SOP, SOP’, or SOP”. Note that the test setups for SOP’ and SOP”

require either a PD3.0 Sink or USB Type-C-to-Type-A Adapter downstream in order to establish PD

communications.

Figure 1 UUT as SOP

RVS

ACB

UUT (SOP)

Certified USB Cable

Certified USB Type-C Cable

Compliance Rev 0.9

28

Figure 2 UUT as SOP’

Figure 3 UUT as SOP”

RVS

ACB

PD 3.0 Sink or
USB Type-C-to-Type-A

Adapter

UUT (SOP)

Electronically
Marked Type-C Cable

Certified USB Cable

RVS

ACB

PD 3.0 Sink or
USB Type-C-to-Type-A

Adapter

Electronically
Marked Type-C Cable

Certified USB Cable

UUT (SOP)

9/19/2017

29

USB

Unless otherwise specified, compliance tests are run with a UUT in the Addressed state. The figure below shows the

test setup for a UUT that is a USB device.

Figure 4 UUT as USB Device

RVS UUT

Certified USB Cable

Compliance Rev 0.9

30

n. Vendor Checklist (A.1.8#1)

o. CVT verifies that the ACD does not contain an Extension TLV (A.1.9#1)

11. For each non-Root Certificate in the Certificate Chain, the CVT prints the Certificate to a

human-readable output and verifies:

a. Certificate was printed without any printer errors. (3.1.2#1)

b. Organization Name matches the Vendor Name in the Product Information

section (3.1.3.1.2#2)

Note: the UUT fails this test if the CVT is unable to verify any of the Certificate Chains in slots 0 through 7. For

example, if the Certificate chain in slot 0 can be verified, but the certificate chain in slot 1 cannot be verified, the

UUT fails the entire test.

TD 1.4 Certificate Chain Test

A. Purpose:

1. Verify that Certificate Chains do not exceed the maximum length

2. Verify that Certificate Chain slots are properly used

3. Verify that Certificate Chain slot 0 is populated

B. Asserts:

1. 3.2#1

2. 3.2#2

3. 3.2#4

4. 4#1

5. 4.1#2

6. 4.2#2

7. 4.2#3

8. 4.3#2

9. 5.3.1#2

10. 5.3.3#2

C. Procedure:

1. RVS sends a GET_DIGESTS request to the UUT

2. RVS verifies that UUT Responds with a DIGESTS Response (4.1#2)

3. RVS saves the Slot Mask from the UUT’s response for future use

4. RVS verifies that bit 0 in the Slot mask is set to 1 (4#1).

5. For slots 0 through 7, RVS attempts to read a Certificate Chain from the UUT:

a. RVS sends a series of GET_CERTIFICATE Requests that read the full length of

the target Certificate Chain

6. For slots that correspond to a bit in the Slot Mask that is set to 1b:

a. RVS verifies that the UUT responds to each GET_CERTIFICATE Request with

a CERTIFICATE Response (4.2#3) (5.3.1#2) (3.2#2)

i. Note: If at any point in the target Certificate Chain read, the RVS

receives an ERROR Response, the target Certificate Chain is

considered incomplete for that slot and the test fails

b. RVS verifies that the Certificate chain does not exceed MaxCertChainSize in

length (3.2#1)

c. For slots 0 through 3, RVS verifies that the RootCert field in the Certificate

Chain read from the UUT matches a SHA256 hash of the USB-IF root

certificate (3.2#4)

7. For slots that correspond to a bit in the Slot Mask that is set to 0b:

a. RVS verifies that the UUT responds to a GET_CERTIFICATE Request with an

ERROR Response (4.2#2) (5.3.1#2) (3.2#2)

8. For slots 0 through 7, RVS sends a CHALLENGE Request to the UUT:

9/19/2017

31

a. RVS verifies that for each slot that is populated, the UUT returns a

CHALLENGE_AUTH response (4.3#2)

i. RVS verifies that for each bit set to 1 in the slot mask of the

CHALLENGE_AUTH Response, the UUT contains a valid certificate

chain in that slot (5.3.3#2)

ii. RVS verifies that for each bit set to 0 in the slot mask of the

CHALLENGE_AUTH Response, the UUT does not contain a valid

certificate chain in that slot (5.3.3#2)

b. RVS verifies that for each slot that is not populated, the UUT returns an ERROR

response (4.3#1)

TD 1.5 Authentication Challenge Test

A. Purpose:

1. Verify that the UUT responds to a CHALLENGE Request

B. Asserts:

1. 4#1

2. 4.3#2

3. 5.3.3#1

4. 6.5#1

5. 6.5#2

C. Procedure:

1. RVS sends a GET_DIGESTS request to the UUT.

2. RVS saves the Slot Mask from the UUT’s response for future use.

3. Repeat the following steps for all populated slots between slot 0 and slot 3:

a. RVS sends a CHALLENGE Request to the UUT

b. RVS verifies that the UUT responds with a CHALLENGE_AUTH Response

(4.3#2)

c. RVS verifies that:

i. The CHALLENGE_AUTH Response has bit 0 of the slot mask set (to

indicate a valid certificate chain in slot 0) (4#1)

ii. The slot mask in the CHALLENGE_AUTH Response is identical to

the slot mask in the DIGESTS Response from the UUT.

iii. The Param1 field in the CHALLENGE_AUTH Response is equal to

the Param1 field in the CHALLENGE Request sent by the RVS

(5.3.3#1)

iv. The Capabilities field is set to 01h.

v. The CertChainHash field contains the hash of the certificate chain used

for authentication.

vi. If UUT is a PD Product, verify that the ContextHash field in the

CHALLENGE_AUTH Response is set to zero. (6.5#1, 6.5#2)

vii. If UUT is a USB Product, run TD 3.3

viii. The Signature field contains a 64-byte ECDSA digital signature on the

message contents, where the message contents consist of the full

contents of the CHALLENGE Request followed by the contents of the

CHALLENGE_AUTH Response excluding the Signature field.

ix. The digital signature in the Signature field is generated using the key

that corresponds to the leaf certificate of the UUT.

TD 1.6 Certificate Chain Read Error Handling Test

A. Purpose:

1. Verify that Certificate Chain read errors are properly handled

Compliance Rev 0.9

32

B. Asserts:

1. 4.2#1

C. Procedure:

1. RVS sends a GET_DIGESTS request to the UUT.

2. RVS saves the Slot Mask from the UUT’s response for future use.

3. Repeat the following steps for all slots which contain a Certificate Chain as determined

by the Slot Mask:

a. RVS sends a GET_CERTIFICATE Request to the UUT to read the first 4 bytes

of the certificate chain.

i. Save the Certificate Chain Length for later use. In the following steps,

this value will be referred to as ChainLength.

b. RVS sends a second GET_CERTIFICATE Request to the UUT that attempts to

read 101 bytes, starting at offset ChainLength - 100.

c. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to (INVALID_REQUEST) and Param2 set to 00h. (4.2#1)

d. RVS sends a third GET_CERTIFICATE Request to the UUT that attempts to

read 100 bytes starting at offset ChainLength + 1.

e. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to (INVALID_REQUEST) and Param2 set to 00h. (4.2#1)

f. RVS sends a Fourth GET_CERTIFICATE Request to the UUT that attempts to

read 101 bytes, starting at offset ChainLength - 1.

g. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to (INVALID_REQUEST) and Param2 set to 00h. (4.2#1)

h. RVS sends a fifth GET_CERTIFICATE Request to the UUT that attempts to

read 2 bytes starting at offset ChainLength + 100.

i. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to (INVALID_REQUEST) and Param2 set to 00h. (4.2#1)

j. RVS sends a sixth GET_CERTIFICATE Request to the UUT that attempts to

read the first 257 bytes of the certificate chain.

k. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to (INVALID_REQUEST) and Param2 set to 00h. (4.2#1)

l. RVS sends a GET_CERTIFICATE Request to the UUT to read the first 4 bytes

of the certificate chain.

m. RVS verifies that the UUT responds with a CERTIFICATE Response.

TD 1.7 Invalid Request Error Handling Test

A. Purpose:

1. Verify that invalid Requests are properly handled

B. Asserts:

1. 4.4.1#1

C. Procedure:

1. RVS sends a GET_DIGESTS Request to the UUT.

2. RVS records what certificate chains are populated (as indicated by the slot mask in the

DIGESTS Response returned by the UUT).

3. RVS sends an Authentication Request to the UUT with the MessageType field set to 84h

(reserved)

4. RVS verifies that the UUT responds with an ERROR Response that has Param1 set to

INVALID_REQUEST and Param2 set to 00h (4.4.1#1)

5. Repeat the following steps for all unpopulated slots:

a. RVS sends a GET_CERTIFICATE Request to the UUT with the Param1 field

set to the first unpopulated slot number.

b. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to INVALID_REQUEST and Param2 set to 00h (4.4.1#1)

9/19/2017

33

c. RVS sends a CHALLENGE Request to the UUT with the Param1 field set to

the first unpopulated slot number.

d. RVS verifies that the UUT responds with an ERROR Response that has Param1

set to INVALID_REQUEST and Param2 set to 00h (4.4.1#1)

TD 1.8 Unsupported Protocol Error Handling Test

A. Purpose:

1. Verify that the UUT handles an unsupported Security Protocol Version correctly

B. Asserts:

1. 4.4.2#1

C. Procedure:

1. RVS sends a GET_DIGESTS Request to the UUT.

2. RVS saves the Slot Mask from the DIGESTS response for future use.

3. RVS sends a GET_DIGESTS Request to the UUT with the ProtocolVersion field set to

00h.

4. RVS verifies that the UUT responds with an ERROR Response with the ProtocolVersion

field set to 01h, Param1 set to UNSUPPORTED_PROTOCOL, and Param2 set to 01h.

(4.4.2#1)

5. RVS sends a GET_DIGESTS Request to the UUT with the ProtocolVersion field set to

FFh.

6. RVS verifies that the UUT responds with an ERROR Response with the ProtocolVersion

field set to 01h, Param1 set to UNSUPPORTED_PROTOCOL, and Param2 set to 01h.

(4.4.2#1)

7. Repeat the following steps for each populated slot:

a. RVS sends a GET_CERTIFICATE Request to the UUT with the

ProtocolVersion field set to 00h.

b. RVS verifies that the UUT responds with an ERROR Response with the

ProtocolVersion field set to 01h, Param1 set to UNSUPPORTED_PROTOCOL,

and Param2 set to 01h. (4.4.2#1)

c. RVS sends a GET_CERTIFICATE Request to the UUT with the

ProtocolVersion field set to FFh.

d. RVS verifies that the UUT responds with an ERROR Response with the

ProtocolVersion field set to 01h, Param1 set to UNSUPPORTED_PROTOCOL,

and Param2 set to 01h. (4.4.2#1)

8. Repeat the following steps for each populated slot:

a. RVS sends a CHALLENGE Request to the UUT with the ProtocolVersion field

set to 00h.

b. RVS verifies that the UUT responds with an ERROR Response with the

ProtocolVersion field set to 01h, Param1 set to UNSUPPORTED_PROTOCOL,

and Param2 set to 01h. (4.4.2#1)

c. RVS sends a CHALLENGE Request to the UUT with the ProtocolVersion field

set to FFh.

d. RVS verifies that the UUT responds with an ERROR Response with the

ProtocolVersion field set to 01h, Param1 set to UNSUPPORTED_PROTOCOL,

and Param2 set to 01h. (4.4.2#1)

TD 1.9 Stateless Test

A. Purpose:

1. Verify that the UUT can respond to Authentication Requests in any order

B. Asserts:

1. 4.1#2

2. 4.2#3

3. 4.3#2

Compliance Rev 0.9

34

C. Procedure:

1. RVS sends a GET_DIGESTS Request to the UUT.

a. RVS saves the Slot Mask for future use.

2. Repeat the following iterations for all populated slots:

3. Iteration 1:

a. RVS sends a GET_DIGESTS Request to the UUT.

b. RVS verifies that the UUT responds with a DIGESTS response (4.1#2)

c. RVS sends a GET_CERTIFICATE Request to the first populated slot of the

UUT.

d. RVS verifies that the UUT responds with a CERTIFICATE Response (4.2#3)

e. RVS sends a CHALLENGE Request to the first populated slot of the UUT.

f. RVS verified that UUT responds with a CHALLENGE_AUTH Response

(4.3#2)

4. Iteration 2:

a. RVS sends a GET_DIGESTS Request to the UUT.

b. RVS verifies that the UUT responds with a DIGESTS response (4.1#2)

c. RVS sends a CHALLENGE Request to the first populated slot of the UUT.

d. RVS verifies that the UUT responds with a CHALLENGE_AUTH Response

(4.3#2)

e. RVS sends a GET_CERTIFICATE Request to the first populated slot of the

UUT.

f. RVS verified that UUT responds with a CERTIFICATE Response (4.2#3)

5. Iteration 3

a. RVS sends a GET_CERTIFICATE Request to the first populated slot of the

UUT.

b. RVS verifies that the UUT responds with a CERTIFICATE response (4.2#3)

c. RVS sends a GET_DIGEST Request to the UUT.

d. RVS verifies that the UUT responds with a DIGESTS Response (4.1#2)

e. RVS sends a CHALLENGE Request to the first populated slot of the UUT.

f. RVS verified that UUT responds with a CHALLENGE_AUTH Response

(4.3#2)

6. Iteration 4

a. RVS sends a GET_CERTIFICATE Request first populated slot of the UUT

b. RVS verifies that the UUT responds with a CERTIFICATE response (4.2#3)

c. RVS sends a CHALLENGE Request to the first populated slot of the UUT.

d. RVS verifies that the UUT responds with a CHALLENGE_AUTH Response

(4.3#2)

e. RVS sends a DIGESTS Request to the UUT.

f. RVS verified that UUT responds with a GET_DIGESTS Response (4.1#2)

7. Iteration 5

a. RVS sends a CHALLENGE Request to the first populated slot of the UUT

b. RVS verifies that the UUT responds with a CHALENGE_AUTH response

(4.3#2)

c. RVS sends a GET_DIGEST Request to the UUT.

d. RVS verifies that the UUT responds with a DIGESTS Response (4.1#2)

e. RVS sends a GET_CERTIFICATE Request to the first populated slot of the

UUT.

f. RVS verified that UUT responds with a CERTIFICATE Response (4.2#3)

8. Iteration 6

a. RVS sends a CHALLENGE Request to the first populated slot of the UUT.

b. RVS verifies that the UUT responds with a CHALLENGE_AUTH response

(4.3#2)

c. RVS sends a GET_CERTIFICATE Request to the first populated slot of the

UUT.

d. RVS verifies that the UUT responds with a CERTIFICATE Response (4.2#3)

e. RVS sends a GET_DIGESTS Request to the UUT.

9/19/2017

35

f. RVS verified that UUT responds with a DIGESTS Response (4.1#2)

PD Product Authentication Responder Tests

The following test steps are run in conjunction with the tests defined in Chapter 1 when the UUT is PD Responder.

 PD Timing Test Procedure

1. RVS verifies that the UUT responds to a GET_DIGEST Request within tDigestSent (unchunked = 30ms,

chunked = 135ms) of receiving the GET_DIGESTS Request (6.4.2#1)

2. RVS verifies that the UUT responds to a GET_CERTIFICATE Request within tCertSent (unchunked =

30ms, chunked = 135ms) of receiving the GET_CERTIFICATE Request (6.4.2#2)

3. RVS verifies that the UUT responds to a CHALLENGE Request within tChallengeAuthSent (unchunked =

230ms, chunked = 635ms) of receiving the CHALLENGE Request (6.4.2#3)

USB Product Tests

The following test steps are run in conjunction with the tests defined in Chapter 1 when the UUT is USB device.

USB Timing Test Procedure

1. RVS verifies that the UUT responds to a GET_DIGESTS Request within tDigestSent (95ms) of receiving

the AUTH_IN control transfer carrying the GET_DIGESTS Request (7.4.2#1)

2. RVS verifies that the UUT sends an ACK for an AUTH_OUT control transfer carrying a

GET_CERTIFICATE Request within tCertACK (95 ms) of receiving it (7.4.2#2)

3. RVS verifies that the UUT responds to a GET_CERTIFICATE Request within tCertSent (495ms) of

receiving the AUTH_IN control transfer carrying the GET_CERTIFICATE Request (7.4.2#3)

4. RVS verifies that the UUT sends an ACK for an AUTH_OUT control transfer carrying a

CHALLENGE_AUTH Request within tCertACK (95 ms) of receiving it (7.4.2#4)

5. RVS verifies that the UUT responds to a CHALLENGE_AUTH Request within tCertSent (495ms) of

receiving the AUTH_IN control transfer carrying the CHALLENGE_AUTH Request (7.4.2#5)

TD 3.1 Authentication Capability Descriptor Test

A. Purpose:

1. Verify that UUT contains Authentication Capability Descriptor with proper values

B. Asserts:

1. 7.1.1#1

2. 7.1.1#2

3. 7.1.1#3

4. 7.1.1#4

5. 7.1.1#5

C. Procedure:

1. Connect UUT to RVS.

2. RVS verifies that the UUT returns an Authentication Capability Descriptor as part of its

BOS Descriptor set (7.1.1#1)

3. RVS verifies that the Authentication Capability Descriptor from the UUT has:

a. Bit 0 in the bmAttributes field set to 1 if firmware can be updated (insert

reference to checklist). Otherwise, set to zero. (7.1.1#2)

b. Bit 1 in the bmAttributes field set to 1 to indicate that Device changes interfaces

when updated (insert reference to checklist). Otherwise, set to zero. (7.1.1#3)

Compliance Rev 0.9

36

c. The bcdProtocolVersion set to USB 01h (Type-C™ Authentication Protocol

Version) (7.1.1#4)

d. The bcdCapability field set to 01h (7.1.1#5)

D. Device States for Test

1. This test is run with the UUT in Default, Addressed and Configured state.

TD 3.2 USB Device State Error Test

A. Purpose:

1. Verify that UUT responds to Authentication Requests with a Request Error when in the

Default and Configured states

B. Asserts:

1. 7.2.1#2, 7.2.1#3

2. 7.2.2#2, 7.2.2#3

C. Procedure:

1. Connect UUT to RVS.

2. While UUT is in the Default state:

a. RVS sends UUT a GET_DIGESTS Request

b. RVS verifies that UUT returns a STALL (7.2.1#3)

c. RVS clears STALL

d. Repeat the following steps for slots 0 through 7:

e. RVS sends UUT a GET_CERTIFICATE Request

f. RVS verifies that UUT returns a STALL (7.2.2#3)

g. RVS clears STALL

h. RVS sends UUT a CHALLENGE Request

i. RVS verifies that UUT returns a STALL (7.2.2#3)

3. RVS enumerates and configures the UUT.

4. While UUT is in the Configured state:

a. RVS sends UUT a GET_DIGESTS Request

b. RVS verifies that UUT returns a STALL (7.2.1#2)

c. RVS clears STALL

d. Repeat the following steps for slots 0 through 7:

e. RVS sends UUT a GET_CERTIFICATE Request

f. RVS verifies that UUT returns a STALL (7.2.2#2)

g. RVS clears STALL

h. RVS sends UUT a CHALLENGE Request

i. RVS verifies that UUT returns a STALL (7.2.2#2)

TD 3.3 USB Context Hash Test

A. Purpose:

1. Verify that Context Hash has the required contents

B. Asserts:

1. 7.5#1

2. 7.5#2

C. Procedure:

1. Connect UUT to RVS.

2. During UUT enumeration, RVS records all USB Descriptors required for following step.

3. RVS calculates a 32-byte SHA256 hash of the following descriptors in the following

order:

a. Device Descriptor

b. Complete BOS Descriptor

9/19/2017

37

c. all full Configuration Descriptors in order 1 through n (where n is the last

Configuration Descriptor)

4. RVS sends a CHALLENGE Request to the UUT followed by a CHALLENGE_AUTH

Request.

5. RVS verifies that the ContextHash field in the CHALLENGE_AUTH Response from the

UUT matches the context hash calculated in step 3 (7.5#1, 7.5#2)

6. Repeat for all populated slots 0-3

TD 3.4 USB wLength Error Test

A. Purpose:

1. Verify that a USB Request with invalid wLength field returns an error.

B. Asserts:

1. 7.2.1#4, 7.2.2#4

C. Procedure:

1. Connect UUT to RVS.

2. RVS sends a GET_DIGESTS request to the UUT.

3. RVS sends the UUT a GET_DIGESTS Request with wLength in the AUTH_IN Request

set to zero.

4. RVS verifies that the UUT returns a STALL (7.2.1#4)

5. RVS clears STALL

6. RVS sends the UUT a GET_DIGESTS Request with wLength in the AUTH_IN Request

set to 261 (max DIGESTS Response length + 1). (7.2.1#4)

7. RVS verifies that the UUT returns a STALL

8. RVS clears STALL

9. Repeat the following steps for slots 0 through 7:

10. RVS sends the UUT a GET_CERTIFICATE Request

11. RVS sends the UUT an AUTH_OUT Request with wLength set to a value that is less

than the requested certificate chain read.

12. RVS verifies that the UUT returns a STALL (7.2.2#4)

13. RVS clears STALL

14. RVS sends the UUT a GET_CERTIFICATE Request

15. RVS sends the UUT an AUTH_OUT Request with wLength set to a value that is more

than the requested certificate chain read

16. RVS verifies that the UUT returns a STALL (7.2.2#4)

17. RVS clears STALL

18. RVS sends the UUT a CHALLENGE Request

19. RVS sends the UUT an AUTH_OUT Request with wLength set to a value that is less

than the length of a CHALLENGE_AUTH Response (168B)

20. RVS verifies that the UUT returns a STALL (7.2.2#4)

21. RVS clears STALL

22. RVS sends the UUT a CHALLENGE Request

23. RVS sends the UUT an AUTH_OUT Request with wLength set to a value that is greater

than the length of a CHALLENGE_AUTH Response (168B).

24. RVS verifies that the UUT returns a STALL (7.2.2#4)

25. RVS clears STALL

Product Key Tests

TD 4.1 Private Key Test

Compliance Rev 0.9

38

A. Purpose:

1. Verify that private keys are unique

B. Asserts:

1. 3.3#1

C. Procedure:

1. Vendor provides 3 different products to test (UUT#1, UUT#2, and UUT#3) where

UUT#1 is the UUT that was used for compliance testing and UUT#2 and UUT#3 are

different instances of the same end product as UUT#1.

2. RVS reads the Leaf Certificate from each slot of each UUT

3. RVS passes Leaf certificate to the CVT

4. For all Leaf certificates:

a. CVT verifies that the public key in the Leaf Certificate is different from all other

public keys in the UUT from which it was read (3.3#1)

b. CVT verifies that the public key in the Leaf certificate is different from the

public keys in all other UUT used in this test (i.e. the UUT that do not contain

the Leaf certificate with the public key that is being verified) (3.3#1)

	Introduction
	Terminology
	Assertions
	Test Requirements
	Software
	Hardware
	PD
	USB

	Timing
	Certificates
	Test Setup
	PD
	USB

	Vendor Checklist
	Product Information
	Vendor Attestations

	Tests
	Authentication Responder Tests
	General Test Procedure
	TD 1.1 Digest Query and Certificate Chain Read Test
	TD 1.2 Reserved Fields Ignored Test
	TD 1.3 Certificate Format Test
	PD
	USB
	TD 1.4 Certificate Chain Test
	TD 1.5 Authentication Challenge Test
	TD 1.6 Certificate Chain Read Error Handling Test
	TD 1.7 Invalid Request Error Handling Test
	TD 1.8 Unsupported Protocol Error Handling Test
	TD 1.9 Stateless Test

	PD Product Authentication Responder Tests
	PD Timing Test Procedure

	USB Product Tests
	USB Timing Test Procedure
	TD 3.1 Authentication Capability Descriptor Test
	TD 3.2 USB Device State Error Test
	TD 3.3 USB Context Hash Test
	TD 3.4 USB wLength Error Test

	Product Key Tests
	TD 4.1 Private Key Test

