
Chapter 1: Introduction-Chapter 9 7/10/2019

 1

Universal Serial Bus Revision 2.0

USB Command Verifier Compliance Test
Specification

Revision 1.42

Date: June 19, 2019

Revision: 1.42

The information is this document is under review and is subject to change.

Chapter 1: Introduction-Chapter 9 7/10/2019

 2

Revision History

Revision Issue Date Comments

0.5 August 6, 2001 Initial Revision

0.8 November 20,
2001

Updates to Reflect USBCV Beta Release

.9 Dec. 7, 2001 Updates to Reflect Internal Review and Policy Discussions

1.0 RC 1 March. 29 , 2002 Updated to Reflect USBCV RC Development and Policy
Decisions / Changes From USB-IF Compliance Workshop
Testing

1.1 Sept. 26, 2002 Updated to add a handful of new assertions to address
deficiencies identified in 2002 use of USBCV.

1.2 April 10, 2003 Initial draft of USB OTG tests in section 3.6

1.3 December 29,
2015

Added new hub test: Unacknowledged Connect Remote
Wake Test.

1.4 December, 22,
2017

Updated Ch 9 Remote Wakeup test to account for device
class specific requirements.

THIS TEST SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY

WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR

SAMPLE. The USB-IF disclaims all liability, including liability for infringement of any

proprietary rights, relating to use of information in this specification. No license, express or

implied, to any intellectual property rights is granted herein.

The USB-IF assumes no responsibility for any errors that may appear in this document. The USB-IF makes

no commitment to update the information contained herein, and may make changes at any time without

notice.

Copyright © 2001-2002 USB-IF. All rights reserved.

Third-party brands and names are the property of their respective owners. Other product and corporate names may be

trademarks of other companies and are only for explanation ant to the owners’ benefit, without intent to infringe.

Significant Contributors:

Dan S. Froelich Intel Corporation

Brad Hosler Intel Corporation

John Howard Intel Corporation

Rahman Ismail Intel Corporation

Chris Robinson Microsoft Corporation

Please send comments via electronic mail to: techadmin@usb.org or ssusbcompliance@usb.org

1. Introduction

mailto:techadmin@usb.org
mailto:ssusbcompliance@usb.org

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 3

This test specification primarily covers USB-IF testing of devices and hubs for compliance with the

standard commands in Chapters 9 and 11 of the USB 2.0 specification. This specification does not

describe the full set of USB-IF tests and assertions for these devices.

In particular, hubs and devices must also meet the requirements and tests described in the latest

versions of the following documents as well as any other tests mandated by the USB-IF:

Universal Serial Bus Implementers Forum Full and Low Speed Compliance Test Procedure

Universal Serial Bus Implementers Forum USB 2.0 Electrical Test Specification

This specification provides a list of test assertions for the Chapter 9 and Chapter 11 descriptors and

commands required for all USB low, full, and high speed peripherals and full and high speed hubs.

The specification also provides a set of test assertions for command and descriptor rules specific to the

HID device class. The assertions provide a partial list of criteria that these device must meet for USB-

IF compliance testing. Test descriptions, providing more detailed information on how each of the

assertions are tested are also provided in the document.

The test assertions provide a complete list of the requirements that are covered by this specification.

The test descriptions can be referenced to obtain specific details on how the assertions will be tested or

for more information when the assertions by themselves are unclear.

2. Test Assertions

Note: Test Assertions with Test Descriptions labeled as N/A are either currently not planned for

testing in the automated USB-IF test suite. The assertions must still be met.

2.1 Chapter 9

General Chapter 9 Command Assertions

Num Assertion

1.1.1 Devices must have a corresponding configuration value for a valid configuration index.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.2

Test Description: TD.1.1, TD.1.2, TD.1.3, TD.1.4, TD.1.5, TD.1.6, TD.1.7, TD.1.8 . . .

1.1.2 Devices must support being set to Addressed/Configured state.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.1.1

Test Description: TD.1.1, TD.1.2, TD.1.3, TD.1.4, TD.1.5, TD.1.6, TD.1.7, TD.1.8 . . .

1.1.3 Devices must support a valid GetDescriptor(Device) request.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.3

Test Description: TD.1.1

1.1.4 Devices must support a valid GetDescriptor(String) request.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.4.3, 9.6.7

Test Description: TD.1.7

1.1.5 Devices must support a valid GetDescriptor(Configuration) request.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.3

Test Description: TD.1.3

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 4

General Chapter 9 Command Assertions

Num Assertion

1.1.6 High Speed Capable devices must support a valid
GetDescriptor(OtherSpeedConfiguration) request.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.3

Test Description: TD.1.3

1.1.7 Devices must support a valid SetConfiguration request

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.7

Test Description: TD.1.11

1.1.8 Device must support a valid GetDescriptor(DeviceQualifier) request.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.3

Test Description: TD.1.2

HID Command Assertions

Num Assertion

1.1.9 HID devices must support a GetDescriptor(HIDDescriptor) request.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Sections 6.2, 7.1.1

Test Description: TD.3.1

1.1.10 HID devices must support a valid SetProtocol(Report) request.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.2.6

Test Description: TD.3.3

1.1.11 HID devices must support a valid GetProtocol request.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.2.5

Test Description: TD.3.3

1.1.12 HID devices must support a valid SetProtocol(Boot) request.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.2.6

Test Description: TD.3.3

1.1.13 HID devices must support a valid GetDescriptor(Report) request.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Sections 6.2, 7.1.1

Test Description: TD.3.4

1.1.14 HID devices that do not support a SetIdle request must respond with a request error.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Sections 7.2, 7.2.4

Test Description: TD.3.2

1.1.15 HID devices that do not support a GetIdle request must respond with a request error

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Sections 7.2, 7.2.3

Test Description: TD.3.2

General Device Assertions

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 5

Num Assertion

1.1.20 Devices must respond with a Request Error to GetDescriptor requests that specify an
invalid descriptor type.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.2.7 and
9.4.3.

Test Description: TD.1.8

1.1.21 Devices must respond with a Request Error to SetFeature requests that specify an invalid
feature selector.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.2.7 and
9.4.9.

Test Description: TD.1.9

1.1.22 Devices must respond with a Request Error to ClearFeature requests that specify an
invalid feature selector.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.2.7 and
9.4.1.

Test Description: TD.1.9

1.1.30 A suspended device must resume normal operation when resume signaling is seen on its
upstream port.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 7.1.7.7.

Test Description: TD.1.13

1.1.100 Devices must support a Get Status Standard Request

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7.

Test Description: TD.1.3, TD.1.5

1.1.101 Device Descriptors must use only Class codes defined in the USB specification, or
allocated and published by the USBIF.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

Device Descriptor Assertions

Num Assertion

1.2.1 The descriptor returned in response to a GetDescriptor(Device) request must have a length
of 0x12 (or appropriate length if less bytes are requested).

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.2 The descriptor returned in response to a GetDescriptor(Device) request must the have value
of 0x01 in the Type field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.3 The descriptor returned in response to a GetDescriptor(Device) request must have the value
of 0x01/0x02 in the high byte of the bcdUSB field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.4 The descriptor returned in response to a GetDescriptor(Device) request must have the value
of 0x00/0x01/0x10 in the low byte of the bcdUSB field

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 6

Device Descriptor Assertions

Num Assertion

1.2.5 The descriptor returned in response to a GetDescriptor(Device) request must have a value
of 0x00 in the device subclass field when the device

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.6 The MaxPacketSize of a control endpoint must be 0x40 for a usb device operating at High
speed.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.7 The MaxPacketSize of a control endpoint must be 0x08 for a usb device operating at Low
speed.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.8 The MaxPacketSize of a control endpoint must be one of 0x08/0x10/0x20/0x40 for a usb
device operating at Full speed

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

1.2.9 A device must have at least one configuration.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3.

Test Description: TD.1.1

1.2.10 The descriptor returned in response to a GetDescriptor(Device) request must the value of
0x02 in the high byte of the bcdUSB field for a high speed device.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.1.

Test Description: TD.1.1

Configuration Descriptor Assertions

Num Assertion

1.2.20 The descriptor returned in response to a GetDescriptor([OtherSpeed]Configuration) request
cannot contain multiple descriptors of type configuration.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3

Test Description: TD.1.3

1.2.21 The descriptor returned in response to a GetDescriptor([OtherSpeed]Configuration)request
cannot contain a descriptor of type device.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3

Test Description: TD.1.3

1.2.22 The descriptor returned in response to a GetDescriptor([OtherSpeed]Configuration)request
cannot contain a descriptor of type device qualifier.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3

Test Description: TD.1.3

1.2.23 The descriptor returned in response to a GetDescriptor([OtherSpeed]Configuration)request
cannot contain a descriptor of type other speed configuration.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3

Test Description: TD.1.3

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 7

Configuration Descriptor Assertions

Num Assertion

1.2.24 The descriptor returned in response to a GetDescriptor([OtherSpeed]Configuration) request
must contain the number of interfaces descriptors reported in the configuration descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3

Test Description: TD.1.3

1.2.25 The descriptor returned in response to a GetDescriptor([OtherSpeed]Configuration) request
must contain the number of endpoint descriptors reported in the contained interface
descriptors.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.3

1.2.26 The configuration descriptor returned in response to a
GetDescriptor([OtherSpeed]Configuration) request must have a length of 0x09.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.6.3, 9.6.4.

Test Description: TD.1.3

1.2.27 The descriptor returned in response to a GetDescriptor(Configuration) request must the
value of 0x02 in the Type field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.3.

Test Description: TD.1.3

1.2.28 The descriptor returned in response to a GetDescriptor(OtherSpeedConfiguration)request
must the value of 0x07 in the Type field.

 Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.4.

Test Description: TD.1.3

1.2.29 The number of interfaces cannot be a zero in a [OtherSpeed]Configuration descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.6.4, 9.6.5

Test Description: TD.1.3

1.2.30 Bits 0 through 4 must be set to zero in the bmAttributes field.of a [OtherSpeed]Configuration
descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.6.3, 9.6.4.

Test Description: TD.1.3

1.2.31 Bit 7 must be set to one in the bmAttributes field of a [OtherSpeed]Configuration descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.6.3, 9.6.4.

Test Description: TD.1.3

1.2.32 A BUS POWERED device cannot draw zero power.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Sections 9.6.3.

Test Description: TD.1.3

1.2.33 A SELF POWERED device cannot draw more than 100ma from the USB bus.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 7.2.1.5.

Test Description: TD.1.3

1.2.34 A BUS POWERED device cannot draw more than 500ma.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 7.2.1.4.

Test Description: TD.1.3

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 8

Interface Descriptor

Num Assertion

1.2.40 An Isochronous endpoint present in alternate interface 0x00 must have a MaxPacketSize of
0x00

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.6.3.

Test Description: TD.1.4

1.2.41 The first interface must have an interface number of 0x0 and an alternate setting of 0x0.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.42 The interface number cannot be greater than the number of interfaces reported in the
configuration descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.43 An Interface must have at least one setting with an Alternate Setting set to zero.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.44 A device must support the SetInterface request if it has alternate settings for that interface.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.10.

Test Description: TD.1.4

1.2.45 Alternate settings for a given interface must be in sequential order.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.46 Interface numbers must be in sequential order.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.47 An interface descriptor must have a length of 0x09.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.48 An interface descriptor must have a value of 0x04 in the Type field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.49 An interface descriptor must have a value of 0x00 in the interface subclass field when the
interface class is 0x00.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.50 A device must support the GetInterface request if it has alternate settings for that interface.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.4.

Test Description: TD.1.4

1.2.51 A successful GetInterface request must return the alternate setting set by a prior call to
SetInterface.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.4.

Test Description: TD.1.4

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 9

Interface Descriptor

Num Assertion

1.2.52 A High speed Interrupt endpoint present in alternate interface 0x00 must have a
MaxPacketSize <= 0x40.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

1.2.53 An interface descriptor must have exactly the number of endpoint descriptors it specifies in
the bNumEndpoints field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.4

EndPoint Descriptor

Num Assertion

1.2.60 An endpoint descriptor must have a length of 0x07.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.61 An endpoint descriptor must have a value of 0x05 in the Type field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.62 Only the default control endpoint can have an address of 0x00.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.63 Bits 6 and 7 must be set to zero in the bmAttributes field.of an Endpoint descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.3.1.1.

Test Description: TD.1.5

1.2.64 Bits 4 and 5 cannot BOTH be set in the bmAttributes field.of an Isochronous Endpoint
descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.65 Bits 2 through 5 must be set to zero in the bmAttributes field.of a non Isochronous Endpoint
descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.66 Bits 13 through 15 must be set to zero in the wMaxPacketSize field.of an Endpoint
descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.67 Legal mult values are 0x00/0x01/0x02 for a High speed Isochronous/Interrupt Endpoint
descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 10

EndPoint Descriptor

Num Assertion

1.2.68 Bits 11 and 12 must be set to zero in the wMaxPacketSize field.of a Control/Bulk Endpoint
descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.69 Bits 11 and 12 must be set to zero in the wMaxPacketSize field.of a non High speed
Endpoint descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.70 USB 1.x compliant devices must have a value of 0x01 in the bInterval field of an
Isochronous Endpoint descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.71 USB 2.x compliant devices must have a value between 0x01 and 0x10 in the bInterval field
of an Isochronous Endpoint descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.72 USB 2.x compliant devices must have a value between 0x01 and 0x10 in the bInterval field
of a High speed Interrupt Endpoint descriptor

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.73 A device cannot have a value of 0x00 in the bInterval field of a Full/Low speed Interrupt
Endpoint descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.74 A device operating at Low speed cannot have Isochronous endpoints.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.6.4.

Test Description: TD.1.5

1.2.75 A Full speed Isochronous endpoint must have a MaxPacketSize between 0 and 1023.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.6.3.

Test Description: TD.1.5

1.2.76 A High speed Interrupt/Isochronous endpoint must have a MaxPacketSize between 0 and
1024 when the Mult value is zero.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.6.3.

Test Description: TD.1.5

1.2.77 A High speed Interrupt/Isochronous endpoint must have a MaxPacketSize between 513 and
1024 and bInterval value of 1 when the Mult value is one.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 11

EndPoint Descriptor

Num Assertion

1.2.78 A High speed Interrupt/Isochronous endpoint must have a MaxPacketSize between 683 and
1024 and bInterval value of 1 when the Mult value is two.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.6.

Test Description: TD.1.5

1.2.79 A device operating at Low speed cannot have Bulk endpoints.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.8.3.

Test Description: TD.1.5

1.2.80 A Full speed Bulk endpoint must have a MaxPacketSize of 0x08/0x10/0x20/0x40.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.8.3.

Test Description: TD.1.5

1.2.81 A High speed Bulk endpoint must have a MaxPacketSize of 0x200.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.8.3.

Test Description: TD.1.5

1.2.82 A Low speed Interrupt endpoint must have a MaxPacketSize less than or equal to 0x08.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.7.3.

Test Description: TD.1.5

1.2.83 A Full speed Interrupt endpoint must have a MaxPacketSize less than or equal to 0x40.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.7.3.

Test Description: TD.1.5

1.2.84 A Low speed Interrupt endpoint must have a value greater than 10 in the bInterval field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 5.7.4.

Test Description: TD.1.5

1.2.90 The number of endpoint descriptors in an interface must match the number reported in the
interface descriptor.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.5.

Test Description: TD.1.5

1.2.91 A device that has Bulk/Interrupt endpoints must support the Halt Endpoint request on those
endpoints.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4

Test Description: TD.1.6

Interface Descriptor

Num Assertion

1.2.100 A device that supports remote wakeup in a specific configuration must not fail a valid
SetFeature(DEVICE_REMOTE_WAKEUP) command.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.9.

Test Description: TD.1.10

Chapter 2: Test Assertions-Chapter 9 7/10/2019

 12

Interface Descriptor

Num Assertion

1.2.101 A device that supports remote wakeup in a specific configuration must not fail a valid
ClearFeature(DEVICE_REMOTE_WAKEUP) command.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.1.

Test Description: TD.1.10

1.2.102 After a successful ClearFeature(DEVICE_REMOTE_WAKEUP) Bit 1 of status word
returned in response to a GetStatus request must be set to a zero

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.5.

Test Description: TD.1.9

1.2.103 After a successful SetFeature(DEVICE_REMOTE_WAKEUP) Bit 1 of status word returned
in response to a GetStatus request must be set to a one.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.5.

Test Description: TD.1.9

1.2.104 After a successful SetFeature(SUSPEND), a hub/host port's status must show
'suspended'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.13

Test Description: N/A

1.2.105 A device with remote wakeup disabled must not initiate a remote wakeup.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.1.

Test Description: TD.1.9

1.2.106 A device with remote wakeup enabled must be able to initiate a remote wakeup on it's

suspended parent port.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.9.

Test Description: TD.1.9

Device Qualifier Assertions

Num Assertion

1.2.120 The descriptor returned in response to a GetDescriptor(DeviceQualifier) request cannot
have a value of 0x00/0x01 in the high byte of the bcdUSB field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.2.

Test Description: TD.1.2

1.2.121 The descriptor returned in response to a GetDescriptor(DeviceQualifier) request must have
a length of 0x0a.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.2.

Test Description: TD.1.2

1.2.122 The descriptor returned in response to a GetDescriptor(DeviceQualifier) request must the
value of 0x06 in the Type field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.2.

Test Description: TD.1.2

1.2.123 The descriptor returned in response to a GetDescriptor(DeviceQualifier) request must have
a value of 0x00 in the device subclass field when the device class is 0x00.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.2.

Test Description: TD.1.2

Chapter 2: Test Assertions-Chapter 11 7/10/2019

 13

Device Qualifier Assertions

Num Assertion

1.2.124 The descriptor returned in response to a GetDescriptor(DeviceQualifier) request must

have a value of 0x00 in the reserved field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.6.2.

Test Description: TD.1.2

2.2 Chapter 11

Hub General Command Assertions

Num Assertion

2.1.1 Hubs must support Get_Port_Status requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7.

Test Description: TD.2.1, TD.2.2, TD.2.3, . . . (All 2.x tests)

2.1.2 Hubs must support Clear_Port_Feature(PortPower) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.2.

Test Description: TD.2.5, TD.2.6

2.1.3 Hubs must support Set_Port_Feature(PortPower) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.13.

Test Description: TD.2.6

2.1.4 Hubs must support Set_Port_Feature(Suspend) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.13.

Test Description: TD.2.2, TD.2.5, TD.2.10, TD.2.12

2.1.5 Hubs must support Clear_Port_Feature(Enabled) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.2

Test Description: TD.2.3, TD.2.9

2.1.6 Hubs must support Set_Feature(RemoteWakeup) requests.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.13

Test Description: TD.2.15, TD.2.16, TD.2.17

2.1.7 Hubs must support Clear_Feature(RemoteWakeup) requests.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.2

Test Description: TD.2.13, TD.2.14

2.1.8 Hubs must support Set_Port_Feature(Reset&Enable) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.13

Test Description: TD.2.8, TD.2.9, TD.2.10

2.1.9 Hubs must support Clear_Port_Feature(C_PORT_RESET) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.2

Test Description: TD.2.8, TD.2.9, TD.2.10

2.1.10 Hubs must support Clear_Port_Feature(Suspend) requests on all ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.2

Test Description: TD.2.11

Chapter 2: Test Assertions-Chapter 11 7/10/2019

 14

Hub General Command Assertions

Num Assertion

2.1.11 Hubs must support a GetDescriptor(HUB_Descriptor) request.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.5

Test Description: TD.2.18

Hub Port Status Change Assertions

Num Assertion

2.2.1 The state of Hub ports that are suspended, disconnected or enabled must not change when
an event (connect, disconnect, suspend, resume, or remote wakeup) happens on another
port.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.13, TD.2.14, TD.2.15, TD.2.16, TD.2.17

2.2.2 After receiving a Clear_Port_Feature(PortPower), a hub port's status must show 'not
powered'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.5, TD.2.6

2.2.3 After receiving a Set_Port_Feature(PortPower), a hub port's status must show 'powered'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.

Test Description: TD.2.6

2.2.4 After receiving a Set_Port_Feature(Suspend), a hub port's status must show 'suspended'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.2, TD.2.5, TD.2.10, TD.2.12

2.2.5 After receiving a Clear_Port_Feature(Enable), a hub port's status must show 'not enabled'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.3, TD.2.9

2.2.6 After notification that a Reset&Enable request is complete, a hub port's status must show
'enabled'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.8, TD.2.10

2.2.7 After notification that a Host-Initiated Resume request is complete, a hub port's status must
show 'enabled'.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.11

2.2.20 After a Disconnect Event on an enabled port, the hub port status must indicate not
Connected, Not Enabled, Not Suspended, Not OverCurrent, Not Reset, and Powered and
the port change status must indicate Connect change, No Suspend change, No Overcurrent
change, and No Reset change.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.1

Chapter 2: Test Assertions-Chapter 11 7/10/2019

 15

Hub Port Status Change Assertions

Num Assertion

2.2.21 After a Disconnect Event on a suspended port, the hub port status must indicate Not

Connected, Not Enabled, Not Suspended, Not OverCurrent, Not Reset, and Powered and

the port change status must indicate Connect change, No Suspend change, No Overcurrent

change, and No Reset change.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.2

2.2.22 After a Connect Event on a port, the hub port status must indicate. Connected, Not

Enabled, Not Suspended, Not OverCurrent, Not Reset, and Powered and the port change

status must indicate Connect change, No Enable/Disable change, No Suspend change, No

Overcurrent change, and No Reset change.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.4

2.2.23 After a Remote Wakeup Event on a suspended port, the hub port status must indicate

Connected, Enabled, Not Suspended, Not OverCurrent, Not Reset, and Powered and the

port change status must indicate No Connect change, No Enable/Disable change, Suspend

change, No Overcurrent change, and No Reset change.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.24.2.7

Test Description: TD.2.7

2.2.40 Hub port events that cause a hub port change bit to transition from a zero to a one (connect,
disconnect, reset complete, resume complete) must cause the appropriate notification data
to be sent to the host at the next poll of the hub's change notification pipe.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.12.4

Test Description: TD.2.1, 2.2. 2.3 (All 2.x tests)

2.2.41 Data returned from a hub's change notification pipe must indicate which ports had a change
in status.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.12.4

Test Description: TD.2.1, 2.2, 2.3 (All 2.x tests)

2.2.60 A suspended hub that is not enabled for remote wakeup must not signal remote wakeup
when a connect or disconnect happens on one of its ports

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 9.4.1

Test Description: TD.2.13

2.2.61 A suspended hub that is enabled for remote wakeup must signal remote wakeup when a
connect or disconnect happens on one of its ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Chapter 11.

Test Description: TD.2.14

2.2.62 A suspended hub that is enabled for remote wakeup must propogate remote wakeup from
downstream ports.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Chapter 11.

Test Description: TD.2.14

Chapter 2: Test Assertions-Chapter 11 7/10/2019

 16

Hub Port Status Change Assertions

Num Assertion

2.2.80 User declared inaccessible ports must match hub descriptor device removable list.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Chapter 11.

Test Description: N/A

2.2.90 A hub shall report the PORT_CONNECTION bit in the port status as 1 when the port is in
the Powered state, a device attach is detected, and the port transitions from the
Disconnected state to the Disabled state.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Chapter 11.

Test Description: TD.2.19

2.2.91 A hub shall report C_PORT_CONNECTION bit as one when the PORT_CONNECTION bit
changes because of an attach or detach detect event. Note that this applies even when the
device was already connected when the port was being powered on and no reset has
occurred on the port.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Chapter 11.

Test Description: TD.2.19

Hub Descriptor Assertions

Num Assertion

2.3.1 The descriptor returned in response to a GetDescriptor(Hub_Descriptor) request must have
the value of 0x29 in the bDescriptorType field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

2.3.2 The descriptor returned in response to a GetDescriptor(Hub_Descriptor) request must have
a value of 0x0 or 0x1 in the Logical Power Switching Mode subfield of the
wHubCharacteristics field.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

2.3.3 Self-powered Hubs MUST provide Over-Current Protection.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

2.3.4 Reserved bits in the Hub Descriptor must read as zeros.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

2.3.5 Bit 0 of the Device Removable bitmask is reserved and must read as a zero.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

2.3.6 All bits in the Hub Descriptors' PortPwrCtrlMask field must be 1's

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

Chapter 2: Test Assertions-Chapter 11 7/10/2019

 17

Hub Descriptor Assertions

Num Assertion

2.3.7 The value in the bHubContrCurrent field must not exceed 100mA (0x64) for self-powered
hubs.

Specification Ref: Universal Serial Bus Specification, Revision 2.0. Section 11.23.2.1.

Test Description: TD.2.18

Chapter 2: Test Assertions-HID Specification 7/10/2019

 18

2.3 HID Specification

General HID Assertions

Num Assertion

3.2.1 A HID class compliant Interface must have one HID descriptor associated with it.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.1

Test Description: TD.3.1

3.2.2 A HID class compliant Interface must have one Endpoint descriptor associated with it.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.1

Test Description: TD.3.1

HID Descriptor Assertions

Num Assertion

3.2.20 A HID class compliant Interface must have a value of 0x00/0x01 in the bInterfaceSubClass
field.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section Appendix E.3.

Test Description: TD.3.1

3.2.21 A HID class compliant Interface must have a value of 0x00/0x01/0x02 in the
bInterfaceProtocol field.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section Appendix E.3.

Test Description: TD.3.1

3.2.22 A HID class compliant Interface must have a valid HID descriptor associated with it.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.1.

Test Description: TD.3.1

3.2.23 The HID descriptors obtained from the configuration descriptor and one obtained by
performing a GetDescriptor request for the same interface must match.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.1.

Test Description: TD.3.1

3.2.24 The descriptor returned in response to a GetDescriptor(HIDDescriptor) request must have a
length of at least 0x09 and in increments of 3 if more than 9.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 6.2.1

Test Description: TD.3.1

3.2.25 The descriptor returned in response to a GetDescriptor(HIDDescriptor) request must have a
bNumDescriptors value that correlates with the length value.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 6.2.1

Test Description: TD.3.1

Chapter 2: Test Assertions-HID Specification 7/10/2019

 19

HID Descriptor Assertions

Num Assertion

3.2.26 The descriptor returned in response to a GetDescriptor(HIDDescriptor) request must the
value of 0x21 in the Type field.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 6.2.1

Test Description: TD.3.1

3.2.27 The descriptor returned in response to a GetDescriptor(HIDDescriptor) request must the
value greater than 0x01 in the high byte of the bcdHID field.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 6.2.1.

Test Description: TD.3.1

3.2.28 The descriptor returned in response to a GetDescriptor(HIDDescriptor) request must contain
at least one entry containing of type report descriptor.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 6.2.1.

Test Description: TD.3.1

3.2.29 The descriptor returned in response to a GetDescriptor(HIDDescriptor) cannot contain any
optional descriptors with type field set to 0x24-0x2F.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 6.2.1.

Test Description: TD.3.1

Hid Command Assertions

3.2.40 The protocol returned in response to a GetProtocol request must match the protocol set by
a successful previous call to SetProtocol.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1.
Section 7.2.5

Test Description: TD.3.3

3.2.60 The number of items in a report descriptor must be greater than 0x0.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1,
Section 6.2.2.

Test Description: TD..3.4

3.2.61 The report descriptor returned in response to a GetDescriptor(Report) must be compliant
with the HID specification.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1,
Section 6.2.2.

Test Description: TD.3.4

3.2.80 The idle rate returned in response to a GetIdle request must match the idle rate set by a
successful previous call to SetIdle.

Specification Ref: Device Class Definition for Human Interface Devices, Revision 1.1,
Section 7.2.3.

Test Description: TD.3.2

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 20

3. Test Descriptions

3.1 Chapter 9 (Device) Tests

The Chapter 9 tests cover the device support of the commands set for the in Chapter 9 of the USB

specification. There are three different device states. Many of the tests are run with the device under

test in more than one of these states. Each of the states and procedure used to put the device into this

state are described here. This information is provided to help with debugging in cases where the

device under test is not even reaching the desired starting state for the test. The individual tests

mention which device states they are run on – but don’t repeat the setup procedure. The device states

are as follows:

Default State:

1. Put the device in the configured state following the procedure below.

2. Issue a valid Set Configuration command to the device with configuration value zero.

3. Issue a valid Get Configuration command and verify that the device responds with zero.

4. Issue a valid Set Address command to the device with address zero.

Address State:

1. Put the device in the configured state following the procedure below.

2. Issue a valid Set Configuration command to the device with configuration value zero.

3. Issue a valid Get Configuration command to the device and verify that device responds with zero.

Configured State: The device is enumerated using the following procedure.

1. Reset the USB host controller.

2. For each port on the USB host controller turn on port power.

3. Sleep for 1 Second.

4. Drive port reset on each host port. Sleep for 50 milliseconds. Clear port reset.

5. Check host port enable.

6. If host port is enabled enumerate the device on the port.

7. Issue a valid set configuration command for the configuration to be tested.

8. Issue a valid get configuration command and verify that the correct configuration is returned.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 21

Enumerate Device Routine:

1. Get device descriptor using a maximum packet size of 64. (This will cause a short packet for

devices with maxpacketsize0 < 64)

2. Issue a Set Address command with the next available USB address.

3. Get the device descriptor again with the right maximum packet size.

4. Get configuration descriptor asking for a number of bytes equal to configuration descriptor size

only.

5. Issue a Set Configuration command for the first configuration supported by the device.

6. Get the configuration descriptor again asking for a number of bytes equal to the configuration

descriptor size.

7. Get the configuration descriptor using the total length of the entire descriptor.

If the descriptors indicated the device is a hub continue with the steps below:

8. Get the hub class descriptor.

9. Issue a Set Port Feature command with power selector PORT_POWER for each port on the hub.

10. Sleep for 1 second.

11. Issue Get Port Status commands for each port.

12. If the connect bit is set in the port status issue a port reset and proceed to step 13. Otherwise stop.

13. Sleep for 50 milliseconds.

14. Check the port status to ensure the enable bit has been set. Then proceed to the enumerate device

routine.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 22

3.1.1 TD 9.1: Device Descriptor Test

This test verifies that the device under test responds to valid Get Device Descriptor
commands and returns a descriptor in compliance with the specification.

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get device descriptor command with a requested length of 18 bytes.

3. Perform each of the following checks on the device descriptor value:

 bLength == 18

 bDescriptorType == DEVICE descriptor type

 bcdUSB.hibyte == (01 or 02)

 if (Device Speed == High) then bcdUSB.hibyte == 02

 (if bcdUSB.hibyte == 01) then bcdUSB.lowbyte == (01 or 10 or 00)

 if (bDeviceClass == 0) then bDeviceSubClass == 0.

 if (Device Speed == Low) then bMaxPacketSize0 == 8.

 If (Device Speed == Full) then bMaxPacketSize0 == (8 or 16 or 32 or 64)

 If (Device Speed == High) then bMaxPacketSize0 == 64

 Check that idVendor is in the list of valid entries maintained by the USB-IF.

 bNumConfigurations != 0

 Check that the bDeviceClass == 0 or ==FFH or is on a list of assigned class
 codes maintained by the USB-IF.

4. Repeat test with device in the default, address, and configured states.

5. If the device supports multiple configurations, the test is repeated for each possible

configuration.

6. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described in this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Any of the device descriptor content checks fail.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 23

3.1.2 TD 9.2: Configuration Descriptor Test

This test verifies that the device under test responds to valid Get Configuration Descriptor
commands and returns a descriptor in compliance with the specification.

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

3. Perform the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == CONFIGURATION descriptor type (or

 OTHER_SPEED_CONFIGURATION type)

4. Issue a valid get configuration descriptor command with a requested length of

wTotalLength from the configuration descriptor

5. Parse the data returned with the following information and checks:

 The first descriptor must be a configuration descriptor as checked in step 3.

 All other descriptors must be endpoint, interface, or class descriptors.

 Count the number of endpoint descriptors.

 Count the number of interface descriptors (alternate setting == 0)

 Sum the bNumEndPoint values from all interface descriptors.

6. Check that the number of interface descriptors found equals the bNumInterfaces value
in the configuration descriptor.

7. Check that the total number of endpoint descriptors found matches the sum of the
bNumEndPoint values from each of the interface descriptors.

8. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

9. Perform each of the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == Configuration descriptor type

 bNumInterface != 0

 bmAttributes bits D0 to D4 == 0.

 bmAttributes bit D7 == 1

 if (bMaxPower == 0) bmAttributes D6 == 1

10. If this is not an other speed configuration test issue a Get Status request for the
device.

 If the status request indicates the device is operating bus powered bMaxPower
 must be less than 500 mA.

 If the status request indicates the device is operating self powered bMaxPower
 must be less than 100 mA.

11. If the test supports multiple configurations repeat test for each configuration
descriptor.

12. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation and is also run for the OTHER speed
configuration descriptor.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Any of the device descriptor content checks fail.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 24

3.1.3 TD 9.3: Interface Association Descriptor Test

Defined in the USB 3.2 Test Specification, version 1.22.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 25

3.1.4 TD 9.4: Interface Descriptor Test

This test verifies that the device under test reports interface descriptors in compliance
with the specification.

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

3. Perform the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == CONFIGURATION descriptor type (or

 OTHER_SPEED_CONFIGURATION type)

4. Issue a valid get configuration descriptor command with a requested length of

wTotalLength from the configuration descriptor

5. If this is not an other speed configuration test issue a Set configuration command to
set the configuration of the device to the one being tested. Then issue a Get
configuration command to make sure the correct configuration is indicated.

6. Perform the following bandwidth check for all interface and endpoint descriptors
returned by the device:

If a default interface (alternate setting zero) contains an isochronous endpoint with a
maximum packet size greater than 0 the test fails.

If a default interface (alternate setting zero) contains an interrupt endpoint with a
maximum packet size greater than 64 the test fails.

7. Check that there is at least one interface descriptor in the data returned.

8. Check that the first interface descriptor returned has bInterfaceNumber and
bAlternateSetting values of zero.

9. For each interface descriptor returned perform the following checks:

 If this is not the first interface descriptor (see check 8)

 If (current interface number == previous interface number)

 Then current alternate setting must be one greater

 Else

 Current interface number must be 1 greater than previous

 Current alternate setting must be zero

 Current interface number must be < total number interfaces

 bLength > 8

 bDescriptorType == INTERFACE descriptor type

 if (bInterfaceClass == 0) then check that bInterfaceSubClass == 0

 bNumEndpoints matches the number of endpoint descriptors.

10. If this is not an other speed interface perform the following additional checks.

 Call set interface for the current bInterfaceNumber and bAlternateSetting values.

 If the current interface has no alternate settings the device may STALL the
 request – otherwise it must succeed.

 Call get interface for the current bInterfaceNumber and verify that the correct
 alternate setting value is returned.

11. If the test supports multiple configurations repeat test for each configuration
descriptor.

12. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation and is also run for the OTHER speed
configuration descriptor.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 26

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid set interface requests fail for any reason.

 Valid get interface requests fail for any reason.

 Any of the interface descriptor content checks fail.

3.1.5 TD 9.5: Endpoint Descriptor Test

This test verifies that the device under test reports endpoint descriptors in compliance
with the specification.

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

3. Perform the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == CONFIGURATION descriptor type (or

 OTHER_SPEED_CONFIGURATION type)

4. Issue a valid get configuration descriptor command with a requested length of

wTotalLength from the configuration descriptor

5. If this is not an other speed configuration test issue a Set configuration command to
set the configuration of the device to the one being tested. Then issue a Get
configuration command to make sure the correct configuration is indicated.

6. Issue a valid get device descriptor command to store the bcdUSB value.

7. For each endpoint descriptor found in the data returned from the get configuration
descriptor request perform the following checks:

 bLength > 6

 bDescriptorType == ENDPOINT descriptor type

 bEndPointAddress != (0x00 or 0x80)

 bmAttributes D6-D7 must be zero.

 BmAttributes D2-D5 must be zero unless the endpoint is isochronous and
 bcdUSB is 0200 or greater.

 Note: There is an exception made if bcdUSB is 0x0101 or 0x0110 and the
 endpoint is part of an audio interface.

 wMaxPacketSize bit D13 to D15 must be zero.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 27

8. The endpoint being tested is categorized according to the following logic:

 Current Device Speed Other Speed Descriptor Category

 Low NA CV_LOW

 FULL YES CV_HIGH

 FULL NO CV_FULL_2X (bcdUSB)

 CV_FULL_1X

 HIGH NO CV_HIGH

 HIGH YES CV_FULL_2X

9. For each endpoint descriptor the following endpoint type and speed dependent
checks are performed:

 If wMaxPacketSize bits D11 to D12 are non-zero the endpoint must be type
 CV_HIGH with transfer type INTERRUPT or ISOCHRONOUS.

10. For Control endpoints the following checks are performed.

 CV_LOW wMaxPacketSize == 8

 CV_FULL (1x or 2x) wMaxPacketSize == (8 or 16 or 32 or 64)

 CV_HIGH wMaxPacketSize == 64

11. For Bulk endpoints the following checks are performed.

 CV_LOW FAIL - ILLEGAL

 CV_FULL (1x or 2x) wMaxPacketSize == (8 or 16 or 32 or 64)

 CV_HIGH wMaxPacketSize == 512

12. For Interrupt endpoints the following checks are performed.

 CV_LOW bInterval >9

 wMaxPacketSize < 9

 CV_FULL_1X bInterval != 0

 wMaxPacketSize < 65

 CV_FULL_2X bInterval != 0

 wMaxPacketSize < 65

 CV_HIGH bInterval > 0 and bInterval < 16

 MULT 0 wMaxPacketSize < 1025

 MULT 1 wMaxPacketSize > 512 and wMaxSize < 1025

 MULT 2 wMaxPacketSize > 682 and wMaxSize < 1025

13. For Isochronous endpoints the following checks are performed.

 CV_LOW FAIL - ILLEGAL

 CV_FULL_1X bInterval == 1

 wMaxPacketSize < 1024

 CV_FULL_2X bInterval > 0 and bInterval < 17

 wMaxPacketSize < 1024

 CV_HIGH bInterval > 0 and bInterval < 17

 MULT 0 wMaxPacketSize < 1025

 MULT 1 wMaxPacketSize > 512 and wMaxSize < 1025

 MULT 2 wMaxPacketSize > 682 and wMaxSize < 1025

14. If the test supports multiple configurations repeat test for each configuration
descriptor.

15. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation and is also run for the OTHER speed
configuration descriptor.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 28

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Any of the device descriptor content checks fail.

3.1.6 TD 9.6: Endpoint Companion Descriptor Test

Not defined for USB 2.0 devices.

3.1.7 TD 9.7: BOS Descriptor Test

This test verifies the fields within the BOS and Device Capability Descriptor from the
device are formatted in compliance with the specification and have appropriate values.

Device States for Test

This test is run with the device in Default, Address, and Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Determine the USB version number of the device:

 - Get the device descriptor.

 - The version number is given in bcdUSB.

Test fails if we cannot get the device’s USB version number.

3. Send a GetDescriptor(wValue, wIndex, wLength, Data) request with the following
values:

 - wValue – set to 15d (BOS).

 - wIndex – set to Zero.

 - wLength – 5d.

Test fails if the device returns bLength set to anything but 5d.

Test fails if the USB version number is less than or equal to 2.00 and the GetDescriptor
call succeeds.

4. If the USB version number is less than or equal to 2.00, then exit the test.

Test fails if the USB version number is greater than 2.00 and the GetDescriptor call fails.

5. Send a GetDescriptor(wValue, wIndex, wLength, Data) request with the following
values:

 - wValue – set to 15d (BOS).

 - wIndex – set to Zero.

 - wLength – wTotalLength (All of the BOS Descriptor Set).

6. Check the size of the returned descriptor table.

Test fails is the length of the returned descriptor table is different from wTotalLength.

7. Parse the data returned, only keeping the BOS and Device Capability Descriptors.

8. Check the USB version numbers reported in the BOS descriptor.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 29

9. Check the returned BOS descriptor for the following values:

 - bLength reflects the size returned.

 - bDescriptorType is 15d (BOS type).

 - bNumDeviceCaps reflects the number of separate Device Capability
Descriptors found in the BOS, which must be at least 2 for SuperSpeed devices and
equal to 3 for USB 3.0 hubs.

Test fails if any of the values are not as specified.

10. Check the returned device capability descriptors for the following values:.

 - All SuperSpeed devices and USB3.0 Hubs must have a USB 2.0 EXTENSION
descriptor.

 - All SuperSpeed devices and USB3.0 Hubs must have a SUPERSPEED_USB
descriptor.

 - All USB3.0 Hubs must have a CONTAINER_ID descriptor.

Test fails if any of the values are not as specified.

11. For USB 2.0 EXTENSION, check the returned Descriptor for the following values:

 - bLength == Size of descriptor (07H)

 - bDescriptorType is 16d (DEVICE_CAPIBILITY)

 - bDevCapabillityType is 02H (USB 2.0 EXTENSION)

 - bmAttributes: Bit 0 is 0

 Bit 1 is 1

 Bits 31:2 are 0

Test fails if any of the values are not as specified.

12. For SUPERSPEED_USB, check the returned Descriptor for the following values:

 - bLength == Size of descriptor (0AH)

 - bDescriptorType is 16d (DEVICE_CAPIBILITY)

 - bDevCapabillityType is 03H (SUPERSPEED_USB)

 - bmAttributes: Bit 0 is 0

 Bit 1 is 1 if it is a LTM capable device

 Bits 7:2 are 0

13. For CONTAINER_ID, check the returned Descriptor for the following values:

 - bLength == Size of descriptor (14H)

 - bDescriptorType is 16d (DEVICE_CAPIBILITY)

 - bDevCapabillityType is 04H (CONTAINER_ID)

 - bReserved is 0

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Any of the values are not as specified.

3.1.8 TD 9.8: String Descriptor Test

This test is run in the process of running each of the previous descriptor tests. In each
descriptor that is not a Device Qualifer or Other Speed descriptor this test is run if a non-
zero string descriptor request is reported

Device States For Test

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 30

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. For each non-zero string descriptor in any of the device’s descriptors perform the
following steps.

3. Issue a valid Get String Descriptor request with index 0 and a requested length of 500.

4. Perform each of the following checks on the returned language ID table:

 The length must be at least 4. (at least one supported LangID)

 The length must be a multiple of 2.

 The bDescriptorType must be STRING descriptor type.

 The number of bytes received must match the bLength field of the descriptor.

5. For each LangID value in the table issue a valid Get String Descriptor request with the
index to test and a requested length of 500.

6 For each of the string descriptors received in step 5 check the following:

 The length must be at least 2.

 The bDescriptorType must be STRING descriptor type.

 The number of bytes received must match the bLength field of the desriptor.

7. Repeat test with device in the default, address, and configured states.

8. If the test supports multiple configurations repeat test for the configured state for each
possible configuration.

9. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Any of the device descriptor content checks fail.

3.1.9 TD 9.9: Halt Endpoint Test

This test is similar to the interface descriptor test except that it also checks that all bulk
and interrupt endpoints can be programmatically halted.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

3. Perform the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == CONFIGURATION descriptor type (or

 OTHER_SPEED_CONFIGURATION type)

4. Issue a valid get configuration descriptor command with a requested length of

wTotalLength from the configuration descriptor

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 31

5. If this is not an other speed configuration test issue a Set configuration command to
set the configuration of the device to the one being tested. Then issue a Get
configuration command to make sure the correct configuration is indicated.

6. Perform the following bandwidth check for all interface and endpoint descriptors
returned by the device:

If a default interface (alternate setting zero) contains an isochronous endpoint with a
maximum packet size greater than 0 the test fails.

If a default interface (alternate setting zero) contains an interrupt endpoint with a
maximum packet size greater than 64 the test fails.

7. Check that there is at least one interface descriptor in the data returned.

8. Check that the first interface descriptor returned has bInterfaceNumber and
bAlternateSetting values of zero.

9. For each interface descriptor returned perform the following checks:

 If this is not the first interface descriptor (see check 8)

 If (current interface number == previous interface number)

 Then current alternate setting must be one greater

 Else

 Current interface number must be 1 greater than previous

 Current alternate setting must be zero

 Current interface number must be < total number interfaces

 bLength > 8

 bDescriptorType == INTERFACE descriptor type

 if (bInterfaceClass == 0) then check that bInterfaceSubClass == 0

10. If this is not an other speed interface perform the following additional checks.

 Call set interface for the current bInterfaceNumber and bAlternateSetting values.

 If the current interface has no alternate settings the device may STALL the
 request – otherwise it must succeed.

 Call get interface for the current bInterfaceNumber and verify that the correct
 alternate setting value is returned.

11. For each endpoint associated with interface descriptor in step 10 perform the
following checks if the endpoint is bulk or interrupt:

 Issue a valid Get Status request for the endpoint.

 If the endpoint is halted issue a valid Clear Feature request with feature selector
 ENDPOINT_HALT. Then issue a valid Get Status request for the endpoint and
 verify that the endpoint no longer reports halt.

 Issue a valid Set Feature request with feature selector ENDPOINT_HALT

 Issue a valid Get Status request for the endpoint.

 Verify that ENDPOINT_HALT is reported in the status.

 Issue a valid Clear Feature request with feature selector ENDPOINT_HALT

 Issue a valid Get Status request for the endpoint.

 Verify that ENDPOINT_HALT is not reported in the status.

12. If the test supports multiple configurations repeat test for each configuration
descriptor.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 32

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid set interface requests fail for any reason.

 Valid get interface requests fail for any reason.

 Valid get status requests fail for any reason.

 Valid set feature (ENDPOINT_HALT) requests fail for any reason.

 Valid clear feature (ENDPOINT_HALT) requests fail for any reason.

 Any of the device descriptor content checks fail.

3.1.10 TD 9.10: Bad Descriptor Test

This test checks that a device properly handles a GetDescriptor request when the
Descriptor type is invalid.

Device States For Test

This test is run with the device starting in the Address state.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the Address state.

2. Issue a GetDescriptor request with a with a descriptor type parameter that is invalid.
Invalid, means that it is not within the set of defined values in the USB 2.0
specification or any class specifications.

3. Verify that the device responded with a STALL.

4. Issue a GetDescriptor(DeviceDescriptor) request to the device, to make sure the
device is still responding. If this is successful, skip step 5.

5. Re-enumerate the device.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 The device cannot be put into the address state.

The device does not respond with a STALL to a GetDescriptor request with an
invalid descriptor type.

Valid GetDescriptor requests fail for any reason.

 Device enumeration fails.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 33

3.1.11 TD 9.11: Bad Feature Test

This test checks that a device properly handles a SetFeature request when the feature
selector is invalid.

Device States For Test

This test is run with the device starting in the Address state.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the Address state.

2. Issue a SetFeature request with a with a feature selector parameter that is invalid.
Invalid, means that it is not within the set of defined values in the USB 2.0
specification or any class specifications.

3. Verify that the device responded with a STALL.

4. Issue a GetDescriptor(DeviceDescriptor) request to the device, to make sure the
device is still responding. If this is successful, skip to step 6.

5. Re-enumerate the device. If this fails then the test aborts.

6. Issue a ClearFeature request with a with a feature selector parameter that is invalid.
Invalid, means that it is not within the set of defined values in the USB 2.0
specification or any class specifications.

7. Verify that the device responded with a STALL.

8. Issue a GetDescriptor(DeviceDescriptor) request to the device, to make sure the
device is still responding. If this is successful, skip step 9.

9. Re-enumerate the device. If this fails then the test aborts.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 The device cannot be put into the address state.

The device does not respond with a STALL to a SetFeature request with an
invalid feature selector.

The device does not respond with a STALL to a ClearFeature request with an
invalid feature selector.

Valid GetDescriptor requests fail for any reason.

 Device enumeration fails.

3.1.12 TD 9.12: Remote Wakeup Test

This test checks each device configuration supporting remote wakeup to ensure that the
device properly supports the Set and Clear feature commands with feature selector
DEVICE_REMOTE_WAKEUP.

Device States For Test

This test is run with the device in the Configured state. For each remote wakeup capable
configuration, the test is run with remote wakeup enabled (must work) and disabled (must
not work).

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the address state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 34

3. Perform the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == CONFIGURATION descriptor type

 bmAttributes bit D5 == 1 (Remote Wakeup)

4. Repeat steps 2 and 3 for each configuration.

5. If bit D5 is never set there is nothing to test.

6. If bit D5 is set for some configurations, issue a valid get configuration for the
configuration that was set in Step 1. If bit D5 is set proceed with the Remote Wakeup
Test, otherwise there is nothing to test for this configuration.

REMOTE_WAKEUP_TEST

Note: a device class may have additional requirements for enabling and/or detecting
remote wakeup. If necessary, any required actions should be performed as appropriate in
and around the following steps. See the appropriate device class specifications for
details.

7. Issue a valid Set Configuration command to set the device into the remote wakeup
capable configuration being tested.

8. Issue a valid Get Configuration command and verify the device reports the
configuration that was set in step 7.

9. Issue a valid Set Feature command with feature selector
DEVICE_REMOTE_WAKEUP.

10. Issue a valid Get Status command and verify that Remote Wakeup is reported.

11. If this is a remote wakeup disabled test: Issue a valid Clear Feature command with
feature selector DEVICE_REMOTE_WAKEUP. Then issue a valid Get Status command
verify that Remote Wakeup is not reported.

12. Suspend the parent port of the device under test.

13. Sleep for 1 second.

14. Check the parent port status to verify that it has suspended.

15. Prompt the user to generate a remote wakeup event on the device under test.

16. Poll the parent port for up to 15 seconds sending valid Get Port Status commands
and checking to see when(if) the PORT_SUSPEND bit is cleared.

17. If the test supports multiple configurations repeat test for each configuration
descriptor. If the device is HS capable repeat with the device operating at HS and FS.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid get status requests fail for any reason.

 Valid set feature (DEVICE_REMOTE_WAKEUP) requests fail for any reason.

 Valid clear feature (DEVICE_REMOTE_WAKEUP) requests fail for any reason.

 Device status does not properly indicate the whether remote wakeup is enabled.

 A remote wakeup event is produced by the device when remote wakeup is
 disabled.

 A remote wakeup event is not produced by the device when remote wakeup is
 enabled.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 35

 The device under test prevents its parent port from entering the suspend state.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 36

3.1.13 TD 9.13: Set Configuration Test

This test checks each device configuration can be set using Set Configuration and that
the device properly reports its current configuration in response to the Get Configuration
command..

Device States For Test

This test is run with the device starting in the Address state.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the address state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes
for configuration index zero.

3. Issue a valid Set configuration request using the bConfigurationValue obtained in step
two.

4. Issue a valid Get configuration request and verify the configuration set in step 3 is
reported.

5. Issue a valid get configuration descriptor command with a requested length of 9 bytes
for the configuration to be tested.

6. Issue a valid Set configuration request using the bConfigurationValue obtained in step
five.

7. Issue a valid Get configuration request and verify the configuration set in step 6 is
reported.

8. Issue a valid Set configuration request using configuration value zero.

9. Issue a valid Get Configuration command and verify the device reports the
configuration that was set in step 7.

10. Issue a valid Set configuration request using the bConfigurationValue obtained in
step five.

11. Issue a valid Get configuration request and verify the configuration set in step 10 is
reported.

12. If the test supports multiple configurations repeat test for each configuration
descriptor. Also repeat with the device operating at HS and FS if it is HS capable.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid get status requests fail for any reason.

 Valid set feature (DEVICE_REMOTE_WAKEUP) requests fail for any reason.

 Valid clear feature (DEVICE_REMOTE_WAKEUP) requests fail for any reason.

 Device status does not properly indicate the whether remote wakeup is enabled.

 A remote wakeup event is produced by the device when remote wakeup is
 disabled.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 37

 A remote wakeup event is not produced by the device when remote wakeup is
 enabled.

 The device under test prevents its parent port from entering the suspend state.

3.1.14 TD 9.14: Suspend/Resume Test

This test checks that a device can be suspended and then resumed and return to normal
operation.

Device States For Test

This test is run with the device starting in the Address state.

Overview of Test Steps

The test software performs the following steps.

1. The device is suspended.

2. After waiting ~200ms the device is resumed.

3. After waiting ~200ms a GetDescriptor(Device) request is sent to the device. If this
fails for any reason all devices are re-enumerated to get things back to the initial
state.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

The device is unable to respond to a GetDescriptor(Device) request after being resumed.

3.1.15 TD 9.15: Function Remote Wakeup Test

Not defined for USB 2.0 devices.

3.1.16 TD 9.16: Enumeration Test

This test checks that a device can be enumerated multiple times. The device is assigned
a different device address in each enumeration cycle. The enumeration method used is
the ‘enumerate device routine’ found on page 21.

Device States For Test

This test is run with the device starting in the Address state.

Overview of Test Steps

The test software performs the following steps.

1. A message informs the user that the test has started and how many enumeration
iterations will be done. The user can abort the test if it will take too long. However,
this will be a test failure.

2. The device is repeatedly enumerated.

3. The full device tree is enumerated to get everything back to a known state.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Device enumeration, as described in the ‘enumerate device routine’ found on
page 21, fails for any reason.

The device does not enumerate at the correct speed during any enumeration.

3.1.17 TD 9.17: Other Speed Configuration Descriptor Test

This test verifies that the device under test responds to valid Get Other Speed
Configuration Descriptor commands and returns a descriptor in compliance with the
specification.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 38

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get device descriptor command with a requested length of 18 bytes.

3. Perform the following checks on the device descriptor value:

 bcdUSB.hibyte == 02

4. If bcdUSBhibiyte == 02, then perform all the steps of TD 9.2 Configuration
Descriptor Test where the descriptor type is OTHER_SPEED_DESCRIPTOR_TYPE.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device Descriptor command fails.

. bcdUSB.hibyte != 2.

 Any of the failure conditions of TD 9.2 Configuration Descriptor Test are
reported.

3.1.18 TD 9.18: Device Qualifier Descriptor Test

This test verifies that the device under test responds to valid Get Device Qualifer
Descriptor commands and returns a descriptor in compliance with the specification.

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get device qualifier descriptor command with a requested length of 9
bytes.

3. Perform each of the following checks on the device qualifier descriptor value:

 bcdUSB.hibyte == 02

 bLength == 10

 bDescriptorType == DEVICE_QUALIFER descriptor type

 if (bDeviceClass == 0) then bDeviceSubClass == 0.

 If (Device Speed == High) then bMaxPacketSize0 == (8 or 16 or 32 or 64)

 If (Device Speed == Full) then bMaxPacketSize0 == 64

 bNumConfiguration != 0

 bReserved != 0

4. Repeat test with device in the default, address, and configured states.

5. If the test supports multiple configurations repeat test for the configured state for each
possible configuration.

6. If the device is a high speed capable device the full test must be run with the device
in both full speed and high speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 39

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

Any of the device descriptor content checks fail.

3.1.19 TD 9.19: Time Control Transfer Test

Not defined for USB 2.0 devices.

3.1.20 TD 9.20: LTM Test

Not defined for USB 2.0 devices.

3.1.21 TD 9.21: LPM L 1 Suspend Resume Test

This test verifies that if the device under test is required to support LPM, then it supports
it correctly.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Determine the USB Version number of the device.

 - Obtain the device descriptor with a GetDescriptor command.

 - The USB version number is contained in the bcdUSB field.

3. If the USB version number is 2.00 or less, then the device is not required to support
LPM. End the test.

4. If the device under test is running behind a full speed hub, then end the test.

5. Verify that the parent port of the device under test supports LPM. If it does not, then
abort the test.

6. Read the USB 2.0 Extension Descriptor, included in the BOS descriptor.

7. If the BESL and Alternate HIRD Supported bit is not set, this is a failure.

8. If device supports BESL and specifies a Baseline BESL value:

* Suspend the parent port using the Baseline BESL value.

* Test fails if device does not go to L1.

* Resume the port.

* Test fails if device does not resume to L0.

9. If device supports BESL and specifies a Deep BESL value:

* Suspend the parent port using the Deep BESL value.

* Test fails if device does not go to L1.

* Resume the port.

* Test fails if device does not resume to L0.

10. For values 0 to 0x0f:

* Suspend the parent port using the iterator value.

* Test fails if device does not go to L1.

* Resume the port.

* Test fails if device does not resume to L0.

Chapter 3: Test Descriptions-Chapter 9 (Device) Tests 7/10/2019

 40

* If device successfully went to L1 for this value, end test.

11. Verify that the device is still alive by retrieving the Device Descriptor.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 The parent port of the device under test does not support LPM.

 The call to GetDescriptor in step 8 fails.

3.1.22 TD 9.22: Set Feature Test

Not defined for USB 2.0 devices.

3.1.23 TD 9.23: Reset Device Test

Not defined for USB 2.0 devices.

3.1.24 TD 9.24: U1 and U2 Test

Not defined for USB 2.0 devices.

3.1.25 TD 9.25: Deferred Packet Test

Not defined for USB 2.0 devices.

3.1.26 TD 9.26: Set Isochronous Delay Test

Not defined for USB 2.0 devices.

3.1.27 TD 9.27: Set SEL Test

Not defined for USB 2.0 devices.

3.1.28 TD 9.28: SuperSpeedPlus Isochronous Endpoint Companion
Descriptor Test

Not defined for USB 2.0 devices.

3.1.29 TD 9.29: Sublink Speed Test

Not defined for USB 2.0 devices.

3.1.30 TD 9.30: Configuration Summary Descriptors Test

Defined in the USB 3.2 Test Specification, version 1.22, with one modification: if the
Device Descriptor field bcdUSB <= 0x0200, then skip the remaining steps.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 41

3.2 Chapter 11 (Hub) Port Tests

All chapter 11 tests that test events that cause port change bits to be set as part of the test attempt to

detect the change on the Hub’s Interrupt IN status change endpoint. The following procedure is used

by all the tests to check the status change endpoint. The individual test descriptions refer to this

procedure by name instead of repeating it many times.

STATUS_CHANGE_ENDPOINT_TEST

1. Perform the following steps for up to 15 seconds.

2. Issue interrupt IN commands with a requested length of 8 bytes and a timeout of 50 milliseconds

to the Hub Under Tests status change endpoint.

3. Repeat step 2 until the 15 second timeout is exceeded or the interrupt IN command returns data

(doesn’t time out).

4. If the 15 second timeout is reached the test times out and fails.

5. If data is received from the status change endpoint it must meet the following conditions:

a. The change bit for the port under test must be set.

b. NO other change bits for any other ports can be set.

c. Bit Zero (Hub Change) MUST NOT be set.

NOTE: Not all hub tests involve events that will product a status change. The tests that do, list

STATUS_CHANGE_ENDPOINT_TEST as one of their steps.

3.2.1 Detach Device From Enabled Port Test

This test verifies that if a device is detached from an enabled hub port the port status
correctly shows a connect change and that port power is still set.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Prompt the user to disconnect the device from the port under test.

6. STATUS_CHANGE_ENDPOINT_TEST

7. Issue a get port status command on the port under test.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 42

8. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE ZERO

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

9. Call Get Port Status on all non test ports.

10. Verify that there were no changes in the port status on any of the non test ports.

11. Repeat steps 1 to 10 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 43

3.2.2 Detach Device From Suspended Port

This test verifies that if a device is detached from a suspended hub port the port status
correctly shows a connect change and that port power is still set.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Call Set Port Feature to suspend the port under test.

6. Issue a get port status command to the port under test to verify it is suspended.
Continue making calls until suspend is indicated or 1 second elapses.

7. Prompt the user to disconnect the device from the port under test.

8. STATUS_CHANGE_ENDPOINT_TEST

9. Issue a get port status command on the port under test.

10. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE ZERO

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

11. Call Get Port Status on all non test ports.

12. Verify that there were no changes in the port status on any of the non test ports.

13. Repeat steps 1 to 12 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

The port status for the port under test does not change as described.

A valid Set Port Feature command does not suspend the port under test.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 44

3.2.3 Disable The Enabled Port Test

This test verifies that if an enabled port is programmatically disabled no port change bits
are set. The test also verifies that the connect and power status bits remain set.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Clear Port Feature command with feature selector PORT_ENALBE to disable
the port under test.

6. Issue a get port status command on the port under test.

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

8. Call Get Port Status on all non test ports.

9. Verify that there were no changes in the port status on any of the non test ports.

10. Repeat steps 1 to 9 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 45

3.2.4 Hot Plug Device Port Test

This test verifies that if a device is connected to a port of the hub under test that status
bits in the port are updated appropriately.

Starting Configuration

 Port Under Test: No Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Prompt the user to connect a device to the port under test.

6. STATUS_CHANGE_ENDPOINT_TEST

7. Issue a get port status command on the port under test.

8. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

9. Call Get Port Status on all non test ports.

10. Verify that there were no changes in the port status on any of the non test ports.

11. Repeat steps 1 to 10 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 46

3.2.5 Power Off Suspended Port Test

This test verifies that if a suspended port is powered off the port correctly indicates all
zeros for the port status.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Issue a Set Port Feature command with feature selector PORT_SUSPEND.

5. Issue a Get Port Status command on the port under test. Continue making calls until
suspend is indicated or 1 second has elapsed.

6. Check that the port status for the port under test is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE IGNORE

 PORT_SUSPEND MUST BE SET

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

7. Issue a Clear Port Feature command with feature selector PORT_POWER.

8. Issue a get port status command on the port under test.

9. Check that the port under test state is as follows:

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 47

 PORT_CONNECTION IGNORE

 PORT_ENABLE IGNORE

 PORT_SUSPEND IGNORE

 PORT_OVER_CURRENT IGNORE

 PORT_RESET IGNORE

 PORT_POWER MUST BE ZERO

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST IGNORE

 PORT_INDICATOR IGNORE

 C_PORT_CONNECTION IGNORE

 C_PORT_ENABLE IGNORE

 C_PORT_SUSPEND IGNORE

 C_PORT_OVER_CURRENT IGNORE

 C_PORT_RESET IGNORE

10. Repeat steps 1 to 9 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 The port status for the port under test does not change as described.

3.2.6 Power Off and On Port Test

This test verifies that a hub reports the port status correctly as a port is powered ON and
OFF with and without devices connected.

Starting Configuration

 Port Under Test: Any Device/No Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Issue a Clear Port Feature command with feature selector PORT_POWER.

5. Issue a Get Port Status command on the port under test.

6. Check that the port status for the port under test is as follows:

 PORT_CONNECTION IGNORE

 PORT_ENABLE IGNORE

 PORT_SUSPEND IGNORE

 PORT_OVER_CURRENT IGNORE

 PORT_RESET IGNORE

 PORT_POWER MUST BE ZERO

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 48

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST IGNORE

 PORT_INDICATOR IGNORE

 C_PORT_CONNECTION IGNORE

 C_PORT_ENABLE IGNORE

 C_PORT_SUSPEND IGNORE

 C_PORT_OVER_CURRENT IGNORE

 C_PORT_RESET IGNORE

7. Issue a Set Port Feature Command with feature selector PORT_POWER.

8. STATUS_CHANGE_ENDPOINT_TEST

9. Issue a Get Port Status command for the port under test.

10. Check that the port under test state is as follows:

 PORT_CONNECTION SET (if device on test port)

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE (Step 2)

 PORT_HIGH_SPEED MUST NOT CHANGE (Step 2)

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET (if device)

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

11. Repeat steps 1 to 10 with each port as the port under test and with and without a
device on the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 49

3.2.7 Remote Wakeup Port Test

This test verifies that if a device is connected to a port of the hub under test and issues a
remote wakeup the port status is updated appropriately.

Starting Configuration

 Port Under Test: Remote Wakeup Capable Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Set Port Feature command with feature selector PORT_SUSPEND to
suspend the port under test.

6. Issue a get port status command on the port under test. Continue issuing calls until
suspend is indicated or 1 second has elapsed.

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE IGNORE

 PORT_SUSPEND MUST BE SET

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

8. Prompt the user to issue a remote wakeup on the device on the port under test.

9. STATUS_CHANGE_ENDPOINT_TEST

10. Issue a get port status command on the port under test.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 50

11. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE SET

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

12. Verify that there were no changes in the port status on any of the non test ports.

13. Repeat steps 1 to 12 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 51

3.2.8 Reset Enabled Port With Device Connected Port Test

This test verifies that if a device is connected to a port of the hub under test that status
bits in the port are updated appropriately when a port reset is performed.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Set Port Feature command with feature selector PORT_RESET for the port
under test.

6. STATUS_CHANGE_ENDPOINT_TEST

7. Issue a get port status command on the port under test.

8. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE SET

9. Call Get Port Status on all non test ports.

10. Verify that there were no changes in the port status on any of the non test ports.

11. Repeat steps 1 to 10 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 52

3.2.9 Reset Disabled Port With Device Connected Port Test

This test verifies that if a device is connected to a disabled port of the hub under test that
status bits in the port are updated appropriately when a port reset is performed.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Clear Port Feature command with feature selector PORT_ENABLE for the
port under test.

6. Issue a get port status command on the port under test.

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

8. Issue a Set Port Feature command with feature selector PORT_RESET for the port
under test.

9. STATUS_CHANGE_ENDPOINT_TEST

10. Issue a get port status command on the port under test.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 53

11. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE SET

12. Call Get Port Status on all non test ports.

13. Verify that there were no changes in the port status on any of the non test ports.

14. Repeat steps 1 to 13 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

3.2.10 Reset Suspended Port Test

This test verifies that if a device is connected to a suspended port of the hub under test
that status bits in the port are updated appropriately when a port reset is performed.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Set Port Feature command with feature selector PORT_SUSPEND for the
port under test.

6. Issue a get port status command on the port under test. Continue to send Get Port
Status commands until suspend is indicated or 1 second has elapsed.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 54

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE IGNORE

 PORT_SUSPEND MUST BE SET

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

8. Issue a Set Port Feature command with feature selector PORT_RESET for the port
under test.

10. STATUS_CHANGE_ENDPOINT_TEST

11. Issue a get port status command on the port under test.

12. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE SET

13. Call Get Port Status on all non test ports.

14. Verify that there were no changes in the port status on any of the non test ports.

15. Repeat steps 1 to 13 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 55

3.2.11 Resume Port Test

This test verifies that if a device is connected to a suspended port of the hub under test
that status bits in the port are updated appropriately when a port resume is performed.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Set Port Feature command with feature selector PORT_SUSPEND for the
port under test.

6. Issue a get port status command on the port under test. Continue get port status
commands until suspend is indicated or 1 second has elapsed.

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE IGNORE

 PORT_SUSPEND MUST BE SET

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

8. Delay for 1 second to ensure suspend has completed.

9. Issue a Clear Port Feature command with feature selector PORT_SUSPEND for the
port under test.

10. STATUS_CHANGE_ENDPOINT_TEST

11. Issue a get port status command on the port under test. Continue get port status
commands until suspend is cleared or 1 second has passed.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 56

12. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE SET

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

13. Call Get Port Status on all non test ports.

14. Verify that there were no changes in the port status on any of the non test ports.

15. Repeat steps 1 to 14 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

3.2.12 Suspend Port Test

This test verifies that a hub correctly responds to a suspend port command.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue a Set Port Feature command with feature selector PORT_SUSPEND for the
port under test.

6. Issue a get port status command on the port under test. Continue get port status
commands until suspend is indicated or 1 second has elapsed.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Port Tests 7/10/2019

 57

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE IGNORE

 PORT_SUSPEND MUST BE SET

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

8. Call Get Port Status on all non test ports.

9. Verify that there were no changes in the port status on any of the non test ports.

10. Repeat steps 1 to 9 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 58

3.3 Chapter 11 (Hub) Global Tests

Hub global tests check the behavior of the hub while it is suspended and events occur on its

downstream ports.

3.2.13 Unacknowledged Remote Wake Connect Test.

This test verifies that a hub correctly responds to a suspend port command.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Prompt user to attach device to port under test.

3. Issue a get port status command on the port under test. Continue get port status
commands until suspend is indicated or 5 seconds have elapsed.

4. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE IGNORE

 PORT_SUSPEND IGNORE

 PORT_OVER_CURRENT IGNORE

 PORT_RESET IGNORE

 PORT_POWER IGNORE

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST IGNORE

 PORT_INDICATOR IGNORE

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE IGNORE

 C_PORT_SUSPEND IGNORE

 C_PORT_OVER_CURRENT IGNORE

 C_PORT_RESET IGNORE

5. Call Get Port Status on all non test ports.

6. Verify that there were no changes in the port status on any of the non-test ports.

7. Enable Remote Wake on Hub Under Test.

8. Suspend the parent port of Hub Under Test.

9. Verify that a Remote Wake is generated. (Suspend bit is cleared on port under test).

10. Repeat steps 1 to 9 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

A known good device fails to enumerate for any reason.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 59

 Any port status bits change on the non-test ports during the course of the test.

 The port status for the port under test does not change as described.

 A remote wake is not generated on port under test.

3.2.14 Suspend and Ignore Connect

This test disables remote wakeup for the hub under test and verifies that the hub
correctly ignores connect events when it is suspended.

Starting Configuration

 Port Under Test: No Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue the Clear Feature command with feature selector DEVICE_REMOTE_WAKEUP
to disable remote wakeup for the hub under test.

6. Suspend the parent port for the hub under test.

7. Get the parent port status to verify the suspend occurred. Continue get parent port
status commands until suspend is indicated or 1 second has elapsed.

8. Prompt the user to connect a device to the port under test.

9. Verify the parent port of the hub under test is still suspended.

10. Issue a clear port feature with feature selector PORT_SUSPEND to the parent port
of the hub under test.

11. Read the status change endpoint of the hub under test.

12. Verify that the hub reports a status change only on the port under test, and any other
ports with devices attached.

13. Issue a get port status command for the port under test.

14. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

15. Call Get Port Status on all non test ports.

16. Verify that there were no changes in the port status on any of the non test ports.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 60

17. Repeat steps 1 to 16 with each port as the port under test. Also repeat with the NON-
TEST ports initially having a device connected (GROUP).

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non-test ports which do not have devices
attached during the course of the test.

 The port status for the port under test does not change as described.

 A valid Clear Feature command is not accepted.

3.2.15 Suspend and Ignore Disconnect

This test disables remote wakeup for the hub under test and verifies that the hub
correctly ignores disconnect events when it is suspended.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue the Clear Feature command with feature selector DEVICE_REMOTE_WAKEUP
to disable remote wakeup for the hub under test.

6. Suspend the parent port for the hub under test.

7. Get the parent port status to verify the suspend occurred. Continue get parent port
status commands until suspend is indicated or 1 second has elapsed.

8. Prompt the user to disconnect the device to the port under test.

9. Check that the parent port of the hub under test is still suspended.

10. Issue a clear port feature with feature selector PORT_SUSPEND to the parent port
of the hub under test.

11. Read the status change endpoint of the hub under test.

12. Verify that the hub reports a status change only on the port under test, and any other
ports that have devices attached.

13. Issue a get port status command for the port under test.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 61

14. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE ZERO

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

15. Call Get Port Status on all non test ports.

16. Verify that there were no changes in the port status on any of the non test ports.

17. Repeat steps 1 to 16 with each port as the port under test. Also repeat with the NON-
TEST ports initially having a device connected (GROUP).

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non-test ports during the course of the test
which do not have devices attached.

 The port status for the port under test does not change as described.

 A valid Clear Feature command is not accepted.

3.2.16 Suspend and Disconnect Device

This test suspends the hub under test and verifies that a remote wakeup occurs when a
device is disconnected from the hub under test.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 62

4. Call Get Port Status on each port and store the initial port status values.

5. Issue the Set Feature command with feature selector DEVICE_REMOTE_WAKEUP
to enable remote wakeup for the hub under test.

6. Suspend the parent port for the hub under test.

7. Get the parent port status to verify the suspend occurred. Continue get parent port
status commands until suspend is indicated or 1 second has elapsed.

8. Prompt the user to disconnect the device to the port under test.

9. Poll the status of the parent port of the hub under test until it is no longer suspended.

10. STATUS_CHANGE_ENDPOINT_TEST

11. Issue a get port status command for the port under test.

12. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE ZERO

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

13. Call Get Port Status on all non test ports.

14. Verify that there were no changes in the port status on any of the non test ports.

15. Repeat steps 1 to 14 with each port as the port under test. Also repeat with the NON-
TEST ports initially having a device connected (GROUP).

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

 A valid Clear Feature command is not accepted.

3.2.17 Suspend and Connect Device

This test suspends the hub under test and verifies that a remote wakeup occurs when a
device is connected to the hub under test.

Starting Configuration

 Port Under Test: Any Device Port Enabled

 Other Ports: No Device Port Enabled

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 63

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue the Set Feature command with feature selector DEVICE_REMOTE_WAKEUP
to enable remote wakeup for the hub under test.

6. Suspend the parent port for the hub under test.

7. Get the parent port status to verify the suspend occurred. Continue get parent port
status commands until suspend is indicated or until 1 second has elapsed.

8. Prompt the user to connect the device to the port under test.

9. Poll the status of the parent port of the hub under test until it is no longer suspended.

10. STATUS_CHANGE_ENDPOINT_TEST

11. Verify that the hub reports a status change only on the port under test.

12. Issue a get port status command for the port under test.

13. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE ZERO

 PORT_SUSPEND MUST BE ZEO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED IGNORE

 PORT_HIGH_SPEED IGNORE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE SET

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

14. Call Get Port Status on all non test ports.

15. Verify that there were no changes in the port status on any of the non test ports.

16. Repeat steps 1 to 15 with each port as the port under test. Also repeat with the NON-
TEST ports initially having a device connected (GROUP).

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 64

 The port status for the port under test does not change as described.

 A valid Clear Feature command is not accepted.

 A remote wakeup is not produced by the hub under test in response to a
 connect event.

3.2.18 Suspend and Remote Wakeup

This test suspends the hub under test and verifies that a remote wakeup occurs when a
remote wakeup is initiated from a downstream device connected to the hub.

Starting Configuration

 Port Under Test: Remote Wakeup Capable Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Check to verify that the ports are in the proper starting configuration using Get Port
Status.

3. Clear all port change bits using the Clear Port Feature command.

4. Call Get Port Status on each port and store the initial port status values.

5. Issue the Set Feature command with feature selector DEVICE_REMOTE_WAKEUP
to enable remote wakeup for the hub under test.

6. Suspend the parent port for the hub under test.

7. Get the parent port status to verify the suspend occurred. Continue get parent port
status commands until suspend is indicated or until 1 second has elapsed.

8. Prompt the user to initiate a remote wakeup from the device on the port under test.

9. Poll the status of the parent port of the hub under test until it is no longer suspended.

10. STATUS_CHANGE_ENDPOINT_TEST

11. Issue a get port status command for the port under test.

12. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE ZERO

 C_PORT_ENABLE MUST BE ZERO

 C_PORT_SUSPEND MUST BE SET

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET MUST BE ZERO

13. Call Get Port Status on all non test ports.

14. Verify that there were no changes in the port status on any of the non test ports.

15. Repeat steps 1 to 14 with each port as the port under test. Also repeat with the NON-
TEST ports initially having a device connected (GROUP).

Chapter 3: Test Descriptions-Chapter 11 (Hub) Global Tests 7/10/2019

 65

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Clear Port Feature commands fail for any reason.

A known good device fails to enumerate for any reason.

 Any port status bits change on the non test ports during the course of the test.

 The port status for the port under test does not change as described.

 A valid Clear Feature command is not accepted.

 A remote wakeup is not produced by the hub under test in response to a
 connect event.

3.2.19 Suspend and Hub Remote Wakeup on Unacknowledged Connection

This test attaches a device downstream on a downstream port but does not acknowledge
the connection, then suspends the hub under test and verifies that a remote wakeup
occurs.

Starting Configuration

 Port Under Test: No Device Port Enabled

 Other Ports: No Device Port Enabled

Overview of Test Steps

The test software performs the following steps.

1. Enumerate the USB bus.

2. Prompt user to detach the hub under test.

3. Prompt user to power cycle the hub under test.

4. Prompt user to attach a device on the port under test.

5. Prompt user to reattach the hub under test to the same port.

6. Configure the hub under test.

7. Check that the port under test state is as follows:

 PORT_CONNECTION MUST BE SET

 PORT_ENABLE MUST BE SET

 PORT_SUSPEND MUST BE ZERO

 PORT_OVER_CURRENT MUST BE ZERO

 PORT_RESET MUST BE ZERO

 PORT_POWER MUST BE SET

 PORT_LOW_SPEED MUST NOT CHANGE

 PORT_HIGH_SPEED MUST NOT CHANGE

 PORT_TEST MUST BE ZERO

 PORT_INDICATOR MUST BE ZERO

 C_PORT_CONNECTION MUST BE_SET

 C_PORT_ENABLE IGNORE

 C_PORT_SUSPEND MUST BE ZERO

 C_PORT_OVER_CURRENT MUST BE ZERO

 C_PORT_RESET IGNORE

Chapter 3: Test Descriptions-Chapter 11 Hub Descriptor Test 7/10/2019

 66

8. Suspend the parent port of the hub under test.

9. Verify that the hub under test generates a remote wake.

10. Repeat steps 1 to 9 with each port as the port under test.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

Valid Get Port Status commands fail for any reason.

Valid Set Port Feature.commands fail for any reason.

 The port status for the port under test does not change as described.

 A remote wakeup is not produced by the hub under after it is suspended.

3.4 Chapter 11 Hub Descriptor Test

3.2.18 Hub Descriptor Test

This test verifies that the device under test responds to valid Get Hub Descriptor
command and returns a descriptor in compliance with the specification.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Issue a valid Get Configuration descriptor command with a requested length of 9
bytes.

2. Issue a valid Set Configuration command with the bConfiguration value from the
configuration descriptor.

3. Issue a valid Get Hub Descriptor command with a requested length of 9 bytes.

4. Perform each of the following checks on the device descriptor value:

 bLength == 9 (Note: if the bNbrPorts field is > 7 the length must be longer)

 if bLength > 9 the Get Hub Descriptor is issued again with the indicated
 length.

 bDescriptorType == HUB descriptor type

 if wHubCharacteristics D2 == 1 then the Device Removable bitmask must have
 at least one bit set.

 wHubCharacterstics D0 to D1 == (00 or 01)

 wHubCharacteristics D3 to D4 == (00 or 01)

 If wHubCharacteristics D3 to D4 != (00 or 01) issue a Get Status
 command to the hub. The status must indicate bus powered.

 If bcdUSB.hibyte < 2 then wHubCharateristics D5 to D7 == 0

 wHubCharacteristics D8 t o D15 == 0

 Bit zero in the DeivceRemovableBitMask must be zero. The remaining bits are
 checked against the user supplied information on non-accessible ports.

 All bits in the PortPwrCtrlMask must be one.

 The bHubContrCurrent must be <= 100 mA for self-powered hubs.

5. If the hub supports multiple configurations repeat test for the configured state for

Chapter 3: Test Descriptions-HID Tests 7/10/2019

 67

each possible configuration.

6. If the hub is a high speed capable device the test must be run with the hub in both
high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Any of the hub descriptor content checks fail.

3.5 HID Tests

The following set of HID device class tests share a common algorithm to verify that the device under

test is a HID class device. The algorithm is listed below. It is used by USBCV to determine whether

the HID tests should be run for the device under test.

HID Class Algorithm:

1. Issue a valid Get Device Descriptor command to the device.

2. For each configuration that the device supports issue a valid get configuration descriptor call with

a requested length of 9. Next issue a valid get configuration command with a request length of

the wTotalLength field of the configuration descriptor.

3. For each configuration descriptor obtained in step 2 parse the descriptor finding all interface

descriptors. If any of the interface descriptors for any of the configurations have a bDeviceClass

of 0x03 (HID_CLASS) the device is a HID device and tests below will be run.

3.5.1 HID Descriptor Test

This test verifies that the device under test responds to valid Get HID Descriptor
command and returns a descriptor in compliance with the HID specification. It also
verifies that the HID descriptor(s) in the configuration descriptor and the descriptor(s)
returned explicitly in response to the Get HID Descriptor command are identical.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Issue a valid Set Configuration command for the configuration to be tested (unless it is
an other speed configuration descriptor).

2. Issue a valid Get Configuration command and verify that the configuration has been
set. (if we are not testing an other speed configuration descriptor)

3. Issue a valid Get Configuration Descriptor with a requested length of 9 bytes.

4. Issue a valid Get Configuration Descriptor with a requested length of the wTotalLength
field from the descriptor obtained in step 3.

5. For the configuration descriptor obtained in step 4 parse the descriptor to locate all
interface descriptors.

Chapter 3: Test Descriptions-HID Tests 7/10/2019

 68

6. For each interface descriptor check to see if bInterfaceClass == 0x03 (HID_CLASS)

7. Perform each of the following checks on the HID class interfaces:

 bInterfaceSubClass < 2 //Undefined SubClass

 bInterfaceProtocol < 3 //Undefined

8. For each HID interface found in step 6 locate the HID descriptor as follows:

 Issue a valid Get Configuration Descriptor call requesting 9 bytes.

 Issue a valid Get Configuration Descriptor call requesting the full length.

 Look at each interface descriptor in order until the interface and alternate setting
 numbers match the interface found in step 6.

 Check that bInterfaceClass == 0x03.

 Search forward in the configuration descriptor from this interface descriptor until
 a HID class descriptor is found (If none are found the test fails).

9. If the HID class descriptor found in 8 is for an interface with alternate setting zero and
the configuration descriptor being tested is NOT an other speed descriptor then a valid
Get HID Descriptor is issued for the interface in question.

10. The Hid Class descriptor(s) obtained in step 8 and step 9 are compared to ensure
that they are identical (It is a failure if they different).

11. For each HID class descriptor obtained in step 9 (and 10) perform the following
checks:

 bLength > 8.

 bLength must be a multiple of 3.

 bLength == (9 + (bNumDescriptors –1)*3)

 bDescriptorType == HID descriptor type (0x21)

 bcdHID >= 0x100

 Each Additional bDescriptorType field must not be in the reserved range from
 0x24 to 0x2F.

12. The test is repeated for each possible device configuration. For HS capable device it
is run with the device operating at both FS and HS. The test is also performed on the
other speed configuration descriptor as described above.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Any of the HID descriptor content checks fail.

 Valid get HID descriptor commands fail for any reason.

Chapter 3: Test Descriptions-HID Tests 7/10/2019

 69

3.5.2 HID Get/Set Idle Test

This test verifies that the device under test correctly supports the Get Idle command if it
supports the Set Idle command.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Issue a valid Set Configuration command for the configuration to be tested (unless it is
an other speed configuration descriptor).

2. Issue a valid Get Configuration command and verify that the configuration has been
set. (if we are not testing an other speed configuration descriptor)

3. Issue a valid Get Configuration Descriptor with a requested length of 9 bytes.

4. Issue a valid Get Configuration Descriptor with a requested length of the wTotalLength
field from the descriptor obtained in step 3.

5. For the configuration descriptor obtained in step 4 parse the descriptor to locate all
interface descriptors.

6. For each interface descriptor check to see if bInterfaceClass == 0x03 (HID_CLASS)

7. For each interface found in Step 6 the following descriptor parsing is performed:

REPORT DESCRIPTOR PARSING

8. Issue a valid Get HID descriptor for the interface being tested.

9. Parse the HID descriptor to find the length of the report descriptor for this interface.

10. Issue a valid Get Report Descriptor request with a requested length from step 9.

11. Count the number of item tags in the Report Descriptor. It must be at least 1.

12. Count the number of input tags in the Report Descriptor.

13. Count the number of report Ids in the Report Descriptor.

14. If there are no report Ids the GET/SET Idle test is run with value 0x7F

 If there are report Ids the Get/Set Idle test is run with values 0x00, 0x7F, and
 0xFF for each report Id for an INPUT.

GET/SET IDLE TEST

15. Issue a valid Set Idle request for the Report ID and duration being tested.

16. Issue a valid Get Idle request for the Report ID being tested.

17. If both requests complete successfully check that Get Idle request returns the correct
value that was set.

18. The test is repeated for each possible device configuration. For HS capable device it
is run with the device operating at both FS and HS.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid get HID descriptor commands fail for any reason.

 Valid get HID report descriptor commands fail for any reason.

 Set IDLE values do not match those returned by Get IDLE.

Chapter 3: Test Descriptions-HID Tests 7/10/2019

 70

3.5.3 HID Get/Set Protocol Test

This test verifies that a boot class HID interface correctly supports the Get and Set
Protocol HID Requests.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Issue a valid Set Configuration command for the configuration to be tested (unless it is
an other speed configuration descriptor).

2. Issue a valid Get Configuration command and verify that the configuration has been
set. (if we are not testing an other speed configuration descriptor)

3. Issue a valid Get Configuration Descriptor with a requested length of 9 bytes.

4. Issue a valid Get Configuration Descriptor with a requested length of the wTotalLength
field from the descriptor obtained in step 3.

5. For the configuration descriptor obtained in step 4 parse the descriptor to locate all
interface descriptors.

6. For each interface descriptor check to see if bInterfaceClass == 0x03 (HID_CLASS)

7. For each interface descriptor that is HID check the bInterfaceSubClass. If the
bInterfaceSubClass == 0x01 and bAlternateSetting == 0 perform the following test:

GET/SET PROTOCOL:

8. Issue a valid Set Protocol request for the Report Protocol.

9. Issue a valid Get Protocol request.

10. Check that the Get Protocol request returns Report Protocol.

11. Issue a valid Set Protocol Request for the Boot Protocol.

12. Issue a valid Get Protocol Request for the Boot Protocol.

13. Check that the Get Protocol request returns Boot Protocol.

14. The test is repeated for each possible device configuration. For HS capable device it
is run with the device operating at both FS and HS.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

 Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid get HID descriptor commands fail for any reason.

 Valid get HID report descriptor commands fail for any reason.

 Set Protocol values do not match those returned by Get Protocol.

 Valid Get or Set Protocol commands to a boot interface fail for any reason.

Chapter 3: Test Descriptions-HID Tests 7/10/2019

 71

3.5.4 HID Report Descriptor Test

This test verifies that the device under test provides a Report Descriptor that meets the
HID specification for each of its HID interfaces.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Issue a valid Set Configuration command for the configuration to be tested (unless it is
an other speed configuration descriptor).

2. Issue a valid Get Configuration command and verify that the configuration has been
set. (if we are not testing an other speed configuration descriptor)

3. Issue a valid Get Configuration Descriptor with a requested length of 9 bytes.

4. Issue a valid Get Configuration Descriptor with a requested length of the wTotalLength
field from the descriptor obtained in step 3.

5. For the configuration descriptor obtained in step 4 parse the descriptor to locate all
interface descriptors.

6. For each interface descriptor check to see if bInterfaceClass == 0x03 (HID_CLASS)

7. For each interface found in Step 6 the following descriptor parsing is performed:

REPORT DESCRIPTOR PARSING

8. Issue a valid Get HID descriptor for the interface being tested.

9. Parse the HID descriptor to find the length of the report descriptor for this interface.

10. Issue a valid Get Report Descriptor request with a requested length from step 9.

11. Count the number of item tags in the Report Descriptor. It must be at least 1.

12. Parse the report descriptor according to section 6.2.2 of the HID specification.

13. The test is repeated for each possible device configuration. For HS capable device it
is run with the device operating at both FS and HS.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 Valid get HID descriptor commands fail for any reason.

 Valid get HID report descriptor commands fail for any reason.

 A report descriptor does not comply with section 6.2.2 of the HID specification.

Chapter 3: Test Descriptions-HID Tests 7/10/2019

 72

3.5.5 HID Specification Version Test

This test checks to see which version of the HID specification the device complies with.

Device States For Test

This test is run with the device in the Configured state.

Overview of Test Steps

The test software performs the following steps.

1. Issue a valid Set Configuration command for the configuration to be tested (unless it is
an other speed configuration descriptor).

2. Issue a valid Get Configuration command and verify that the configuration has been
set. (if we are not testing an other speed configuration descriptor)

3. Issue a valid Get Configuration Descriptor with a requested length of 9 bytes.

4. Issue a valid Get Configuration Descriptor with a requested length of the wTotalLength
field from the descriptor obtained in step 3.

5. For the configuration descriptor obtained in step 4 parse the descriptor to locate all
interface descriptors.

6. For each interface descriptor check to see if bInterfaceClass == 0x03 (HID_CLASS)

7. For each interface found in Step 6 the following parsing is performed:

HID SPEC VERSION PARSING

8. Starting at the HID descriptor found in step 6 parse forward in the configuration
descriptor to locate each of the following items:

d. First HID descriptor after the HID interface.

e. Second HID descriptor after the HID interface

f. First EndPoint Descriptor after HID interface.

g. First interface descriptor (any kind) after the HID interface.

9. If the location of A is greater than the location of D the test fails.

10. If the location of B is less than the location of D the test fails.

11. If the location of C is greater than the location of D the test fails.

12. If the location of A is less than C the interface is HID spec 4 compliant. Otherwise it
is HID spec 3 compliant.

13. The test is repeated for each possible device configuration. For HS capable device it
is run with the device operating at both FS and HS.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Device enumeration fails following the method described In this specification.

Valid get descriptor commands fail for any reason.

Valid set address commands fail for any reason.

Valid set configuration commands fail for any reason.

 Valid get configuration commands fail for any reason.

 A HID interface does not have at least one endpoint.

 Two HID descriptors describe a single HID interface.

 A HID interface does not have a following HID descriptor before the next
 interface.

Chapter 3: Test Descriptions-USB On The Go (OTG) Tests 7/10/2019

 73

3.6 USB On The Go (OTG) Tests

The following set of USB On The Go (OTG) Tests are run on OTG devices (dual role). The tests

share a common algorithm to verify that the device under test is an OTG device. The algorithm is

listed below. It is used by USBCV to determine whether the OTG tests should be run for the device

under test.

OTG Class Algorithm:

1. Issue a valid Get Device Descriptor command to the device.

2. For each configuration that the device supports issue a valid get configuration descriptor call with

a requested length of 9. Next issue a valid get configuration command with a request length of the

wTotalLength field of the configuration descriptor.

3. For each configuration descriptor obtained in step 2 parse the descriptor finding all descriptors. If

any of the descriptors are of OTG type (9) the device is an OTG device and the tests should be

performed.

Chapter 3: Test Descriptions-USB On The Go (OTG) Tests 7/10/2019

 74

3.6.1 OTG Descriptor Test

This test verifies that the OTG device or SRP capable peripheral under test returns an
OTG descriptor in response to any valid Get Configuration request. The user must
indicate whether the device is an OTG device (dual role).

Device States For Test

This test is run with the device in the Default, Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid get configuration descriptor command with a requested length of 9 bytes.

3. Perform the following checks on the configuration descriptor value:

 bLength == 9

 bDescriptorType == CONFIGURATION descriptor type (or

 OTHER_SPEED_CONFIGURATION type)

4. Issue a valid get configuration descriptor command with a requested length of

wTotalLength from the configuration descriptor

5. Parse the data returned and perform the following check on each descriptor:

 Check for type OTG descriptor (9)

6. The test fails if any of the following conditions are true:

 An OTG device is being tested and it has zero OTG descriptors.

 An OTG device is being tested and it has multiple OTG descriptors

 An SRP capable peripheral is being tested and it has zero OTG descriptors.

 An SRP capable peripheral is being tested and it has multiple OTG descriptors.

7. The following checks are performed on each OTG descriptor:

 bLength == 3

 Bits D2:D7 of bmAttributes must be zero.

8. For an SRP capable peripheral the SRP support field must be one and the HNP
support field must be zero.

9. For an OTG device SRP support must be one and HNP support must be one.

10. If the test supports multiple configurations repeat test for each configuration
descriptor.

11. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation and is also run for the OTHER speed
configuration descriptor.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

 Any valid Get Descriptor (Configuration) call fails.
 An OTG descriptor does not have a bLength field equal to 3.
 An OTG Device does not have an OTG Descriptor in any configuration.
 An SRP capable device does not have an OTG Descriptor in any configuration.

An OTG Device or SRP capable device returns multiple OTG descriptors in
response to a Get Descriptor (Configuration).

An OTG Device does not have HNP and SRP support set in the OTG descriptor.
A reserved bit in the OTG descriptor is not zero.
A SRP capable peripheral does not have SRP support set in an OTG descriptor.

Chapter 3: Test Descriptions-USB On The Go (OTG) Tests 7/10/2019

 75

3.6.2 Set Feature B_HNP_ENABLE

This test verifies that the OTG device under test correctly accept the Set Feature
B_HNP_Enable command in the default and addressed states.

Device States For Test

This test is run with the device in the Default and Addressed states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid Set Feature B_HNP_ENALBE command.

3. Check that the device successfully acknowledges the command.

4. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

A valid Set Feature B_HNP_ENABLE command is not acknowledged in the
Default or Address states.
An SRP only capable device does NOT stall the Set Feature B_HNP_ENABLE
request

3.6.3 Set Feature A_HNP_SUPPORT

This test verifies that the OTG device under test correctly accept the Set Feature
A_HNP_SUPPORT command in the default and addressed states.

Device States For Test

This test is run with the device in the Default and Addressed states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid Set Feature A_HNP_SUPPORT command.

3. Check that the device successfully acknowledges the command.

4. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

A valid Set Feature A_HNP_SUPPORT command is not acknowledged in the
Default or Address states.

An SRP only capable device does NOT stall the Set Feature
A_HNP_SUPPORT request

Chapter 3: Test Descriptions-USB On The Go (OTG) Tests 7/10/2019

 76

3.6.4 Set Feature A_ALT_HNP_SUPPORT

This test verifies that the OTG device under test correctly accept the Set Feature
A_HNP_SUPPORT command in the default and address states.

Device States For Test

This test is run with the device in the Default and Addressed states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid Set Feature A_ALT_HNP_SUPPORT command.

3. Check that the device successfully acknowledges the command.

4. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

A valid Set Feature A_ALT_HNP_SUPPORT command is not acknowledged in
the Default or Address states.

An SRP only capable device does NOT stall the Set Feature
A_ALT_HNP_SUPPORT request

3.6.5 Set Feature B_HNP_ENALBE and A_HNP_SUPPORT

This test verifies that the OTG device under test correctly accepts various combinations
of the Set Feature B_HNP_ENABLE and Set Feature A_HNP_SUPPORT commands.

Device States For Test

This test is run with the device in the Default , Address, and Configured states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid Set Feature A_HNP_SUPPORT command.

3. Check that the device successfully acknowledges the command.

4. Issue a valid Set Feature B_HNP_ENABLE command.

5. Check that the device successfully acknowledges the command.

6. Repeat the test with the commands sent in the following states.

A_HNP_SUPPORT Default B_HNP_ENABLE Default

A_HNP_SUPPORT Default B_HNP_ENABLE Address

A_HNP_SUPPORT Default B_HNP_ENABLE Configured

A_HNP_SUPPORT Address B_HNP_ENABLE Address

A_HNP_SUPPORT Address B_HNP_ENABLE Configured

7. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

A valid Set Feature A_HNP_SUPPORT command is not acknowledged in the
Default or Address states.

A valid Set Feature B_HNP_ENABLE command is not acknowledged in the
Default, Address, or Configured states.

Chapter 3: Test Descriptions-USB On The Go (OTG) Tests 7/10/2019

 77

3.6.6 Set Feature A_ALT_HNP_SUPPORT and A_HNP_SUPPORT

This test verifies that the OTG device under test correctly accepts various combinations
of the Set Feature A_HNP_SUPPORT and Set Feature A_ALT_HNP_SUPPORT
commands.

Device States For Test

This test is run with the device in the Default and Address states.

Overview of Test Steps

The test software performs the following steps.

1. Place the device in the desired starting state.

2. Issue a valid Set Feature A_ALT_HNP_SUPPORT command.

3. Check that the device successfully acknowledges the command.

4. Issue a valid Set Feature A_HNP_SUPPORT command.

5. Check that the device successfully acknowledges the command.

6. Repeat the test with the commands sent in the following states.

A_ALT_HNP_SUPPORT Default A_HNP_ENABLE Default

A_HNP_SUPPORT Default A_ALT_HNP_SUPPORT Default

A_HNP_SUPPORT Default A_ALT_HNP_SUPPORT Address

A_ALT_HNP_SUPPORT Default A_HNP_SUPPORT Address

A_ALT_HNP_SUPPORT Address A_HNP_ENABLE Address

A_HNP_SUPPORT Address A_ALT_HNP_SUPPORT Address

7. If the device is a high speed capable device the test must be run with the device in
both high speed and full speed operation.

Results Interpretation

The test transcribes all results to a text based log file.

The test fails if:

A valid Set Feature A_HNP_SUPPORT command is not acknowledged in the
Default or Address states.

A valid Set Feature A_ALT_HNP_SUPPORT command is not acknowledged in
the Default, Address.

Chapter 4: Change Log-Version 1.41 7/10/2019

 78

4. Change Log

4.1 Version 1.41

Updated to conform to USB 3.2 test spec:

• TD 9.3 is now required

• TD 9.28 and TD 9.29 are added (not required for USB 2 devices)

• TD 9.30 is added (required for all devices that must support BOS Descriptors (bcdUSB >=

0x200).

4.2 Version 1.42

Added assertions for Hub Global Test TD 2.19.

	1. Introduction
	2. Test Assertions
	2.1 Chapter 9
	2.2 Chapter 11
	2.3 HID Specification

	3. Test Descriptions
	3.1 Chapter 9 (Device) Tests
	3.2 Chapter 11 (Hub) Port Tests
	3.3 Chapter 11 (Hub) Global Tests
	3.4 Chapter 11 Hub Descriptor Test
	3.5 HID Tests
	3.6 USB On The Go (OTG) Tests

	4. Change Log
	4.1 Version 1.41
	4.2 Version 1.42

