

Universal Serial Bus

Video Class

Compliance Test Specification

Revision 1.1

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 ii

October 11, 2013

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 iii

Contributors

Abdul R. Ismail Intel Corp.

Akihiro Tanabe Canon Inc.

Allison Hicks Texas Instruments

Anand Ganesh Microsoft Corp.

Andy Hodgson STMicroelectronics

Anshuman Saxena Texas Instruments

Arnaud Glatron Logitech Inc.

Bertrand Lee Microsoft Corp.

Charng Lee Sunplus Technology Co., Ltd

David Goll Microsoft Corp.

Eric Luttmann Cypress Semiconductor Corp.

Fernando Urbina Apple Computer Inc.

Geert Knapen Philips Electronics

Geraud Mudry Logitech Inc.

Hiro Kobayashi Microsoft Corp.

Jean-Michel Chardon Logitech Inc.

Jeff Zhu Microsoft Corp.

Ken-ichiro Ayaki Fujifilm

Mitsuo Niida Canon Inc.

Nobuo Kuchiki Sanyo Electric Co., Ltd

Olivier Lechenne Logitech Inc.

Paul Thacker STMicroelectronics

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 iv

Remy Zimmermann Logitech Inc.

Shinichi Hatae Canon Inc.

Steve Miller STMicroelectronics

Tachio Ono Canon Inc.

Takashi Sato Philips Semiconductor

Yoichi Hirata Matsushita Electric Industrial Co., Ltd

Please send questions to techadmin@usb.org.

mailto:techadmin@usb.org

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 v

Copyright © 2001, 2002, 2003, 2004, 2005, 2006 USB Implementers Forum

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY

WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY

OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR INTERNAL

USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER

INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT

OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION.

AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH

IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 vi

Revision History

Version Date Description

1.1 May 25, 2006 Initial release

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 vii

Table of Contents

1 Scope ... 1

1.1 Open questions ... 2

1.2 To be done .. 2

2 Related Documents ... 2

3 Terms and Abbreviations .. 3

4 Test philosophy ... 4

4.1 Implementation .. 4

4.2 High-speed versus full-speed .. 4

4.3 Multiple Configurations .. 4

4.4 Multiple VICs on one device ... 4

5 Assertions .. 5

5.1 Descriptor related assertions .. 5

5.1.1 Descriptor Basic Assertions .. 5

5.1.2 Advanced Descriptor Assertions. ... 19

5.1.3 Format and Frame Descriptor Assertions .. 20

5.2 Video control related assertions ... 28

5.3 Streaming control related assertions .. 58

6 Description of tests ... 67

6.1 Organization of tests ... 67

6.2 Output Format: ... 67

6.3 General Procedures .. 68

6.3.1 Init procedure ... 69

6.3.2 Reset Endpoint procedure .. 69

6.3.3 “Unfreeze” device procedure ... 69

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 viii

6.4 Test parameters .. 70

6.5 Test details .. 70

6.5.1 Descriptor tests .. 70

6.5.1.1 Basic Descriptor Tests ... 70

6.5.1.2 Advanced Descriptor Tests.. 93

6.5.1.3 Video Format and Frame Descriptor Tests ... 96

6.5.2 Video Control tests ... 106

6.5.2.1 Interface Control Tests .. 106

6.5.2.2 Unit and Terminal Control tests .. 109

6.5.3 Video Streaming Control Tests. .. 185

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 1

1 Scope

This document specifies assertions and test procedures for use with Video Class devices. At this time this

specification has the following limitations:

 No validation is provided for streaming data (Video data obtained/sent through isochronous or

bulk pipes). So payload headers and the data itself are not validated. The main reasons for this

are the lack of support for isochronous pipes in the USBCV Framework and the fact that a lot of

the expected behavior is subjective.

 No validation is provided for still images. The main reason for this is that to be thorough this test

should really be ran while streaming data is being captured and/or sent. So this test will be

covered when support for the streaming data test is added.

 Because of the dependency to streaming and still images, compliance to sections 4.3.1.4,

4.3.1.5, 4.3.1.6 and 4.3.1.7 of the USB Device Class Definition for Video Devices specification

revision 1.1, are not tested for at this time.

 The tests for the VS_PROBE_CONTROL/VS_COMMIT_CONTROL,

VS_STILL_PROBE_CONTROL/VS_STILL_COMMIT_CONTROL and the associated negotiation

protocol are limited in scope because of the complexity and the subjectivity of testing coherency

and compliance with behavioral requirements.

 No support for verification that Auto-Update controls send Control Change interrupts. The

reason being that it is impossible to really know for sure when a device has changed an auto-

update setting.

This testing is intended to be in addition to standard USB Compliance testing; assertions covered by the

USBCV test document, for instance, are not covered here.

This testing applies to one configuration and all Video Interface Collection at a time. This testing covers

the validation of the Video Class-specific Descriptors (including the possible dependencies between

them) and of the Video Class-specific control requests (except those explicitly excluded above).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 2

1.1 Open questions

1. How do we address streaming data tests?

2. How do we address still image tests?

3. Should we add support for auto-update behavior validation? If so, how?

4. How far do we want to go in the test of Formats? For example do we want to check Format

coherency beyond the USB Video class requirements?

1.2 To be done

1. When all test assertions are documented and all tests described, add matrix listing tests and

assertions, to allow for bidirectional mapping of tests and assertions.

2 Related Documents

USB Specification, Revision 2.0, April 27, 2000

USB Device Class Definition for Video Devices, Revision 1.1

USB Device Class Definition for Video Devices Uncompressed Payload, Revision 1.1

USB Device Class Definition for Video Devices Motion -JPEG Payload, Revision 1.1

USB Device Class Definition for Video Devices MPEG2-TS Payload, Revision 1.1

USB Device Class Definition for Video Devices DV Payload, Revision 1.1

USB Device Class Definition for Video Devices Frame-Based Payload, Revision 1.1

USB Device Class Definition fro Video Devices Stream-Based Payload, Revision 1.1

USB Device Class Definition for Video Devices Video Device Example, Revision 1.1

USB Device Class Definition for Video Devices Identifiers, Revision 1.1

USB Device Class Definition for Video Media Transport Terminal, Revision 1.1

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 3

3 Terms and Abbreviations

Term Description

USB Video Specification USB Device Class Defnition for Video Devices.

VIC Video Interface Collection

IAD Interface Association Descriptor

VC Video Control

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 4

4 Test philosophy

4.1 Implementation

The test descriptions specified by this document will be integrated into the USBCV tool available from

the USB-IF. It is intended that all devices that report a Video Class Interface will be required to pass this

test in order to receive logo certification.

4.2 High-speed versus full-speed

For devices that support high-speed and full-speed operation, the test should be run twice: once in full-

speed mode, and once in high-speed mode.

4.3 Multiple Configurations

For devices having more than one configuration, the test should be run once for each configuration. The

test shall take the configuration index to be tested as an input parameter and report which

configuration is being tested at the beginning of the test. If the configuration index is larger than the

number of configurations available, then the test shall fail.

4.4 Multiple VICs on one device

For devices having more than one VIC, the test should be run once. The test shall loop on every VIC to be

tested and report which VIC is being tested inside the test.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 5

5 Assertions

5.1 Descriptor related assertions

5.1.1 Descriptor Basic Assertions

Device Descriptor Assertions

Num Assertion

6.1.1 Device Descriptor contains invalid bDeviceClass / bDeviceSubClass /
bDeviceProtocol

Specification Ref: USB Video Specification, Revision 1.1, Section 3.2

Test Description: TD 1.1

Device Qualifier Descriptor Assertions

Num Assertion

6.1.10 Device_Qualifier Descriptor contains invalid bDeviceClass / bDeviceSubClass /
bDeviceProtocol

Specification Ref: USB Video Specification, Revision 1.1, Section 3.3

Test Description: TD 1.2

Interface Association Descriptor Assertions

Num Assertion

6.1.20 No IAD is found but we have a VideoControl Interface and one or more associated
Video Streaming Interface.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.6

Test Description: TD 1.3

6.1.21 IAD bLength size is invalid.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.6

Test Description: TD 1.3

6.1.22 IAD bInterfaceCount is 0 or 1.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.6

Test Description: TD 1.3

6.1.23 IAD bFunctionProtocol is not PC_PROTOCOL_UNDEFINED

Specification Ref: USB Video Specification, Revision 1.1, Section 3.6

Test Description: TD 1.3

6.1.24 IAD iFunction is missing

Specification Ref: USB Video Specification, Revision 1.1, Section 3.11

Test Description: TD 1.3

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 6

Interface Association Descriptor Assertions

Num Assertion

6.1.25 IAD exists but the iFunction field of the IAD does the match the iInterface field of the
Standard VC Interface Descriptor for this VIC

Specification Ref: USB Video Specification, Revision 1.1, Section 3.11

Test Description: TD 1.3

6.1.26 IAD bFirstInterface does not point to a Video Control Interface

Specification Ref: USB Video Specification, Revision 1.1, Section 3.6

Test Description: TD 1.3

6.1.27 IAD bInterfaceCount some of the expected Video Streaming Interfaces are not
Video Streaming Interfaces

Specification Ref: USB Video Specification, Revision 1.1, Section 3.6

Test Description: TD 1.3

Video Control Interface Descriptor Assertions

Num Assertion

6.2.1 Video Control Interface has more than just default Endpoint 0 and one interrupt
Endpoint

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.2

Test Description: TD 1.4

6.2.2 Video Control Interface bNumEndpoints does not match the set of Endpoints found.

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.2

Test Description: TD 1.4

6.2.3 Standard VC Interface Descriptor is missing

Specification Ref: USB Video Specification, Revision 1.1, Section 2.1

Test Description: TD 1.4

6.2.4 Standard VC Interface bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.1

Test Description: TD 1.4

6.2.5 Standard VC Interface Descriptor bNumEndpoints is more than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.1

Test Description: TD 1.4

6.2.6 Standard VC Interface Descriptor bInterfaceProtocol is not
PC_PROTOCOL_UNDEFINED

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.1

Test Description: TD 1.4

6.2.7 Standard VC Interface Descriptor iInterface is missing

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.1

Test Description: TD 1.4

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 7

6.2.8 More the one Standard Video Control interface Descriptor has been in the VIC.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.1

Test Description: TD 1.4

Class Video Control Interface Descriptor Assertions

Num Assertion

6.2.20 Class VC Interface Descriptor is missing

Specification Ref: USB Video Specification, Revision 1.1, Section 2.1

Test Description: TD 1.5

6.2.21 Class VC Interface Descriptor is misplaced

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.5

6.2.22 Class VC Interface Descriptor bLength is invalid.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.5

6.2.23 Class VC Interface Descriptor wTotalLength is incorrect (after parsing following
Descriptors)

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.5

6.2.24 Class VC Interface Descriptor baInterfaceNr(1)…baInterfaceNr(n) not sequential
numbers

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.1

Test Description: TD 1.5

6.2.25 There is more than one Interface Header Descriptor.

Specification Ref: USB Video Specification, Revision 1.1, Section 2.1

Test Description: TD 1.5

6.2.26 Class VC Interface Descriptor bcdUVC is not 1.10

Specification Ref: USB Video Specification, Revision 1.1, Section 2.1

Test Description: TD 1.5

6.2.27 Class VC Interface Descriptor, we found an invalid Descriptor while parsing the
subsequent descriptors.

Specification Ref: USB Video Specification, Revision 1.1, Section 2.1

Test Description: TD 1.5

6.2.28 Class VC Interface Descriptor baInterfaceNr (1)…baInterfaceNr (n): at least one of
these Interfaces is not a Video Streaming Interface.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.5

Input Terminal Descriptor Assertions

Num Assertion

6.2.40 bUnitID or bTerminalID is 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.7, TD 1.8, TD 1.9, TD 1.10, TD 1.11, TD 1.12, TD 1.13

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 8

6.2.41 There is no Input terminal

Specification Ref: USB Video Specification, Revision 1.1, Section 2.3

Test Description: TD 1.6

Input Terminal Descriptor Assertions

Num Assertion

6.2.42 Input Terminal Descriptor bLength is invalid for this type

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.1

Test Description: TD 1.6

6.2.43 Input Terminal Descriptor wTerminalType is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.1

Test Description: TD 1.6

6.2.44 Input Terminal bAssocTerminal does not match the Terminal ID of the Output
Terminal Found

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.1

Test Description: TD 1.6

Output Terminal Descriptor Assertions

Num Assertion

6.2.50 There is no Output Terminal

Specification Ref: USB Video Specification, Revision 1.1, Section 2.3

Test Description: TD 1.7

6.2.51 Output Terminal Descriptor bLength is invalid for this type

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.2

Test Description: TD 1.7

6.2.52 Output Terminal Descriptor wTerminalType is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.2

Test Description: TD 1.7

6.2.53 Output Terminal Descriptor bSourceID is 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.7

6.2.54 Output Terminal bAssocTerminal does not match the Terminal ID of the Input
Terminal Found

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.2

Test Description: TD 1.7

6.2.55 The Source ID referred to in Output Terminal Descriptor is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 2.1

Camera Terminal Descriptor Assertions

Num Assertion

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 9

6.2.60 Camera Terminal Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.3

Test Description: TD 1.8

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 10

Camera Terminal Descriptor Assertions

Num Assertion

6.2.61 Camera Terminal Descriptor bmControls has reserved bits set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.3

Test Description: TD 1.8

6.2.62 Camera Terminal bAssocTerminal does not match the Terminal ID of the Output
Terminal Found

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.3

Test Description: TD 1.8

Media Transport Input Terminal Descriptor Assertions

Num Assertion

6.2.70 Media Transport Input Terminal Descriptor bLength is invalid

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.1

Test Description: TD 1.9

6.2.71 Media Transport Input Terminal Descriptor bmControls, a bit D4 or above is set.

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.1

Test Description: TD 1.9

6.2.72 Media Transport Input Terminal Descriptor bmTransportModes, a bit D34 or above
is set.

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.1

Test Description: TD 1.9

6.2.73 Media Transport Input Terminal bAssocTerminal does not match the Terminal ID of
the Output Terminal Found

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.1

Test Description: TD 1.9

Media Transport Output Terminal Descriptor Assertions

Num Assertion

6.2.80 Media Transport Output Terminal Descriptor bLength is invalid.

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.2

Test Description: TD 1.10

6.2.81 Media Transport Output Terminal Descriptor bSourceID is 0.

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.2

Test Description: TD 1.10

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 11

Media Transport Output Terminal Descriptor Assertions

Num Assertion

6.2.82 Media Transport Output Terminal Descriptor bmControls, a bit D4 or above is set.

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.2

Test Description: TD 1.10

6.2.83 Media Transport Output Terminal Descriptor bmTransportModes, a bit D34 or above
is set.

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.2

Test Description: TD 1.10

6.2.84 Media Transport Output Terminal bAssocTerminal does not match the Terminal ID
of the input Terminal Found

Specification Ref: USB Device Class Definition for Video Media Transport
Terminal, Revision 1.1, Section 3.2

Test Description: TD 1.10

Selector Unit Descriptor Assertions

Num Assertion

6.2.90 Selector Unit Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.4

Test Description: TD 1.11

6.2.91 Selector Unit Descriptor baSourceID(1)…baSourceID(p) some IDs are 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.11

6.2.92 Some Source IDs referred to in Selector Unit Descriptor are invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 2.1

Processing Unit Descriptor Assertions

Num Assertion

6.2.100 Processing Unit Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.5

Test Description: TD 1.12

6.2.101 Processing Unit Descriptor bSourceID is 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.12

6.2.102 Processing Unit Descriptor bmControls: D6 and D7 bits are both set

Specification Ref: USB Video Specification, Revision 1.1, Section 2.3.5

Test Description: TD 1.12

6.2.103 The Source ID referred to in Processing Unit Descriptor is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.12

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 12

6.2.104 Processing Unit Descripor bmControls: reserved bits are not set to zero.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.5

Test Description: TD 1.12

6.2.105 Processing Unit Descripor bmVideoStandards: reserved bits are not set to zero.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.5

Test Description: TD 1.12

Extension Unit Descriptor Assertions

Num Assertion

6.2.110 Extension Unit Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2.6

Test Description: TD 1.13

6.2.111 Extension Unit Descriptor bSourceID(0)…bSourceID(p) some Ids are set to 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.13

6.2.112 Some Source IDs referred to in Extension Unit Descriptors are invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.13

Standard Video Control Interrupt Endpoint Descriptor Assertions

Num Assertion

6.2.120 Standard VC Interrupt Endpoint Descriptor bLength is invalid.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.8.2.1

Test Description: TD 1.14

6.2.121 Standard VC Interrupt Endpoint Descriptor bEndpointAddress direction is not IN

Specification Ref: USB Video Specification, Revision 1.1, Section 3.8.2.1

Test Description: TD 1.14

6.2.122 Standard VC Interrupt Endpoint Descriptor bEndpointAddress has some bits D6..4
set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.8.2.1

Test Description: TD 1.14

6.2.123 Standard VC Interrupt Endpoint Descriptor bmAttributes does not have D3=D2=0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.8.2.1

Test Description: TD 1.14

Class Video Control Interrupt Endpoint Descriptor Assertions

Num Assertion

6.2.130 Class VC Interrupt Endpoint Descriptor is misplaced or missing

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.15

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 13

6.2.131 Class VC Interrupt Endpoint Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.8.2.2

Test Description: TD 1.15

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 14

Standard Video Streaming Interface Descriptor Assertions

Num Assertion

6.3.1 Standard VS Interface Descriptor bNumEndpoints is more than 2

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.3

Test Description: TD 1.16

6.3.2 Standard VS Interface Descriptor bInterfaceProtocol is not
PC_PROTOCOL_UNDEFINED

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.1

Test Description: TD 1.16

6.3.3 Video Streaming Interface has an invalid set of isochronous Endpoints (0 or more
than 1 isochronous Endpoint in alternate setting different from 0)

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.3

Test Description: TD 1.16

6.3.4 Video Streaming Interface has an isochronous Endpoint in alternate setting 0

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.3

Test Description: TD 1.16

6.3.5 Video Streaming Interface has an invalid set of bulk Endpoints (1 bulk Video
Endpoint is present in alternate Setting 0 and there is other alternate settings for this
Interface, or 1 bulk Endpoint is present in alternate setting other than 0 but no
isochronous Endpoint is present for that alternate setting, or there is 2 or more bulk
Endpoint in an alternate setting.)

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.3

Test Description: TD 1.16

6.3.6 Video Streaming Interface has more than one Header Descriptor

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2

Test Description: TD 1.16

6.3.7 Video Streaming Interface has Header, Format and Frame Descriptors in alternate
setting <>0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2

Test Description: TD 1.16

6.3.8 Video Streaming Interface: The Bulk Endpoint should follow the Video Endpoint in
Descriptor ordering.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.10.2.1

Test Description: TD 1.16

6.3.9 Video Streaming Interface: The Bulk Endpoint should follow the Video Endpoint in
Descriptor Addressing.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.10.2.1

Test Description: TD 1.16

6.3.10 Video Streaming Interface has an invalid Endpoint in alternate setting other than 0

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.3

Test Description: TD 1.16

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 15

Standard Video Streaming Interface Descriptor Assertions

Num Assertion

6.3.11 Video Streaming Interface bNumEndpoints does not match the set of Endpoints
found.

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.3

Test Description: TD 1.16

Class Specific Video Streaming Interface Input Header Descriptor Assertions

Num Assertion

6.3.20 Input Header Descriptor is misplaced

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.1

Test Description: TD 1.17

6.3.21 Input Header Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.22 Input Header Descriptor wTotalLength is incorrect (after parsing following
Descriptors)

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.23 Input Header Descriptor bEndpointAddress direction is not IN

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.24 Input Header Descriptor bmInfo D7…1 one of these bits is set

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.25 Input Header Descriptor bEndpointAddress has some bits D6..4 set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.26 Input Header Descriptor bTerminalLink is 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.17

6.3.27 Input Header Descriptor bStillCaptureMethod is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.28 Input Header Descriptor bTriggerSupport is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.29 Input Header Descriptor bTriggerUsage is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 16

Class Specific Video Streaming Interface Input Header Descriptor Assertions

Num Assertion

6.3.30 Input Header Descriptor bmaControls(1)…bmaControls(p) a reserved bit is set

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.31 Input Header Descriptor found an invalid Format / Frame Descriptor

Specification Ref: Related payload specification document

Test Description: TD 1.17

6.3.32 Input Header Descriptor found duplicate Format index

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.33 Input Header Descriptor found an invalid Still Image Descriptor

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.17

6.3.34 Input Header Descriptor found an invalid Color Matching Descriptor

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.17

6.3.35 Input Header Descriptor missing Still Image Frame Descriptor

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.17

6.3.36 Input Header Descriptor, the Endpoint referred to by bEndpointAddress cannot be
found.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.37 Input Header Descriptor, we found an invalid Descriptor type while parsing the
subsequent descriptors.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.1

Test Description: TD 1.17

6.3.38 The bTerminalLink referred to in Input Header Descriptor is invalid

Specification Ref: USB Video Specification, Revision 1.1, Sections 3.9.2.1

Test Description: TD 1.17

Class Specific Video Streaming Interface Output Header Descriptor Assertions

Num Assertion

6.3.50 Output Header Descriptor is misplaced

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.1

Test Description: TD 1.18

6.3.51 Output Header Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.2

Test Description: TD 1.18

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 17

Class Specific Video Streaming Interface Output Header Descriptor Assertions

Num Assertion

6.3.52 Output Header Descriptor wTotalLength is incorrect (after parsing following
Descriptors)

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.2

Test Description: TD 1.18

6.3.53 Output Header Descriptor bEndpointAddress direction is not OUT

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.2

Test Description: TD 1.18

6.3.54 Output Header Descriptor bEndpointAddress has some bits D6..4 set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.2

Test Description: TD 1.18

6.3.55 Output Header Descriptor bTerminalLink is 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 1.18

6.3.56 Output Header Descriptor found an invalid Format / Frame Descriptor

Specification Ref: Related payload specification document

Test Description: TD 1.18

6.3.57 Output Header Descriptor found duplicate Format index

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.2

Test Description: TD 1.18

6.3.58 Output Header Descriptor found an invalid Color Matching Descriptor

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.18

6.3.59 Output Header Descriptor, the Endpoint referred to by bEndpointAddress cannot be
found.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.2

Test Description: TD 1.18

6.3.60 The bTerminalLink referred to in Output Header Descriptor is invalid

Specification Ref: USB Video Specification, Revision 1.1, Sections 3.9.2.2

Test Description: TD 1.18

Still Image Frame Descriptor Assertions

Num Assertion

6.3.70 Still Image Frame Descriptor is misplaced

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.19

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 18

Still Image Frame Descriptor Assertions

Num Assertion

6.3.71 Still Image Frame Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.19

6.3.72 Still Image Frame Descriptor bEndpointAddress direction is not IN

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.19

6.3.73 Still Image Frame Descriptor bEndpointAddress has some bits D6..4 set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.19

6.3.74 Still Image Frame Descriptor, bStillImageCaptureMethod is 2 and bEndpointAddress
is not 0

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.19

6.3.75 Still Image Frame Descriptor, the Endpoint referred to in bEndpointAdress can not
be found

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.5

Test Description: TD 1.19

Color Matching Descriptor Assertions

Num Assertion

6.3.80 Color Matching Descriptor is misplaced

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.20

6.3.81 Color Matching Descriptor bLength is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.20

6.3.82 Color Matching Descriptor bColorPrimaries is larger than 5

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.20

6.3.83 Color Matching Descriptor bTransferCharacteristics is larger than 7

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.20

6.3.84 Color Matching Descriptor bMatrixCoefficients is larger than 5

Specification Ref: USB Video Specification, Revision 1.1, Section 3.9.2.6

Test Description: TD 1.20

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 19

Standard VS Isochronous Video Data Endpoint Descriptor Assertions

Num Assertion

6.3.90 Standard VS Isochronous Video Data Endpoint Descriptor bmAttributes: D3..2 is not
01

Specification Ref: USB Video Specification, Revision 1.1, Section 3.10.1.1

Test Description: TD 1.21

6.3.91 Standard VS Isochronous Video Data Endpoint Descriptor bmAttributes has some
bits D7..4 set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.10.1.1

Test Description: TD 1.21

6.3.92 Standard VS Isochronous Video Data Endpoint Descriptor bEndpointAddress has
some bits D6..4 set.

Specification Ref: USB Video Specification, Revision 1.1, Section 3.10.1.1

Test Description: TD 1.21

5.1.2 Advanced Descriptor Assertions.

Descriptor Advanced Assertions

Num Assertion

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 20

6.4.1 Device Topology has cycles

Specification Ref: USB Video Specification, Revision 1.1, Section 2.3

Test Description: TD 2.1

6.4.2 There are some duplicate Unit / Terminal IDs

Specification Ref: USB Video Specification, Revision 1.1, Section 3.7.2

Test Description: TD 2.1

6.4.20 A VS Interface reports that hardware triggers for still image capture are supported but
the VC has no interrupt Endpoint

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.2.2

Test Description: TD 2.2

5.1.3 Format and Frame Descriptor Assertions

Uncompressed Video Format Descriptor Assertions

Num Assertion

6.10.1 Uncompressed Video Format Descriptor bLength is invalid

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

6.10.2 Uncompressed Video Format Descriptor guidFormat is not YUY2 nor NV12

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 2.2

Test Description: TD 3.1

6.10.3 Uncompressed Video Format Descriptor bNumFrameDescriptors is 0

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

6.10.4 Uncompressed Video Format Descriptor bDefaultFrameIndex is larger than
bNumFrameDescriptors

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

6.10.5 Uncompressed Video Format Descriptor bmInterlaceFlags, bit D3 is set.

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

6.10.6 Uncompressed Video Format Descriptor bmInterlaceFlags D7..D6 are 11

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 21

6.10.7 Uncompressed Video Format Descriptor bCopyProtect is greater than 1

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

6.10.8 Uncompressed Video Format Descriptor found invalid Uncompressed Video Frame
Descriptor

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.1

6.10.9 Uncompressed Video Format Descriptor found duplicate Frame indexes

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.1

6.10.10 Uncompressed Video Format Descriptor bNumFrameDescriptors does not match the
number of Descriptors.

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.1

6.10.11 Uncompressed Video Format Descriptor bmInterlaceFlags D7..D6 are different than 00

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.1

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 22

Uncompressed Video Frame Descriptor Assertions

Num Assertion

6.10.20 Uncompressed Video Frame Descriptor bLength is invalid

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.2

6.10.21 Uncompressed Video Frame Descriptor bmCapabilities is not 0 but VS Interface does
not have an IN Video Endpoint or does not use Still Image Capture Method 1

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.2

6.10.22 Uncompressed Video Frame Descriptor bmCapabilities is greater than 1

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.2

6.10.23 Uncompressed Video Frame Descriptor dwDefaultFrameInterval is not consistent with
supported intervals

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.2

6.10.24 Uncompressed Video Frame Descriptor dwMinFrameInterval > dwMaxFrameInterval

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.2.1

Test Description: TD 3.2

6.10.25 Uncompressed Video Frame Descriptor dwFrameIntervalStep > (dwMaxFrameInterval
– dwMinFrameInterval)

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.2.1

Test Description: TD 3.2

6.10.26 Uncompressed Video Frame Descriptor dwFrameInterval(1)…dwFrameInterval(n) not in
increasing order

Specification Ref: Uncompressed Payload specification, Revision 1.1, Section 3.2.1

Test Description: TD 3.2

MJPEG Video Format Descriptor Assertions

Num Assertion

6.10.40 MJPEG Video Format Descriptor bLength is invalid

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

6.10.41 MJPEG Video Format Descriptor bNumFrameDescriptors is 0

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 23

MJPEG Video Format Descriptor Assertions

Num Assertion

6.10.42 MJPEG Video Format Descriptor bmFlags has some of the bits D7..1 set.

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

6.10.43 MJPEG Video Format Descriptor bmInterlaceFlags, bit D3 is set.

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

6.10.44 MJPEG Video Format Descriptor bDefaultFrameIndex is larger than
bNumFrameDescriptors

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

6.10.45 MJPEG Video Format Descriptor bmInterlaceFlags D7..D6 is 11

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

6.10.46 MJPEG Video Format Descriptor bCopyProtect is greater than 1

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.3

6.10.47 MJPEG Video Format Descriptor found invalid MJPEG Video Frame Descriptor

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.3

6.10.48 MJPEG Video Format Descriptor found duplicate Frame indexes

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.3

6.10.49 MJPEG Video Format Descriptor bNumFrameDescriptors does not match the number
of Descriptors.

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.3

MJPEG Video Frame Descriptor Assertions

Num Assertion

6.10.60 MJPEG Video Frame Descriptor bLength is invalid

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

6.10.61 MJPEG Video Frame Descriptor bmCapabilities is not 0 but VS Interface does not have
an IN Video Endpoint or does not use Still Image Capture Method 1

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

6.10.62 MJPEG Video Frame Descriptor bmCapabilities is greater than 1

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 24

MJPEG Video Frame Descriptor Assertions

Num Assertion

6.10.63 MJPEG Video Frame Descriptor dwDefaultFrameInterval is not consistent with
supported intervals

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

6.10.64 MJPEG Video Frame Descriptor dwMinFrameInterval > dwMaxFrameInterval

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

6.10.65 MJPEG Video Frame Descriptor dwFrameIntervalStep > (dwMaxFrameInterval –
dwMinFrameInterval)

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

6.10.66 MJPEG Video Frame Descriptor dwFrameInterval(1)…dwFrameInterval(n) not in
increasing order

Specification Ref: MJPEG Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.4

MPEG2 TS Video Format Descriptor Assertions

Num Assertion

6.10.110 MPEG2 TS Format Descriptor bLength is invalid.

Specification Ref: MPEG2-TS Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.8

6.10.111 MPEG2 TS Format Descriptor bPacketLength!=bStrideLength while having only TSP
Packets in the Stream.

Specification Ref: MPEG2-TS Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.8

DV Format Descriptor Assertions

Num Assertion

6.10.120 DV Format Descriptor bLength is invalid

Specification Ref: DV Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.9

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 25

DV Format Descriptor Assertions

Num Assertion

6.10.121 DV Format Descriptor bFormatType Bits D6..3 are set.

Specification Ref: DV Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.9

Stream Based Video Format Descriptor Assertions

Num Assertion

6.10.170 Stream Based Video Format Descriptor bLength is invalid

Specification Ref: Stream Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.12

6.10.171 Stream Based Video Format Descriptor bFixedSize is >1.

Specification Ref: Stream Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.12

6.10.172 Stream Based Video Format Descriptor dwPacketLength is not 0 while bFixedSize is
set to zero.

Specification Ref: Stream Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.12

Frame Based Video Format Descriptor Assertions

Num Assertion

6.10.190 Frame Based Video Format Descriptor bLength is invalid

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.191 Frame Based Video Format Descriptor bNumFrameDescriptor is zero.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.192 Frame Based Video Format Descriptor, reserved bits D7..6 in bmInterlaceFlags are
set.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.193 Frame Based Video Format Descriptor, reserved bits D3 in bmInterlaceFlags is set.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.194 Frame Based Video Format Descriptor, bDefaultFrameIndex is greater than
bNumFrameIndex.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 26

6.10.195 Frame Based Video Format Descriptor, bCopyProtect is >1.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.196 Frame Based Video Format Descriptor, bVariableSize is >1.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.197 Frame Based Video Format Descriptor, the following bNumFrameDescriptors are
not all Frame Based Frame Descriptors.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.198 Frame Based Video Format Descriptor, there is duplicated Frame Indexes among
the following Frame Based Frame Descriptors.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

6.10.199 Frame Based Video Format Descriptor bNumFrameDescriptors does not match the
number of Descriptors.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.1

Test Description: TD 3.13

Frame Based Video Frame Descriptor Assertions

Num Assertion

6.10.210 Frame Based Video Frame Descriptor bLength is invalid

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

6.10.211 Frame Based Video Frame Descriptor bmCapabilities is not 0 but VS Interface does
not have an IN Video Endpoint or does not use Still Image Capture Method 1.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

6.10.212 Frame Based Video Frame Descriptor bmCapabilities is greater than 1

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

6.10.213 Frame Based Video Frame Descriptor, dwBytesPerLine is not set to zero while
bVariableSize is set to 1 in the Format Descriptor.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

6.10.214 Frame Based Video Frame Descriptor dwDefaultFrameInterval is not consistent with
supported intervals.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 27

6.10.215 Frame Based Video Frame Descriptor dwMinFrameInterval > dwMaxFrameInterval

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

6.10.216 Frame Based Video Frame Descriptor dwFrameIntervalStep > (dwMaxFrameInterval
– dwMinFrameInterval).

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

6.10.217 Frame Based Video Frame Descriptor dwFrameInterval(1)…dwFrameInterval(n) not
in increasing order.

Specification Ref: Frame Based Payload specification, Revision 1.1, Section 3.1.2

Test Description: TD 3.14

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 28

5.2 Video control related assertions

Video Control Assertions

Num Assertion

6.20.1 Video Control responded NAK where STALL was expected

Specification Ref: USB Video Specification, Revision 1.1, Section 4 & 2.4.4

Test Description: All TD.2x.x tests

6.20.2 Video Control did not respond STALL when an invalid value or an unsupported
Request was set.

Specification Ref: USB Video Specification, Revision 1.1, Section 4 & 2.4.4

Test Description: All TD.2x.x tests

6.20.3 Found unexpected Video controls (invalid control selectors or on invalid units /
terminals)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2

Test Description: All TD.20.x tests

6.20.4 An expected Video control is missing (in Interface / unit / terminal)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2

Test Description: All TD.20.x tests

6.20.5 An expected control did not behave properly

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.x

Test Description: All TD.20.x tests

6.20.6 Video Control GET_INFO does not match actual supported requests

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.7 Video Control does not support all mandatory requests

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.x

Test Description: TD 20.1 to TD 20.42

6.20.8 Video Control is asynchronous or auto update but No Interrupt Endpoint is present.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.x

Test Description: TD 20.1 to TD 20.42

6.20.9 Video Control is asynchronous but Control Change interrupts are not generated on
SET_CUR (timeout is 5s)

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.4

Test Description: TD 20.1 to TD 20.42

6.20.10 Video Control is synchronous but SET_CUR has completed in more than 10 ms

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.4

Test Description: TD 20.1 to TD 20.42

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 29

6.20.11 Video Control default is not between MIN and MAX

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

Video Control Assertions

Num Assertion

6.20.12 Video Control default is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.13 Video Control GET_LEN is supported but does not match expected length

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.14 Video Control has a MIN>MAX

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.15 The requests does not return the correct size of parameter

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.16 Video Control GET_INFO have D3 set while the control is in Manual mode

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.17 Video Control GET_CUR reported Invalid Value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

6.20.18 Video Control GET_RES reported Invalid Value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: TD 20.1 to TD 20.42

Power Mode Control Assertions

Num Assertion

6.20.30 Power Mode Control setting invalid Power Mode

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.1

Test Description: TD 20.1

6.20.31 Power Mode Control GET_CUR reported invalid value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.1

Test Description: TD 20.1

Request Error Control Assertions

Num Assertion

6.20.40 Request Error Control Code GET_CUR reported invalid value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.2

Test Description: TD 20.2

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 30

6.20.41 Request Error Control Code did not report an Invalid Unit error after reading invalid unit

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.2

Test Description: TD 20.2

Request Error Control Assertions

Num Assertion

6.20.42 Request Error Control Code did not report an Invalid Control error after reading an
invalid control

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.2

Test Description: TD 20.2

6.20.43 Request Error Control Code did not report an Invalid Request error after issuing an
invalid request on a valid Control.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.2

Test Description: TD 20.2

6.20.44 Request Error Control Code did not report an Out Of Range error after issuing a
SET_CUR Request with Out Of Bound value on a valid Control.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.2

Test Description: TD 20.2

6.20.45 Request Error Control Code did not clear after being read (should be 0 on second
read)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.1.2

Test Description: TD 20.2

Scanning Mode Control Assertions

Num Assertion

6.20.50 Scanning Mode Control setting a value > 1 succeeded (GET_CUR reported bogus
value).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.1

Test Description: TD 20.4

6.20.51 Scanning Mode Control GET_CUR reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.1

Test Description: TD 20.4

Auto-Exposure Mode Control Assertions

Num Assertion

6.20.60 Auto-Exposure Mode Control GET_RES returned invalid bitmap (0 or invalid bits set)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

6.20.61 Auto-Exposure Mode Control setting invalid bitmap (with modes not listed in
GET_RES, invalid modes, or more than 1 bit set) succeeded (GET_CUR reported
bogus value).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 31

6.20.62 Auto-Exposure Mode Control GET_CUR reported invalid value (0, invalid bits set,
more than one bit set or modes not listed by GET_RES)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 32

Auto-Exposure Mode Control Assertions

Num Assertion

6.20.63 Auto-Exposure Mode Control SET_CUR failed with a valid value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

6.20.64 Exposure Time Absolute Control did not send any Control Change Interrupt when Auto
Exposure Mode value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

6.20.65 Exposure Time Relative Control did not send any Control Change Interrupt when Auto
Exposure Mode value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

6.20.66 Iris Absolute Control did not send any Control Change Interrupt when Auto Exposure
Mode value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

6.20.67 Iris Relative Control did not send any Control Change Interrupt when Auto Exposure
Mode value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.2

Test Description: TD 20.5

Auto-Exposure Priority Control Assertions

Num Assertion

6.20.70 Auto-Exposure Priority Control setting a value > 1 succeeded (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.3

Test Description: TD 20.6

6.20.71 Auto-Exposure Priority Control GET_CUR reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.3

Test Description: TD 20.6

6.20.72 Auto-Exposure Priority Control SET_CUR failed with a valid value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.3

Test Description: TD 20.6

Exposure Time (Absolute) Control Assertions

Num Assertion

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 33

6.20.80 Exposure Time (Absolute) Control SET_CUR failed (error or a different value was
returned during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.7

Exposure Time (Absolute) Control Assertions

Num Assertion

6.20.81 Exposure Time (Absolute) Control did not return STALL during SET_CUR while Auto-
Exposure control was set to Auto or Aperture priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.7

6.20.82 Exposure Time (Absolute) Control SET_CUR succeeded with out-of-bound value
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.7

6.20.83 Exposure Time (Absolute) Control GET_INFO did not have D3 set while Auto-
Exposure control was set to Auto or Aperture priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.7

6.20.84 Exposure Time (Absolute) Control GET_CUR reported reserved value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.7

Exposure Time (Relative) Control Assertions

Num Assertion

6.20.90 Exposure Time (Relative) Control SET_CUR failed (error or a different value was
returned during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.8

6.20.91 Exposure Time (Relative) Control did not return STALL during SET_CUR while Auto-
Exposure control was set to Auto or Aperture priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.5

Test Description: TD 20.8

6.20.92 Exposure Time (Absolute) Control SET_CUR succeeded with out-of-bound value
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.4

Test Description: TD 20.8

6.20.93 Exposure Time (Relative) Control GET_INFO did not have D3 set while Auto-Exposure
control was set to Auto or Aperture priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.5

Test Description: TD 20.8

6.20.94 Exposure Time (Relative) Control GET_CUR reported reserved value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.5

Test Description: TD 20.8

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 34

Focus (Absolute) Control Assertions

Num Assertion

6.20.100 Focus (Absolute) Control SET_CUR failed (error or a different value was returned
during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.6

Test Description: TD 20.9

6.20.101 Focus (Absolute) Control SET_CUR succeeded with out-of-bound value (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.6

Test Description: TD 20.9

6.20.102 Focus (Absolute) Control GET_INFO did not have D2 and D3 set while Focus Auto
Control was enabled.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.6

Test Description: TD 20.9

6.20.103 Focus (Absolute) Control did not send any Control Change notification when the
control from Automatic to manual Mode (or from Manual to Auto)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.6

Test Description: TD 20.9

6.20.104 Focus Absolute is in Auto Mode but it still accepts SET_CUR requests

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.6

Test Description: TD 20.9

Focus (Relative) Control Assertions

Num Assertion

6.20.110 Focus (Relative) Control setting bFocusRelative to other than 0xFF, 0 or 1 succeeded
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.111 Focus (Relative) Control GET_MIN, GET_MAX, GET_RES and GET_DEF did not
return 0 for bFocusRelative.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.112 Focus (Relative) Control SET_CUR succeeded with out-of-bound value for bSpeed
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.113 Focus (Relative) Control GET_INFO did not have D3 set while Focus is Auto Control
Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 35

6.20.114 Focus (Relative) Control did not send any Control Change notification when the control
from Automatic to manual Mode (or from Manual to Auto)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

Focus (Relative) Control Assertions

Num Assertion

6.20.115 Focus (Relative) Control did not send any Control Change Interrupt when Focus
Relative value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.116 Focus (Relative) Control has a MIN>MAX for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.117 Focus (Relative) Control has an invalid DEF value for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.118 Focus (Relative) SET_CUR Failed with a valid value for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.119 Focus (Relative) SET_CUR Failed with a valid value for bFocusRelative

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

6.20.120 Focus (Relative) is in Auto Mode but it still accepts SET_CUR requests

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.7

Test Description: TD 20.10

Focus Auto Control Assertions

Num Assertion

6.20.125 Focus Auto Control setting a value > 1 succeeded (GET_CUR reported bogus value).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.8

Test Description: TD 20.11

6.20.126 Focus Auto Control GET_CUR reported invalid value (>1).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.8

Test Description: TD 20.11

6.20.127 Focus Auto Control SET_CUR failed with a valid value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.8

Test Description: TD 20.11

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 36

Iris (Absolute) Control Assertions

Num Assertion

6.20.130 Iris (Absolute) Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.9

Test Description: TD 20.12

Iris (Absolute) Control Assertions

Num Assertion

6.20.131 Iris (Absolute) Control did not return STALL during SET_CUR while Auto-Exposure
control was set to Auto or Shutter priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.9

Test Description: TD 20.12

6.20.132 Iris (Absolute) Control SET_CUR succeeded with out-of-bound value (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.9

Test Description: TD 20.12

6.20.133 Iris (Absolute) Control GET_INFO did not have D3 set while Auto-Exposure control
was set to Auto or Aperture Shutter mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.9

Test Description: TD 20.12

6.20.134 Iris (Absolute) Control GET_INFO did not have D2 and D3 set while Focus Auto
Control was enabled.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.9

Test Description: TD 20.12

Iris (Relative) Control Assertions

Num Assertion

6.20.140 Iris (Relative) Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.10

Test Description: TD 20.13

6.20.141 Iris (Relative) Control did not return STALL during SET_CUR while Auto-Exposure
control was set to Auto or Shutter priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.10

Test Description: TD 20.13

6.20.142 Iris (Relative) Control SET_CUR succeeded with Out-Of-Bound value (GET_CUR
reported Bogus Value).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.10

Test Description: TD 20.13

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 37

6.20.143 Iris (Relative) Control GET_INFO did not have D3 set while Auto-Exposure control was
set to Auto or Aperture priority mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.10

Test Description: TD 20.13

Zoom (Absolute) Control Assertions

Num Assertion

6.20.150 Zoom (Absolute) Control SET_CUR failed (error or a different value was returned
during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.11

Test Description: TD 20.14

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 38

Zoom (Absolute) Control Assertions

Num Assertion

6.20.151 Zoom (Absolute) Control SET_CUR succeeded with out-of-bound value (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.11

Test Description: TD 20.14

6.20.152 Zoom (Absolute) Control GET_RES did not return 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.11

Test Description: TD 20.14

Zoom (Relative) Control Assertions

Num Assertion

6.20.160 Zoom (Relative) Control setting bZoom to other than 0xFF, 0 or 1 succeeded
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.161 Zoom (Relative) Control GET_MIN, GET_MAX, GET_RES and GET_DEF did not
return 0 for bZoom.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.162 Zoom (Relative) Control SET_CUR succeeded with value other than 0 or 1 for
bDigitalZoom (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.163 Zoom (Relative) Control GET_MIN, GET_MAX, GET_RES did not return 0 for
bDigitalZoom.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.164 Zoom (Relative) Control SET_CUR succeeded with out-of-bound value for bSpeed
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.165 Zoom Absolute Control did not send any Control Change Interrupt when Focus
Relative value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.166 Zoom (Relative) Control has a MIN>MAX for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 39

6.20.167 Zoom (Relative) Control has an invalid DEF value for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

Zoom (Relative) Control Assertions

Num Assertion

6.20.168 Zoom (Relative) Control SET_CUR failed with a valid value for bZoom

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.169 Zoom (Relative) Control SET_CUR failed with a valid value for bDigitalZoom

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

6.20.189 Zoom (Relative) Control SET_CUR failed with a valid value for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.12

Test Description: TD 20.15

Pan Tilt (Absolute) Control Assertions

Num Assertion

6.20.170 Pan Tilt (Absolute) Control GET_MIN for dwPanAbsolute is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.171 Pan Tilt (Absolute) Control GET_MAX for dwPanAbsolute is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.172 Pan Tilt (Absolute) Control GET_DEF for dwPanAbsolute is not 0

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.173 Pan Tilt (Absolute) Control GET_MIN for dwTiltAbsolute is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.174 Pan Tilt (Absolute) Control GET_MAX for dwTiltAbsolute is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.175 Pan Tilt (Absolute) Control GET_DEF for dwTiltAbsolute is not 0

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.176 Pan Tilt (Absolute) Control SET_CUR succeeded with out-of-bound value for
dwPanAbsolute (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 40

6.20.177 Pan Tilt (Absolute) Control SET_CUR succeeded with out-of-bound value for
dwTiltAbsolute (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 41

Pan Tilt (Absolute) Control Assertions

Num Assertion

6.20.178 Pan Tilt (Absolute) Control SET_CUR failed setting dwPanAbsolute and
dwTiltAbsolute (error or a different value was returned during following GET_CUR)
with a valid value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.179 Pan Tilt (Absolute) Control has a MIN>MAX for dwPanAbsolute.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.180 Pan Tilt (Absolute) Control has a MIN>MAX for dwTiltAbsolute.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

6.20.181 Pan Tilt (Absolute) Control did not send any Control Change Interrupts when its value
changed via PanTilt Relative Control.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.13

Test Description: TD 20.16

Pan Tilt (Relative) Control Assertions

Num Assertion

6.20.190 Pan Tilt (Relative) Control setting bPanRelative to other than 0xFF, 0 or 1 succeeded
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.191 Pan Tilt (Relative) Control GET_MIN, GET_MAX, GET_RES and GET_DEF did not
return 0 for bPanRelative.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.192 Pan Tilt (Relative) Control SET_CUR succeeded with out-of-bound value for
bPanSpeed (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.193 Pan Tilt (Relative) Control setting bTiltRelative to other than 0xFF, 0 or 1 succeeded
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.194 Pan Tilt (Relative) Control GET_MIN, GET_MAX, GET_RES and GET_DEF did not
return 0 for bTiltRelative.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 42

Pan Tilt (Relative) Control Assertions

Num Assertion

6.20.195 Pan Tilt (Relative) Control SET_CUR succeeded with out-of-bound value for
bTiltSpeed (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.196 Pan Tilt (Relative) Control has a MIN>MAX for bPanSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.197 Pan Tilt (Relative) Control has a MIN>MAX for bTiltSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.198 PanTilt (Relative) Control has an invalid DEF value for bPanSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.199 PanTilt (Relative) Control has an invalid DEF value for bTiltSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.200 SET_CUR Failed with a valid value for bPanRelative

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.201 SET_CUR Failed with a valid value for bPanSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.202 SET_CUR Failed with a valid value for bTiltRelative

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

6.20.203 SET_CUR Failed with a valid value for bTiltSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.14

Test Description: TD 20.17

Roll (Absolute) Control Assertions

Num Assertion

6.20.210 Roll (Absolute) Control SET_CUR succeeded with out-of-bound value for
dwRollAbsolute (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.15

Test Description: TD 20.18

6.20.211 Roll (Absolute) Control SET_CUR failed setting dwRollAbsolute (error or a different
value was returned during following GET_CUR) to 0

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.15

Test Description: TD 20.18

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 43

Roll (Absolute) Control Assertions

Num Assertion

6.20.212 Roll (Absolute) Control GET_DEF for dwRollAbsolute is not 0

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.15

Test Description: TD 20.18

Roll (Relative) Control Assertions

Num Assertion

6.20.220 Roll (Relative) Control setting bRollRelative to other than 0xFF, 0 or 1 succeeded
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.221 Roll (Relative) Control GET_MIN, GET_MAX, GET_RES and GET_DEF did not return
0 for bRollRelative.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.222 Roll (Relative) Control SET_CUR succeeded with out-of-bound value for bSpeed
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.223 Roll (Relative) Control did not send any Control Change Interrupt when Focus Relative
value changed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.224 Roll (Relative) Control has a MIN>MAX for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.225 Roll (Relative) Control has an invalid DEF value for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.226 Roll (Relative) Control SET_CUR Failed with a valid value for bFocusRelative

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

6.20.227 Roll (Relative) Control SET_CUR Failed with a valid value for bSpeed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.16

Test Description: TD 20.19

Privacy Control Assertions

Num Assertion

6.20.230 Privacy Control GET_CUR reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.17

Test Description: TD 20.20

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 44

Privacy Control Assertions

Num Assertion

6.20.231 Privacy Control is not reported as AutoUpdate.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.17

Test Description: TD 20.20

6.20.232 Privacy Control SET_CUR succeeded with out-of-bound value (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.17

Test Description: TD 20.20

6.20.233 Privacy Control SET_CUR failed with a valid value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.17

Test Description: TD 20.20

6.20.234 Privacy Control did not send any Control Change Interrupt when bPrivacy value
changed.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.1.17

Test Description: TD 20.20

Selector Unit Control Assertions

Num Assertion

6.21.1 Selector Unit Control GET_MIN is not 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

6.21.2 Selector Unit Control GET_RES is not 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

6.21.3 Selector Unit Control GET_MAX is not consistent with number of Input Pins

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

6.21.4 Selector Unit Control SET_CUR succeeded with out-of-bound value (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

6.21.5 Selector Unit GET_CUR reported invalid value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

6.21.6 Selector Unit SET_CUR failed with a valid value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

6.21.7 A Selector Unit Descriptor is present but the Selector Unit Control is not supported

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.2

Test Description: TD 20.21

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 45

Backlight Compensation Control Assertions

Num Assertion

6.22.1 Backlight Compensation Control SET_CUR failed (error or a different value was
returned during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.1

Test Description: TD 20.22

6.22.2 Backlight Compensation Control SET_CUR succeeded with out-of-bound value
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.1

Test Description: TD 20.22

Brightness Control Assertions

Num Assertion

6.22.10 Brightness Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.2

Test Description: TD 20.23

6.22.11 Brightness Control SET_CUR succeeded with out-of-bound value (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.2

Test Description: TD 20.23

6.22.12 Brightness Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.2

Test Description: TD 20.23

Contrast Control Assertions

Num Assertion

6.22.20 Contrast Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.3

Test Description: TD 20.24

6.22.21 Contrast Control SET_CUR succeeded with out-of-bound value (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.3

Test Description: TD 20.24

6.22.22 Contrast Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.3

Test Description: TD 20.24

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 46

Gain Control Assertions

Num Assertion

6.22.30 Gain Control SET_CUR failed (error or a different value was returned during following
GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.4

Test Description: TD 20.25

6.22.31 Gain Control SET_CUR succeeded with out-of-bound value (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.4

Test Description: TD 20.25

6.22.32 Gain Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.4

Test Description: TD 20.25

Power Line Frequency Control Assertions

Num Assertion

6.22.40 Power Line Frequency Control setting a value > 2 succeeded (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.5

Test Description: TD 20.26

6.22.41 Power Line Frequency Control GET_CUR reported invalid value (>2)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.5

Test Description: TD 20.26

6.22.42 Power Line Frequency Control GET_DEF reported invalid value (!=1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.5

Test Description: TD 20.26

6.22.43 Power Line Frequency Control SET_CUR did not success with valid value (<3)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.5

Test Description: TD 20.26

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 47

Hue Control Assertions

Num Assertion

6.22.50 Hue Control GET_MIN for wHue is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.6

Test Description: TD 20.27

6.22.51 Hue Control GET_MAX for wHue is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.6

Test Description: TD 20.27

6.22.52 Hue Control GET_DEF for wHue is not 0

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.6

Test Description: TD 20.27

6.22.53 Hue Control SET_CUR failed (error or a different value was returned during following
GET_CUR) to set to 0

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.6

Test Description: TD 20.27

6.22.54 Hue Control SET_CUR succeeded with out-of-bound value for wHue (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.6

Test Description: TD 20.27

Hue Auto Control Assertions

Num Assertion

6.22.60 Hue Control GET_INFO did not have D3 set while Hue Auto control was set to 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

6.22.61 Hue Auto Control setting a value > 1 succeeded (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

6.22.62 Hue Auto Control GET_CUR reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 48

6.22.63 Hue Auto Control GET_DEF reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

6.22.64 Hue Auto Control SET_CUR did not succeed with a value valid (<=1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

6.22.65 Hue Control did not send any Control Change Interrupt when Hue Auto value changed.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

Hue Auto Control Assertions

Num Assertion

6.22.66 Hue Control did not update his SET_CUR constraint when Hue Auto value changed.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.7

Test Description: TD 20.28

Saturation Control Assertions

Num Assertion

6.22.70 Saturation Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.8

Test Description: TD 20.29

6.22.71 Saturation Control SET_CUR succeeded with out-of-bound value (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.8

Test Description: TD 20.29

6.22.72 Saturation Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.8

Test Description: TD 20.29

Sharpness Control Assertions

Num Assertion

6.22.80 Sharpness Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.9

Test Description: TD 20.30

6.22.81 Sharpness Control SET_CUR succeeded with out-of-bound value (GET_CUR reported
bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.9

Test Description: TD 20.30

6.22.82 Sharpness Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.9

Test Description: TD 20.30

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 49

Gamma Control Assertions

Num Assertion

6.22.90 Gamma Control GET_MIN for wGamma is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.10

Test Description: TD 20.31

6.22.91 Gamma Control GET_MAX for wGamma is out-of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.10

Test Description: TD 20.31

Gamma Control Assertions

Num Assertion

6.22.92 Gamma Control SET_CUR failed (error or a different value was returned during
following GET_CUR) to set to default (GET_DEF)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.10

Test Description: TD 20.31

6.22.93 Gamma Control SET_CUR succeeded with out-of-bound value for wGamma
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.10

Test Description: TD 20.31

White Balance Temperature Control Assertions

Num Assertion

6.22.100 White Balance Temperature Control GET_MIN for wWhiteBalanceTemperature is out-
of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.11

Test Description: TD 20.32

6.22.101 White Balance Temperature Control GET_MAX for wWhiteBalanceTemperature is out-
of-bound

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.11

Test Description: TD 20.32

6.22.102 White Balance Temperature Control SET_CUR failed (error or a different value was
returned during following GET_CUR) to set to default (GET_DEF)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.11

Test Description: TD 20.32

6.22.103 White Balance Temperature Control SET_CUR succeeded with out-of-bound value for
wWhiteBalanceTemperature (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.11

Test Description: TD 20.32

White Balance Temperature Auto Control Assertions

Num Assertion

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 50

6.22.110 White Balance Temperature Control GET_INFO did not have D3 set while White
Balance Temperature Auto control was set to 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

6.22.111 White Balance Temperature Auto Control setting a value > 1 succeeded (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

6.22.112 White Balance Temperature Auto Control GET_CUR reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

White Balance Temperature Auto Control Assertions

Num Assertion

6.22.113 White Balance Temperature Auto Control GET_DEF reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

6.22.114 SET_CUR did not Succeed with a valid value (GET_CUR Reported Bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

6.22.115 White Balance Temperature Control did not send any Control Change Interrupt when
White Balance Temperature Auto value changed.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

6.22.116 White Balance Temperature Control did not accept SET request after have been set to
manual Mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.12

Test Description: TD 20.33

White Balance Component Control Assertions

Num Assertion

6.22.120 White Balance Component Control SET_CUR failed (error or a different value was
returned during following GET_CUR) to set wWhiteBalanceBlue and
wWhiteBalanceRed to default (GET_DEF)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

6.22.121 White Balance Component Control SET_CUR succeeded with out-of-bound value for
wWhiteBalanceBlue (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

6.22.122 White Balance Component Control SET_CUR succeeded with out-of-bound value for
wWhiteBalanceRed (GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 51

6.22.123 White Balance Component Control has a MIN>MAX for wWhiteBalanceBlue

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

6.22.124 White Balance Component Control has a MIN>MAX for wWhiteBalanceRed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

6.22.125 White Balance Component Control has an invalid DEF value for wWhiteBlanceBlue

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

White Balance Component Control Assertions

Num Assertion

6.22.126 White Balance Component Control has an invalid DEF value for wWhiteBlanceRed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

6.22.127 White Balance Component SET_CUR failed with a valid value for wWhiteBalanceBlue

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

6.22.128 White Balance Component SET_CUR failed with a valid value for wWhiteBalanceRed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.13

Test Description: TD 20.34

White Balance Component Auto Control Assertions

Num Assertion

6.22.130 White Balance Component Control GET_INFO did not have D3 set while White
Balance Component Auto control was set to 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

6.22.131 White Balance Component Auto Control setting a value > 1 succeeded (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

6.22.132 White Balance Component Auto Control GET_CUR reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

6.22.133 White Balance Component Auto Control GET_DEF reported invalid value (>1)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

6.22.134 SET_CUR did not Succeed with a valid value (GET_CUR Reported Bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 52

6.22.135 White Balance Component Control did not send any Control Change Interrupt when
White Balance Component Auto value changed.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

6.22.136 White Balance Component Control did not accept SET request after have been set to
manual Mode.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.14

Test Description: TD 20.35

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 53

Digital Multiplier Control Assertions

Num Assertion

6.22.140 Digital Multiplier Control SET_CUR failed (error or a different value was returned
during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.15

Test Description: TD 20.36

6.22.141 Digital Multiplier Control SET_CUR succeeded with out-of-bound value (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.15

Test Description: TD 20.36

6.22.142 Digital Multiplier Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.15

Test Description: TD 20.36

Digital Multiplier Limit Control Assertions

Num Assertion

6.22.150 Digital Multiplier Limit Control SET_CUR failed (error or a different value was returned
during following GET_CUR) to set to default (GET_DEF) value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.16

Test Description: TD 20.37

6.22.151 Digital Multiplier Limit Control SET_CUR succeeded with out-of-bound value
(GET_CUR reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.16

Test Description: TD 20.37

6.22.152 Digital Multiplier Limit Control GET_RES reported other than 1

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.16

Test Description: TD 20.37

Analog Video Standard Control Assertions

Num Assertion

6.22.155 Analog Video Standard Control returned an invalid value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.17

Test Description: TD 20.43

Analog Video Lock Status Control Assertions

Num Assertion

6.22.157 Analog Video Lock Status Control returned an invalid value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.3.18

Test Description: TD 20.44

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 54

Extension Unit: Extension Unit Control Assertions

Num Assertion

6.22.160 An expected Extension Unit Control is missing.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.4

Test Description: TD 20.38

6.22.161 An Extension Unit Control number should not be supported(not listed in bmControls)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.4

Test Description: TD 20.38

6.22.162 Extension Unit Control number should not be supported(no control Selector above
bNumControl should be supported)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.2.2.4

Test Description: TD 20.38

Media Transport Terminal: Transport Control Assertions

Num Assertion

6.22.170 Transport Control SET_CUR failed with a valid Mode(error or a different value was
returned during following GET_CUR.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.171 Transport Control SET_CUR succeeded with reserved value for Playback Mode
(GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.172 Transport Control SET_CUR succeeded with reserved value for Rewind Mode
(GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.173 Transport Control SET_CUR succeeded with reserved value for Record Mode
(GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.174 Transport Control SET_CUR succeeded with reserved value for Eject Mode
(GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.175 Transport Control SET_CUR succeeded with reserved value for Status Mode
(GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 55

6.22.176 Transport Control SET_CUR succeeded with a Status Mode Value.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.177 Transport Control GET_CUR reported an invalid Value (The mode is not listed in
bmTransportMode).

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.178 Transport Control is not reported as Asynchronous.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

Media Transport Terminal: Transport Control Assertions

Num Assertion

6.22.179 Transport Control is not reported as Autoupdate.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

6.22.180 Transport Control SET_CUR succeeded with an unsupported Mode (not listed in
bmTransportModes).

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.1

Test Description: TD 20.39

Media Transport Terminal: Absolute Track Number (ATN) Control Assertions

Num Assertion

6.22.190 Absolute Track Number Control GET_CUR reported invalid value for bmMediumType
(one of the reserved values have been returned).

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

6.22.191 Absolute Track Number Control GET_CUR reported invalid value for dw_ATNData
(one of the reserved values have been returned).

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

6.22.192 Absolute Track Number Control SET_CUR failed (error or a different value was
returned during following GET_CUR).

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 56

6.22.193 Absolute track Number Control SET_CUR succeeded with reserved value for
bmMediumType (GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

6.22.194 Absolute track Number Control SET_CUR succeeded with reserved value for
dwATN_Data (GET_CUR reported bogus value)

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

6.22.195 Absolute Track Number is not reported as Asynchronous

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 57

Media Transport Terminal: Absolute Track Number (ATN) Control Assertions

Num Assertion

6.22.196 Absolute Track Number is not reported as Autoupdate

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

6.22.197 Absolute Track Number: Transport Control did not send any Control Change Interrupt
when ATN Information value changed

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.2

Test Description: TD 20.40

Media Transport Terminal: Media Information Control Assertions

Num Assertion

6.22.200 Media Information Control GET_CUR reported invalid value for bmMediaType (one of
the reserved values have been returned).

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.3

Test Description: TD 20.41

6.22.201 Media Information Control GET_CUR reported invalid value for bmWriteProtect (one of
the reserved value is returned).

 Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.3

Test Description: TD 20.41

Media Transport Terminal: Time Code Information Control Assertions

Num Assertion

6.22.210 Time Code Information Control, SET_CUR Failed with a valid value.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.4

Test Description: TD 20.42

6.22.211 Time Code Information Control is not reported as Asynchronous.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.4

Test Description: TD 20.42

6.22.212 Time Code Information Control is not reported as AutoUpdate.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.4

Test Description: TD 20.42

6.22.213 Time Code Information Control Transport Control did not send any Control Change
Interrupt when Time Code Information value changed.

Specification Ref: USB Device Class for Video Media Transport Terminal, Revision
1.1, Section 4.1.3.4

Test Description: TD 20.42

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 58

5.3 Streaming control related assertions

Probe and Commit Controls Assertions

Num Assertion

6.23.1 The Max Payload Transfer Size specified by the device is not achievable with the
Endpoints MaxPacketSizes specified in the Alternate Settings

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.2 The Max Payload Transfer Size specified by the Probe Control is not lower than the
previous when we cycle through Frame Interval. This will lead in Negotiation Loops.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.3 The Max Payload Transfer Size specified by the Probe Control is not lower than the
previous when we cycle through KeyFrameRate. This will lead in Negotiation Loops.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.4 The Max Payload Transfer Size specified by the Probe Control is not lower than the
previous when we cycle through PFrameRate. This will lead in Negotiation Loops.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.5 The Max Payload Transfer Size specified by the Probe Control is not lower than the
previous when we cycle through wCompQuality. This will lead in Negotiation Loops.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.6 The Max Payload Transfer Size specified by the Probe Control is not lower than the
previous when we cycle through dwCompWindowSize. This will lead in Negotiation
Loops.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.7 The Format is stream based. The VS Header shall not advertise that it supports Frame
Interval as a parameter.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.8 The Format is stream based. The VS Header shall not advertise that it supports Key
frame as a parameter.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 59

6.23.9 The Format is stream based. The VS Header shall not advertise that it supports P
Frame as a parameter

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.10 The Frame Interval step cannot be 0. Use Discrete Frame Intervals if there is only one
frame interval.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.11 MIN > MAX for wKeyFrameRate.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.12 The Probe Control has an invalid default value for wKeyFrameRate

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.13 The RES value of the control is not valid for wKeyFrameRate.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.14 The RES value is 0 for wKeyFrameRate but MIN is not equal to MAX.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.15 MIN > MAX for wPFrameRate.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.16 The Probe Control has an invalid default value for wPFrameRate.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.17 The RES value of the control is not valid for wPFrameRate.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.18 The RES value is 0 for wPFrameRate but MIN is not equal to MAX.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.19 MIN > MAX for wCompQuality.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.20 The Probe Control has an invalid default value for wCompQuality.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.21 The RES value of the control is not valid for wCompQuality.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 60

6.23.22 The RES value is 0 for wCompQuality but MIN is not equal to MAX.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.23 MIN > MAX for wCompWindowSize.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.24 The Probe Control has an invalid default value for wCompWindowSize.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.25 The RES value of the control is not valid for wCompWindowSize.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.26 The RES value is 0 for wCompWindowSize but MIN is not equal to MAX.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.27 The Probe Control does not implement all mandatory requests.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.28 Probe Control GET_MIN failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.29 Probe Control GET_MAX failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.30 Probe Control GET_RES failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.31 Probe Control GET_DEF failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

6.23.32 Probe Control GET_CUR failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.1.1

Test Description: TD 23.1

Still Probe and Still Commit Controls Assertions

Num Assertion

6.23.50 The Still Probe Control does not implement all mandatory requests.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 61

6.23.51 Still Probe Control GET_MIN failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.52 Still Probe Control GET_MAX failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.53 MIN > MAX for bCompressionIndex.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.54 MIN > MAX for dwMaxVideoFrameSize.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.55 Still Probe Control GET_DEF failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.56 DEF is not between MIN and MAX for bCompressionIndex.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.57 DEF is not between MIN and MAX for dwMaxVideoFrameSize.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.58 Still Probe Control GET_CUR failed

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.59 The Max Payload Transfer Size specified by the device is not achievable with the
Endpoints MaxPacketSizes specified in the Alternate Settings

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.60 The Max Payload Transfer Size specified by the Still Probe Control is not lower than
the previous when we cycle through bCompressionIndex. This will lead in Negotiation
Loops.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.61 The dwMaxVideoFrameSize returned by the Device is not achievable with the values
specified in the Still Image Frame Descriptor.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

6.23.62 SET_CUT to Still Commit Control did not succeed.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 62

6.23.63 The values returned by the Still Probe Control do not match any value in the Still
Image Frame Descriptor.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.2

Test Description: TD 23.2

Common Stream Header Assertions

Num Assertion

6.23.80 The FID bit does not toggle at the beginning of each frame.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

6.23.81 The EOF bit is set for the first Stream Header of the Frame.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

6.23.82 PTS is advertised as present but the PTS value is either NULL or inconsistent with the
Clock Frequency.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

6.23.83 SCR is advertised as present but the SCR value is either NULL or inconsistent with the
Clock Frequency.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

6.23.84 STI bit is set in a Non-Still Video Stream Header.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5, TD23.7, TD23.8

6.23.85 The RES bit is set while the value is Reserved.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5, TD23.7, TD23.8

6.23.86 The EOF bit is not set in the last Stream Header of a frame.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

6.23.87 The FID bit is not constant trough all the Stream Headers of the current Frame.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 63

6.23.88 The PTS field is present but the PTS value is not equal to the PTS value of the first
Stream Header of the current Frame.

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5

6.23.89 The ERR bit is set but the Stream Error Code Control indicates that there is no error
(returns 0).

Specification Ref: USB Video Class Payload Specification (MJPEG, DV,
Uncompressed, MPEG2TS, MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD 23.3, TD23.4, TD23.5, TD23.7, TD23.8

Stream Based Format Specific Stream Header Assertions

Num Assertion

6.23.100 The PTS field is not set to zero.

Specification Ref: USB Video Class Payload Specification (MPEG2TS,
MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD23.7, TD23.8

6.23.101 The SCR field is not set to zero

Specification Ref: USB Video Class Payload Specification (MPEG2TS,
MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD23.7, TD23.8

6.23.102 EOH bit is not set to 1.

Specification Ref: USB Video Class Payload Specification (MPEG2TS,
MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD23.7, TD23.8

6.23.103 The bit D0 of the bmFramingInfo in the Probe and Commit structure is not set but the
FID bit is set (to indicate the beginning of a codec specific segment).

Specification Ref: USB Video Class Payload Specification (MPEG2TS,
MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD23.7, TD23.8

6.23.104 The bit D1 of the bmFramingInfo in the Probe and Commit structure is not set but the
EOF bit is set (to indicate the end of a codec specific segment).

Specification Ref: USB Video Class Payload Specification (MPEG2TS,
MPEG1SS/MPEP2PS), Revision 1.1, Section 2.2

Test Description: TD23.7, TD23.8

Video Streaming Controls Assertions

Num Assertion

6.30.1 Video Streaming Control did not respond STALL when an invalid value or an
unsupported Request was set.

Specification Ref: USB Video Specification, Revision 1.1, Section 4 & 2.4.4

Test Description: All TD.23.10 to 23.13 tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 64

6.30.2 An expected Video Streaming control is missing.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3

Test Description: All TD.23.10 to 23.13 tests

6.30.3 Video Streaming Control GET_INFO does not match actual supported requests

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

Video Streaming Control Assertions

Num Assertion

6.30.4 Video Streaming Control does not support all mandatory requests

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.x

Test Description: All TD.23.10 to 23.13 tests

6.30.5 Video Streaming Control is asynchronous or auto update but No Interrupt Endpoint is
present.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.x

Test Description: All TD.23.10 to 23.13 tests

6.30.6 Video Streaming Control is asynchronous but Control Change interrupts are not
generated on SET_CUR (timeout is 5s)

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.4

Test Description: All TD.23.10 to 23.13 tests

6.30.7 Video Streaming Control is synchronous but SET_CUR has completed in more than 10
ms

Specification Ref: USB Video Specification, Revision 1.1, Section 2.4.4

Test Description: All TD.23.10 to 23.13 tests

6.30.8 Video Streaming Control default is not between MIN and MAX

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

6.30.9 Video Streaming Control default is invalid

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

6.30.10 Video Streaming Control GET_LEN is supported but does not match expected length

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

6.30.11 Video Streaming Control has a MIN>MAX

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

6.30.12 Video Streaming Control: The requests does not return the correct size of parameter

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

6.30.13 Video Streaming Control GET_CUR reported Invalid Value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 65

6.30.14 Video Streaming Control GET_RES reported Invalid Value

Specification Ref: USB Video Specification, Revision 1.1, Section 4.1.2

Test Description: All TD.23.10 to 23.13 tests

Synch Delay Control Assertions

Num Assertion

6.30.30 Synch Delay Control SET_CUR succeeded with out-of-bound value (GET_CUR
reported bogus value)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.3

Test Description: TD 23.10

6.30.31 Synch Delay Control is supported and SET_CUR failed (error or a different value was
returned during following GET_CUR) to set to default (GET_DEF) value or any other
valid value in the range.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.3

Test Description: TD 23.10

Still Image Trigger Control Assertions

Num Assertion

6.30.50 Still Image Trigger Control, there is no support for Still Image Capture (No VS Input
Header, no IN Endpoint) but the Control is supported.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.51 Still Image Trigger Control, the device advertises Still Image Capture method 1 and the
control is supported.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.52 Still Image Trigger Control, SET_CUR succeeded with an Out Of Bound value for the
control.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.53 Still Image Trigger Control, the device advertises Still Image Capture Method 2 and a
SET_CUR succeeded with a value of 2 (corresponding to Still Image Capture Method
3)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.54 Still Image Trigger Control, the device advertises Still Image Capture Method 3 and a
SET_CUR succeeded with a value of 1 (corresponding to Still Image Capture Method
2)

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.55 Still Image Trigger Control, a SET_CUR failed with a value of 0.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 66

6.30.56 Still Image Trigger Control, a SET_CUR failed a valid value corresponding to the Still
Image Capture Method used.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.57 Still Image Trigger Control, the control did not send a Still Image when set to transmit
Still Image.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.58 Still Image Trigger Control, the control did not automatically return to the normal
operation mode after transmission of the Still Image.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.59 Still Image Trigger Control, resetting the control to Normal Operation during
transmission of a Still Image did not result in the abortion of the transmission of the
Image.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

6.30.60 Still Image Trigger Control, the Stream Error Code Control did not answer Still Image
Capture Error (0x07) when the transmission of the still Image has been aborted.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.4

Test Description: TD 23.11

Generate Key Frame Control Assertions

Num Assertion

6.30.70 Generate Key Frame Control, there is no IN endpoint and the control is supported.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.5

Test Description: TD 23.12

6.30.71 Generate Key Frame Control, a SET_CUR succeeded with an Out Of Bound value (2).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.5

Test Description: TD 23.12

6.30.72 Generate Key Frame Control, a SET_CUR failed with a valid value (1).

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.5

Test Description: TD 23.12

6.30.73 Generate Key Frame Control, the control was set to Generate Key Frame but no Key
Frame has been generated.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.5

Test Description: TD 23.12

6.30.74 Generate Key Frame Control, the control did not automatically return to the normal
operation mode after transmission of the Key Frame.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.5

Test Description: TD 23.12

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 67

Update Frame Segment Control Assertions

Num Assertion

6.30.90 Update Frame Segment Control, there is no IN endpoint and the control is supported.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.6

Test Description: TD 23.13

Update Frame Segment Control Assertions

Num Assertion

6.30.91 Update Frame Segment Control, a SET_CUR succeeded with an Out Of Bound value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.6

Test Description: TD 23.13

6.30.92 Update Frame Segment Control, a SET_CUR failed with a valid value.

Specification Ref: USB Video Specification, Revision 1.1, Section 4.3.1.6

Test Description: TD 23.13

6 Description of tests

6.1 Organization of tests

Every test is independent. We decided to implement all test independently in order for a user to be able

to run every test individually without any side effect from the other tests. Another reason for that

choice was to remain consistent with other Tests implemented in the USB Command Verifier Test Tool.

6.2 Output Format:

All tests output their results to the same text base log file. Each test shall output a header in the form:

Test: xx.yy (Configuration# cc / VIC# zz)

Test description: <description of test as listed in this specification>

Date: MM/DD/YY Start Time: hh:mm:ss (hh is in 24 hour Format)

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 68

Where “xx.yy” is the test number, “cc” the 1 based index of the configuration under test and “zz” the 1

based index of the VIC under test.

If the test runs multiple iterations of itself with different parameters/device states, the test should

output a sub-header for each iteration in the following form:

Iteration# x

Iteration Description: <list what makes the iteration different>

Date: MM/DD/YY Start Time: hh:mm:ss (hh is in 24 hour Format)

Where “x” is the iteration number.

The (sub)-header should be followed by a list of assertions (as defined above) in the form of:

-> 6.xx.yyy: <description of assertion as listed in this specification>

Where “6.xx.yyy” is the assertion number.

Finally the test should log (for each iteration):

<Passed> End Time: hh:mm:ss (hh is in 24 hour Format)

Or

<FAILED> End Time: hh:mm:ss (hh is in 24 hour Format)

Depending on its success or failure.

6.3 General Procedures

In general, that is unless specified otherwise like for sub-tests in hierarchical tests, the Init procedure

(see below) is always called before a test to restore the device state to a known state.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 69

When an Endpoint is stalled (except for protocol stalls on the Video Control Endpoint), the reset

Endpoint procedure (see below) shall be called.

If a device is frozen, the “Unfreeze” device procedure (see below) shall be called.

6.3.1 Init procedure

Before each test (unless specified otherwise) do the following:

1. Send a Device Reset to set the device back in Default mode

2. Check that the device is alive by reading the Device Descriptor

3. If the device is not alive, execute the “Unfreeze” device procedure

6.3.2 Reset Endpoint procedure

If an Endpoint is stalled, do the following:

1. Send a reset command to the stalled Endpoint

2. Check Endpoint state to see if it is now functional

3. If not, execute the Init procedure and fail the current test

6.3.3 “Unfreeze” device procedure

If the device is frozen and does not respond to the Init procedure, do the following:

1. Cycle the USB Port, to make sure the device power is turned off.

2. Re-enumerate the device

3. Check that the device is alive by reading the Device Descriptor

4. If the device still does not respond turn off the power to the device and exit the test with a

failure.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 70

6.4 Test parameters

The test shell shall take the 1-based index of the configuration to be tested as an input parameter and

report which configuration is being tested at the beginning of the test. If the configuration index is larger

than the number of configurations available, then the test shall fail.

6.5 Test details

6.5.1 Descriptor tests

6.5.1.1 Basic Descriptor Tests

TD 1.1 Device Descriptor Test

This test verifies that the device Descriptor is compatible with the Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Get the device Descriptor by issuing a ‘get device Descriptor’ command with a length of 18
bytes

4. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

5. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 4.

6. Parse the configuration Descriptor for Interface Association Descriptors (IAD).

7. If no IAD are found, then verify that bDeviceClass==0, bDeviceSubClass==0 and
bDeviceProtocol==0.

8. If at least one IAD is found, then verify that bDeviceClass==0xEF, bDeviceSubClass==0x02
and bDeviceProtocol==0x01.

9. If either 7 or 8 fail the test and throw related assertion (6.1.1).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 71

TD 1.2 Device_Qualifier Descriptor Test

This test verifies that the device_qualifier Descriptor is compatible with the Video Class
specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Get the device Descriptor by issuing a ‘get device_qualifier Descriptor’ command with a
length of 10 bytes. If this request fails exit the test with no errors.

4. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

5. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 4.

6. Parse the configuration Descriptor for Interface Association Descriptors (IAD).

7. If no IAD are found, then verify that bDeviceClass==0, bDeviceSubClass==0 and
bDeviceProtocol==0.

8. If at least one IAD is found, then verify that bDeviceClass==0xEF, bDeviceSubClass==0x02
and bDeviceProtocol==0x01.

9. If either 7 or 8 fail the test and throw related assertion (6.1.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 72

TD 1.3 Interface Association Descriptor test

This test verifies that the IAD corresponding to the VIC being tested is compatible with the Video
Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for Interface Association Descriptors (IAD).

6. Verify that that if no IAD is found, we do not have a VideoControl Interface with one or more
Video Streaming Interfaces associated, if not fail the test and throw the related
assertion(6.1.20).

7. When the IAD corresponding to the current VIC is found (bFunctionClass==CC_VIDEO and
bFunctionSubClass==SS_VIDEO_INTERFACE_COLLECTION) check that:

a. bLength==8. If not, fail the test and throw the related assertion (6.1.21)

b. bInterfaceCount >= 2, if not fail the test and throw related assertion (6.1.22)

c. bFunctionProtocol==PC_PROTOCOL_UNDEFINED, if not fail the test and throw
related assertion (6.1.23)

8. Try to get the string Descriptor identified by iFunction with LANGID=0x409 by issuing a Get
String Descriptor request. If the request fails, fail the test and throw related assertion (6.1.24).

9. Fetch the next Descriptor (Video Control Interface Descriptor) and check that:

a. The iInterface field matches the iFunction field of our IAD. If not, fail the test and
throw the related assertion (6.1.25).

b. The bInterfaceNumber of the Video Control Interface matches the bFirstInterface
field of our IAD. If not, fail the test and throw the related assertion (6.1.26).

10. Fetch all the VS Interface Descriptors belonging to the VIC and verify that their number
matches the bInterfaceCount of our IAD. If not, fail the test and throw the related assertion
(6.1.27).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 73

TD 1.4 Video Control Interface Test

This test verifies that the Video Control Interface does not have incorrect Endpoints.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the start of the Video Control I/F
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). If this Interface cannot be found exit the test
without failing. Another test will fail later. For the rest of the test only parse Descriptors
belonging to this Interface.

7. Parse Descriptors looking for Endpoint Descriptors.

8. If more than one interrupt Endpoint Descriptors are found or if other Endpoint Descriptors are
found, fail the test and throw related assertion (6.2.1).

9. On the VCI Descriptor, check that:

a. bLength==9. If not, fail the test and throw the related assertion (6.2.4).

b. bNumEndpoints<=1, if not fail the test and throw related assertion (6.2.5).

c. bNumEndpoints match the number of physical Endpoints. If not, fail the test and
throw the related assertion (6.2.2).

d. bInterfaceProtocol==PC_PROTOCOL_UNDEFINED if not, fail the test and throw
related assertions (6.2.6).

e. Try to get the string Descriptor identified by iInterface with LANGID=0x409 by
issuing a Get String Descriptor request. If the request fails, fail the test and throw
related assertion (6.2.7).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 74

TD 1.5 Class Video Control Interface Descriptor Test

This test verifies that the Class Video Control Interface Descriptor corresponding to the VIC being
tested is compatible with the Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_HEADER). If the
Descriptor cannot be found then report this Descriptor as missing (assertion) and exit the test
with a failure (6.2.20).

7. The Class Video Control Interface Descriptor found should be just after the Standard Video
Control Interface Descriptor. If not fail the test and throw related assertion (6.2.21). Keep the
position (with the offset from the beginning of the descriptors) on the Class Video Control
Interface Descriptor found, but continue parsing to the end of the VIC. If another Class Video
Control Interface Descriptor is found, fail the test and throw related assertion (6.2.21).

8. For the Class Video Control Interface Descriptor found check that:

a. bLength is correct by verifying that bLength==12+ bInCollection. If not fail the test
and throw related assertion (6.2.22).

b. bcdUVC == 1.10 or bcdUVC == 1.0. If bcdUVC == 1.0, display a warning that the
specification has been replaced by specification 1.1.
 If not, fail the test and throw the related assertion (6.2.26).

c. wTotalLength is correct. This is done by parsing all the Descriptors of type Unit or
Terminal that follow this Descriptor and adding their length together (t). For parsing
we have to check that bDescriptorType==CS_INTERFACE and
(bDescriptorSubType==VC_INPUT_TERMINAL or
bDescriptorSubType==VC_OUTPUT_TERMINAL or
bDescriptorSubType==VC_SELECTOR_UNIT_TERMINAL or
bDescriptorSubType==VC_PROCESSING_UNIT or
bDescriptorSubType==VC_EXTENSION_UNIT). Stop parsing when reaching a
Descriptor that is not a Unit or Terminal Descriptor (bDescriptorType==ENDPOINT).
wTotalLength should be: bLength + t. If not fail the test and throw related assertion
(6.2.23 or 6.2.27).

d. Verify that baInterfaceNr(1)…baInterfaceNr(n)[(x+1)== x + 1] are all sequential
numbers. If not fail the test and throw related assertion (6.2.24).

e. Parse the descriptor to find Interface header Descriptors, if more than one found, fail
the test and throw the related assertion (6.2.25).

f. For each baInterfaceNr verify that it corresponds to a VS Interface
(bDescriptorType==INTERFACE and bInterfaceSubClass=SC_VIDEOSTREAMING
and bAlternateSetting=0). We count only alternate setting 0 since it is the only
alternate setting always present. If not, fail the test and throw the related assertion
(6.2.28).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 75

TD 1.6 Input Terminal Descriptor Test.

This test verifies that Input Terminal Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Input Terminal Descriptors
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_INPUT_TERMINAL. If
no found, fail the test and throw the related assertion (6.2.41).

8. For each Input Terminal Descriptor verify that:

a. bLength==8+x (X TO FIND IT DEPENDS ON THE INPUT TERMINAL TYPE). If not
fail the test and throw related assertion (6.2.42).

b. bAssocTerminal refers to an existing Output terminal. If not, fail the test and throw
the related assertion (6.2.44).

c. bTerminalID!=0. If not fail the test and throw related assertion(6.2.40).

d. wTerminalType==ITT_VENDOR_SPECIFIC or wTerminalType==ITT_CAMERA or
wTerminalType==ITT_MEDIA_TRANSPORT_INPUT. If not fail the test and throw
the related assertion (6.2.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 76

TD 1.7 Output Terminal Descriptor Test

This test verifies that Output Terminal Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for an Output Terminal Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_OUTPUT_TERMINAL).
If not found, fail the test and throw the related assertion (6.2.50).

8. For the Output Terminal Descriptor found, verify that:

a. bLength==9+x (X TO FIND IT DEPENDS ON THE INPUT TERMINAL TYPE). If not
fail the test and throw related assertion (6.2.51).

b. bTerminalID!=0. If not fail the test and throw related assertion (6.2.40).

c. bAssocTerminal refers to an existing input Terminal. If not, fail the test and throw the
related assertion (6.2.54).

d. wTerminalType==OTT_VENDOR_SPECIFIC or wTerminalType==OTT_DISPLAY or
wTerminalType==OTT_MEDIA_TRANSPORT_OUTPUT. If not fail the test and
throw the related assertion (6.2.52).

e. bSourceID!=0. If not fail the test and throw related assertion (6.2.53).

f. Fetch the Unit or Terminal Descriptor corresponding to bSourceID. If not found, fail
the test and throw the related assertion (6.2.55).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 77

TD 1.8 Camera Terminal Descriptor test

This test verifies that Camera Terminal Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Camera Terminal Descriptors
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_INPUT_TERMINAL and
wTerminalType==ITT_CAMERA).

8. For each Camera Terminal Descriptor verify that:

a. bLength==15+bControlSize and bControlSize<=3. If not fail the test and throw
related assertion (6.2.60).

b. bTerminalID!=0. If not fail the test and throw related assertion (6.2.40).

c. bAssocTerminal refers to an existing Output terminal. If not, fail the test and throw
the related assertion (6.2.62).

d. If bControlSize==3, check that bit 15*8+19 to (15+n)*8 == 0.If not, fail the test and
throw the related assertion (6.2.61)

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 78

TD 1.9 Media Transport Input Terminal Descriptor test

This test verifies that Camera Terminal Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Media Transport Input Terminal
Descriptors (bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VC_INPUT_TERMINAL and
wTerminalType==ITT_MEDIA_TRANSPORT_INPUT).

8. For each Media Transport Input Terminal Descriptor verify that:

a. bLength==10+bControlSize+bTransprotModesize. If not fail the test and throw
related assertion (6.2.70).

b. bTerminalID!=0. If not fail the test and throw related assertion (6.2.40).

c. bAssocTerminal refers to an existing Output terminal. If not, fail the test and throw
the related assertion (6.2.73).

d. In bmControls, no bits D4 or above is set. If not, fail the test and throw the related
assertion (6.2.71).

e. In bmTransportModes, no bits D34 or above is set. If not, fail the test and throw the
related assertion (6.2.72).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 79

TD 1.10 Media Transport Output Terminal Descriptor test

This test verifies that Camera Terminal Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Media Transport Output Terminal
Descriptors (bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VC_INPUT_TERMINAL and
wTerminalType==ITT_MEDIA_TRANSPORT_OUTPUT).

8. For each Media Transport Output Terminal Descriptor verify that:

a. bLength==11+bControlSize+bTransprotModesize. If not fail the test and throw
related assertion (6.2.80).

b. bTerminalID!=0. If not fail the test and throw related assertion (6.2.40).

c. bAssocTerminal refers to an existing Input terminal. If not, fail the test and throw the
related assertion (6.2.84).

d. bSourceID!=0. If not, fail the test and throw the related assertion (6.2.81).

e. In bmControls, no bits D4 or above is set. If not, fail the test and throw the related
assertion (6.2.82).

f. In bmTransportModes, no bits D34 or above is set. If not, fail the test and throw the
related assertion (6.2.83).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 80

TD 1.11 Selector Unit Descriptor Test

This test verifies that Selector Unit Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Selector Unit Descriptors
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_SELECTOR_UNIT).

8. For each Selector Unit Descriptor verify that:

a. bLength==6+bNrInPins. If not fail the test and throw related assertion (6.2.90).

b. bUnitID!=0. If not fail the test and throw related assertion (6.2.40).

c. baSourceID(1)!=0….. baSourceID(bNrInPins)!=0. If not fail the test and throw related
assertion (6.2.91).

d. For every baSourceID(1)..baSourceID(bNrInPins), fetch the Unit or Terminal
Descriptor corresponding to baSourceID. If not found, fail the test and throw the
related assertion (6.2.92).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 81

TD 1.12 Processing Unit Descriptor Test

This test verifies that Processing Unit Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Processing Unit Descriptors
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_PROCESSING_UNIT).

8. For each Processing Unit Descriptor verify that:

a. For UVC 1.0 devices:
bLength==9+bControlSize and bControlSize<=2. If not fail the test and throw related
assertion (6.2.100).
For UVC 1.1 devices:
bLength==10+bControlSize and bControlSize<=3. If not fail the test and throw
related assertion (6.2.100).

b. bUnitID!=0. If not fail the test and throw related assertion (6.2.40).

c. bSourceID!=0. If not fail the test and throw related assertion (6.2.101).

d. bmControls does not have both D6 and D7 bits set. If not fail the test and throw
related assertion (6.2.102).

e. For UVC 1.1 devices: bmControls D18..D23 are set to zero. If not fail the test and
throw related assertion (6.2.104)

f. For UVC 1.1 devices: bmVideoStandards D6-D7 are set to zero. If not fail the test
and throw related assertion (6.2.105)

g. Fetch the Unit or Terminal Descriptor corresponding to bSourceID. If not found, fail
the test and throw the related assertion (6.2.103).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 82

TD 1.13 Extension Unit Descriptor Test

This test verifies that Extension Unit Descriptors in the VIC being tested are compatible with the
Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for all Extension Unit Descriptors
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_EXTENSION_UNIT).

8. For each Extension Unit Descriptor verify that:

a. bLength==24+bNrInPins+bControlSize. If not fail the test and throw related assertion
(6.2.110).

b. bUnitID!=0. If not fail the test and throw related assertion (6.2.40).

c. baSourceID(1)!=0….. baSourceID(bNrInPins)!=0. If not fail the test and throw related
assertion (6.2.111).

d. For every baSourceID(1)..baSourceID(bNrInPins), fetch the Unit or Terminal
Descriptor corresponding to baSourceID. If not found, fail the test and throw the
related assertion (6.2.112).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 83

TD 1.14 Standard VC Interrupt Endpoint Descriptor Test

This test verifies that the Standard VC Interrupt Endpoint Descriptor in the VIC being tested is
compatible with the Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting bLength
after), and stopping wTotalLength after. Look for the Standard VC Interrupt Endpoint
Descriptor (bDescriptorType==ENDPOINT).

8. For the Standard VC Interrupt Endpoint Descriptor found check that:

a. D7 in bEndpointAddress==1. If not fail the test and throw related assertion (6.2.121).

b. D6..4 in bEndpointAddress==0. If not, fail the test and throw the related assertion
(6.2.122).

c. bLength=7. If not, fail the test and throw related assertions (6.2.120).

d. D3..2==00 and D1..0==00 in bmAttributes. If not fail the test and throw related
assertion (6.2.123).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 84

TD 1.15 Class VC Interrupt Endpoint Descriptor

This test verifies that the Class Specific VC Interrupt Endpoint Descriptor in the VIC being tested
is compatible with the Video Class specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interrupt Endpoint Descriptor
(bDescriptorType==CS_ENDPOINT and bDescriptorSubType==EP_INTERRUPT).

7. The Class Video Control Interrupt Endpoint Descriptor found should be just after the Standard
Video Control Interrupt Endpoint Descriptor. If not fail the test and throw related assertion
(6.2.130).

8. For the Class VC Interrupt Endpoint Descriptor found check that:

a. bLength==5. If not, fail the test and throw related assertion (6.2.131).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 85

TD 1.16 VS Interface Descriptor Test

This test verifies general rules on layout of the Descriptors for a VS Interface and its alternate
settings specified in the Video Class Specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

This test is then run once for each configuration and once for each VS Interface.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING).

7. For each Standard VS Interface found check that:

a. bNumEndpoints<=2. If not, fail the test and throw related assertion (6.3.1).

b. bNumEndpoints match the physical set of Endpoints. If not fail the test and throw the related

assertion (6.3.11)

b. bInterfaceProtocol==PC_PROTOCOL_UNDEFINED. If not, fail the test and throw related

assertion (6.3.2).

c. If bAlternateSettings==0, parse Descriptors belonging to the class VS Interface Descriptor to

find an isochronous Endpoint (bDescriptorType ==ENDPOINT and bmAttributes==0101). If

found, fail the test and throw the related assertion (6.3.4).

d. If bAlternateSettings==0, parse Descriptors belonging to the class specific VS Interface

Descriptor to find a bulk Endpoint (bDescriptorType==ENDPOINT and bmAttributes==10). If

found only one verify that the Interface has no other alternate setting, if other alternate setting

fail the test and throw the related assertion. If more than one bulk Endpoint, fail the test and

throw related assertion (6.3.5).

e. If bAlternateSettings==0, parse Descriptors belonging to the class VS Interface Descriptor to

find an Input or Output Header (bDescriptorType ==CS_INTERFACE and

(bDescriptorSubType ==VS_INPUT_HEADER or VS_OUTPUT_HEADER)). If more than one

or no found, fail the test and throw the related assertion (6.3.6).

f. If bAlternateSettings!=0, parse Descriptors belonging to the class specific VS Interface

Descriptor to find Endpoint Descriptors (bDescriptorType==ENDPOINT). If more than two

Descriptors or zero Descriptors found, fail the test and throw the related assertion (6.3.1). If two

Descriptors found, check that bmAttributes==0101 in one of them and bmAttributes==10 in the

other, if not, fail the test and throw related assertion (6.3.3). Verify also that the bulk Endpoint

follow the Video Endpoint in Descriptor Ordering and Descriptor Addressing (6.3.8 and 6.3.9). If

not, fail the test and throw the related assertions. If only one found, check that

bmAttributes==1010, if not fail the test and throw related assertion (6.3.10).

g. If bAlternateSettings!=0, Parse Descriptors belonging to the class specific VS Interface

Descriptor to find Header, Format or Frame Descriptors (bDescriptorType ==CS_INTERFACE

and (bDescriptorSubType==VS_*_HEADER or bDescriptorSubType==VS_FORMAT_* or

bDescriptorSubType==VS_FRAME_*).If found fail the test and throw related assertion (6.3.7).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 86

TD 1.17 Class VS Interface Input Header Descriptor.

This test verifies that input Header and subsequent Format/Frame related Descriptors are compliant with
the UVC specification.

The assumption in this test is that the Format Indexes of the Format Descriptors are all sequential
Numbers.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of 9
bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in the
configuration Descriptor. For the rest of the test only parse Descriptors belonging to the current
tested VIC.

6. Parse the Descriptors to find the Class VS Interface Input Header Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubClass==VS_INPUT_HEADER).). If this
Header cannot be found exit the test without failing. Another test has been performed, so we will
have an output header instead.

7. The Class VS Interface Input Header Descriptor found should be just after the Standard VS
Interface Descriptor. If not fail the test and throw related assertion (6.3.20).

8. For the Input Header found, check that:

a. bLength==13+(bNumFormats*bControlSize). If not, fail the test and throw the related
assertions (6.3.21).

b. D7 in bEndpointAddress==1. If not, fail the test and throw the related assertion (6.3.23).

c. D6..4 in bEndpointAddress==0. If not, fail the test and throw related assertion (6.3.25)

d. bEndpointAddress refers to an existing Endpoint. If not, fail the test and throw the related
assertion (6.3.36)

e. D7..D1 in bmInfo==0. If not, fail the test and throw the related assertion (6.3.24).

f. wTotalLength==bLength+x where x is the sum of the bLength of the subsequent
Descriptors. To find the accurate subsequent Descriptors, parse all Descriptors where
bDescriptorType=CS_INTERFACE and stop when you find a Standard VS Interface
Descriptor (bDescriptorType==INTERFACE). If not, fail the test and throw related
assertions (6.3.22).

g. bTerminalLink!=0. If not, fail the test and throw related assertion (6.3.26).

h. bStillCaptureMethod<=3. If not, fail the test and throw related assertions (6.3.27).

i. bTriggerSupport<=1. If not, fail the test and throw related assertions (6.3.28).

j. bTriggerUsage<=1. If not, fail the test and throw related assertions (6.3.29).

k. Bits D6..(bControlSize*8-1) of bmaControls(1)..bmaControls(bNumFormats) == 0. If not,
fail the test and throw the related assertion (6.3.30).

l. Verify that bTerminalLink refers to an existing Output Terminal. If not, fail the test and
throw the related assertion (6.3.38).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 87

TD 1.17 Test 1.17 Continuation

m. Parse all subsequent Descriptors in sequence with
bDescriptorType==CS_INTERFACE, for all Formats found we will perform the tests
depending on the type of the Format Descriptor Found:

i. For all Formats: check that bFormatIndex is less than bNumFormats and
that they are all different. If not, fail the test and throw the related assertion
(6.3.32).

ii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_UNCOMPRESSED or
VS_FORMAT_MJPEG, parse all subsequent Descriptors until another
Format is found. If a Still Image Frame Descriptor found, verify that it is
unique and that bStillCaptureMethod is 2 or 3. If not, fail the test and throw
the related assertion (6.3.35).
If bStillCaptureMethod is 0 or 1, verify that there is no Still Image Frame
Descriptor. If not, fail the test and throw the related assertion (6.3.33).
If a Color Matching Descriptor is found, verify that it is unique and well
placed. If not, fail the test and throw the related assertion (6.3.34).
If other than Frame Uncompressed (or MJPEG depending on the first
condition), Still Image, Color matching Descriptors are found, fail the test
and throw related assertion (6.3.31).

iii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_FRAME_BASED, parse all
subsequent Descriptors until another Format is found. If a Still Image
Frame Descriptor found, verify that it is unique and that
bStillCaptureMethod is 2 or 3. If not, fail the test and throw the related
assertion (6.3.35).
If bStillCaptureMethod is 0 or 1, verify that there is no Still Image Frame
Descriptor. If not, fail the test and throw the related assertion (6.3.33).
If a Color Matching Descriptor is found, verify that it is unique and well
placed. If not, fail the test and throw the related assertion (6.3.34).
If other than Frame Based, Still Image, Color matching Descriptors are
found, fail the test and throw related assertion (6.3.31).

iv. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_VENDOR, verify that it is followed only
by Frame Vendor Descriptors. If not, fail the test and throw related
assertion (6.3.31).

v. For all Descriptors found with bDescriptorSubType=VS_FORMAT_MPEG1,
parse all subsequent Descriptors until another Format is found.
If a Color Matching Descriptor is found, verify that it is unique and well
placed. If not, fail the test and throw the related assertion (6.3.34).
If other than another Format, Color matching Descriptors are found, fail the
test and throw related assertion (6.3.31).

vi. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_MPEG2TS, verify that it is followed
only by another Format Descriptor. If not, fail the test and throw related
assertion (6.3.31).

vii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_MPEG2PS, verify that it is followed
only by another Format Descriptor. If not, fail the test and throw related
assertion (6.3.31).

viii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_STREAM_BASED, verify that it is
followed only by another Format Descriptor. If not, fail the test and throw
related assertion (6.3.31).

ix. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_MPEG4SL, verify that it is followed

only by another Format Descriptor. If not, fail the test and throw related
assertion (6.3.31).

x. For all Descriptors found with bDescriptorSubType=VS_FORMAT_DV,
verify that it is followed only by Frame DV Descriptors. If not, fail the test
and throw related assertion (6.3.31).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 88

TD 1.18 Class VS Interface Output Header Descriptor.

This test verifies that Output Header and subsequent Format/Frame related Descriptors are
compliant with the UVC specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find the Class VS Interface Input Header Descriptor
(bDescriptorType==CS_INTERFACE and bDecsriptorSubClass==VS_OUTPUT_HEADER). If
this Header cannot be found exit the test without failing. Another test has been performed, so
we will have an output header instead.

7. The Class VS Interface Output Header Descriptor found should be just after the Standard VS
Interface Descriptor. If not fail the test and throw related assertion (6.3.50).

8. For the Input Header found, check that:

a. bLength==8. If not, fail the test and throw the related assertions (6.3.51).

b. D7 in bEndpointAddress==0. If not, fail the test and throw the related assertion
(6.3.53).

c. D6..4 in bEndpointAddress==0. If not, fail the test and throw the related assertion
(6.3.54).

d. bEndpointAddress refers to an existing Endpoint. If not, fail the test and throw the
related assertion (6.3.59).

e. wTotalLength==bLength+x where x is the sum of the bLength of the subsequent
Descriptors. To find the accurate subsequent Descriptors, parse all Descriptors
where bDescriptorType=CS_INTERFACE and stop when you find a Standard VS
Interface Descriptor (bDescriptorType==INTERFACE). If not, fail the test and throw
related assertions (6.3.52).

f. bTerminalLink!=0. If not, fail the test and throw related assertion (6.3.55).

g. bTerminalLink refers to an existing Input Terminal. If not fail the test and throw the
related assertion (6.3.60).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 89

TD 1.18 Class VS Interface Output Header Descriptor (Continuation).

h. Parse all subsequent Descriptors in sequence with
bDescriptorType==CS_INTERFACE, for all Formats found we will perform the tests
depending on the type of the Format Descriptor Found:

i. For all Formats: check that bFormatIndex is les than bNumFormats and
that they are all different. If not, fail the test and throw the related assertion
(6.3.57).

ii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_UNCOMPRESSED or
VS_FORMAT_MJPEG, parse all subsequent Descriptors until another
Format is found. If a Still Image Frame Descriptor found, verify that it is
unique and that bStillCaptureMethod is 2 or 3. If not, fail the test and throw
the related assertion (6.3.56).
If bStillCaptureMethod is 0 or 1, verify that there is no Still Image Frame
Descriptor. If not, fail the test and throw the related assertion (6.3.56).
If a Color Matching Descriptor is found, verify that it is unique and well
placed. If not, fail the test and throw the related assertion (6.3.58).
If other than Frame Uncompressed (or MJPEG depending on the first
condition), Still Image, Color matching Descriptors are found, fail the test
and throw related assertion (6.3.56).

iii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_FRAME_BASED, parse all
subsequent Descriptors until another Format is found. If a Still Image
Frame Descriptor found, verify that it is unique and that
bStillCaptureMethod is 2 or 3. If not, fail the test and throw the related
assertion (6.3.56). If
bStillCaptureMethod is 0 or 1, verify that there is no Still Image Frame
Descriptor. If not, fail the test and throw the related assertion (6.3.56).
If a Color Matching Descriptor is found, verify that it is unique and well
placed. If not, fail the test and throw the related assertion (6.3.58).
If other than Frame Base Frame, Still Image, Color matching Descriptors
are found, fail the test and throw related assertion (6.3.56).

iv. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_VENDOR, verify that it is followed only
by Frame Vendor Descriptors. If not, fail the test and throw related
assertion (6.3.56).

v. For all Descriptors found with bDescriptorSubType=VS_FORMAT_MPEG1,
parse all subsequent Descriptors until another Format is found.
If a Color Matching Descriptor is found, verify that it is unique and well
placed. If not, fail the test and throw the related assertion.
If other than Format, Color matching Descriptors are found, fail the test and
throw related assertion (6.3.56).

vi. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_MPEG2TS, verify that it is followed
only by another Format Descriptors. If not, fail the test and throw related
assertion (6.3.56).

vii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_MPEG2PS, verify that it is followed
only by another Format Descriptors. If not, fail the test and throw related
assertion (6.3.56).

viii. For all Descriptors found with
bDescriptorSubType=VS_FORMAT_MPEG4SL, verify that it is followed
only by another Descriptors. If not, fail the test and throw related assertion
(6.3.56).

ix. For all Descriptors found with bDescriptorSubType=VS_FORMAT_DV,
verify that it is followed only by Frame DV Descriptors. If not, fail the test
and throw related assertion (6.3.56).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 90

TD 1.19 Still Image Frame Descriptor Test.

This test verifies that Format and place of a Still Image Frame Descriptor is compliant with the
USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find a Still Image Frame Descriptor
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_STILL_IMAGE_FRAME).

7. The Still Image Frame Descriptor found should be just after the Frame Descriptor of a Format
Group. If not fail the test and throw related assertion (6.3.70). For each Still Image Frame
Descriptor found, check that:

a. bLength==10+(4*bNumImageSizePatterns)-4+bNumCompressionPattern. If not, fail
the test and throw the related assertion (6.3.71).

b. D7 in bEndpointAddress==1. If not, fail the test and throw the related assertion
(6.3.72).

c. D6..4 in bEndpointAddress==0. If not, fail the test and throw the related assertion
(6.3.73).

d. If bStillCaptureMethod==2, bEndpointAddress==0. If not, fail the test and throw the
related assertion (6.3.74).

e. bEndpointAddress refers to an existing Endpoint. If not, fail the test and throw the
related assertion (6.3.75).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 91

TD 1.20 Color Matching Descriptor test.

This test verifies that Format and place of a Color Matching Descriptor is compliant with the
USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find all Color Matching Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_COLORFORMAT).

7. The Color Matching Descriptor found should be just after the Frame Descriptor of a Format
Group. If not fail the test and throw related assertion (6.3.80). For each Color Matching
Descriptor found, check that:

a. bLength==6. If not, fail the test and throw the related assertion (6.3.81).

b. bColorPrimaries<=5. If not, fail the test and throw the related assertion (6.3.82).

c. bTransferCharacteristics<=7. If not, fail the test and throw related assertions
(6.3.83).

d. bMatrixCoefficients<=5. If not, fail the test and throw related assertion (6.3.84).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 92

TD 1.21

Standard VS Isochronous Video data Endpoint Test.

This test verifies that the Standard Vs Isochronous Video data Endpoint is compliant with USBVC
specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of
9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in
the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the
current tested VIC.

6. Parse the Descriptors to find all Isochronous Video data Endpoint
(bDescriptorType==ENDPOINT and D1..0 in bmAttributes==01).

7. For every Isochronous Video Data Endpoint found, check that:

a. D3..2 in bmAttributes==01. If not, fail the test and throw the related assertion
(6.3.90).

b. D7..4 in bmAttributes==0. If not, fail the test and throw the related assertion (6.3.91).

c. D6..4 in bEndpointAddress==0. If not, fail the test and throw the related assertion
(6.3.92).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 93

6.5.1.2 Advanced Descriptor Tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 94

TD 2.1 Device Topology Test:

This test verifies that there is no loop between the Units and Terminals of the device.

To test the topology we have to sketch a graph of the topology.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Class Video Control Interface Descriptor.

7. Parse the Descriptors following the Class Video Control Interface Descriptor (starting
bLength after), and stopping wTotalLength after. Look for all Unit or Terminal
Descriptor (bDescriptorType==CS_INTERFACE and bDescriptorSubType==VC_*
TERMINAL or VC_*_UNIT). Create a vector of visited Units or Terminal, call it
ListOfUnitAndTerminals and add the bTerminalID or bUnitID of the descriptor to this
vector. This vector will be used to check if there are no duplicate Ids. If not, fail the
test and throw the related assertion (6.4.2).

8. While Parsing of all the Unit and Terminal Descriptors, we initialize a tree
representing the topology of the Video Function. A node of the tree is composed by
an ID, a pointer on another node Son and a pointer on another node Brother. The
son is the first Input Pin of the Unit/Terminal corresponding to the node; every other
Input Pin will be Brother of the Son of the Node. For each Descriptor encountered,
depending on the type of the descriptor, we create the node and his sons and update
the tree.

9. When the tree is complete (at the end of the parsing of the descriptors), we can test
the topology. For each Unit/ Terminal verify that his Id is not in the trees of his sons.
If not, fail the test and throw the related assertions (6.4.1).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 95

TD 2.2 Control supporting hardware Trigger Test.

This test verifies that that if a VS supports hardware Triggers for Still Image, the VC has
an Interrupt Endpoint.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure.

2. Put the device in the desired State.

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find a Class Specific VC Interrupt Endpoint Descriptor
(bDescriptorType==CS_ENDPOINT and bDescriptorSubType==EP_INTERRUPT). If
found one, store that information, go to the end of the test and pass it. If no Interrupt
Endpoint Descriptor found, go on next step.

7. Parse the Descriptors to find Video Streaming Interfaces and their alternate Setting 0
Descriptor (bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bAlternateSettings==0).

8. For each VS found, parse the Descriptors to find a Class-specific Interface Input
Header Descriptor (bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_INPUT_HEADER). If found, check the
bStillCaptureMethod field. If (bStillCaptureMethod==2 or bStillCaptureMethod==3),
an interrupt Endpoint is needed, so fail the test and throw the related assertion
(6.4.3).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 96

6.5.1.3 Video Format and Frame Descriptor Tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 97

TD 3.1 Uncompressed Video Format Descriptor Test.

This test verifies that the uncompressed Video Format Descriptor is compliant with the
USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0). Run the
next step for every Standard VS Interface and Alternate Setting 0. (Place of the
Format Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find every Uncompressed Video Format Descriptor
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FORMAT_UNCOMPRESSED).

8. For each Uncompressed Video Format Descriptor found check that:

a. bLength==27. If not, fail the test and throw the related assertion (6.10.1).

b. guidFormat==YUY2 or guidFormat==NV12. If not, fail the test and throw
related assertion (6.10.2).

c. bNumFrameDescriptors!=0. If not, fail the test and throw related assertion
(6.10.3).

d. bDefaultFrameIndex<=bNumFrameDescriptors. If not, fail the test and throw
related assertions (6.10.4).

e. Bits D3 in bmInterlaceFlags is not set. If not, fail the test and throw related
assertion (6.10.5).

f. For UVC 1.0 devices: Bits D7..6!=11in bmInterlaceFlags. If not, fail the test
and throw related assertion (6.10.6).
For UVC 1.1 device: Bits D7..6 != 00. . If not, fail the test and throw related
assertion (6.10.11).

g. bCopyProtect<=1. If not, fail the test and throw related assertion (6.10.7).

9. Parse the next bNumFrameDescriptors Descriptors, store their Frame indexes
(bFrameIndex) and check that they are all Uncompressed Frame Descriptors
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FRAME_UNCOMPRESSED). If not, fail the test and throw
related assertion (6.10.10).

10. Check that all the Frame indexes stored are unique. If not, fail the test and throw
related assertion (6.10.9).

11. Parse the next Descriptor and check that it is not an Uncompressed Frame Descriptor.
If not, fail the test and throw the related assertion (6.10.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 98

TD 3.2 Uncompressed Video Frame Descriptor Test.

This test verifies that the Uncompressed Video Frame Descriptor is compliant with the USBVC

specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of 9

bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration

Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in

the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the

current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor

(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and

bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the next step for

every Standard VS Interface and Alternate Setting 0. (Place of the Frame Descriptors have been

already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find a Class VS Interface Input Header Descriptor

(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_INPUT_HEADER). If not

found put a flag==0 (will be used later to test the Frame Descriptors). If found, put flag==1 iff

bStillCaptureMethod==1, flag==0 otherwise.

8. Parse the Descriptors to find every Uncompressed Video Format Descriptor

(bDescriptorType==CS_INTERFACE&bDescriptorSubType==VS_FORMAT_UNCOMPRESSED

9. Repeat the following steps for every Uncompressed Video Format Descriptor found.

a. Parse the next bNumFrameDescriptors Descriptors and verify that they are FRAME

UNCOMPRESSED.

b. For each Frame Descriptor found, check that:

c. bLength==38 if bFrameIntervalType==0 or bLength==26+4*bFrameIntervalType if

bFrameIntervalType!=0. If not, fail the test and throw the related assertion (6.10.20).

d. bmCapabilities!=0 if flag==1 and bmCapabilities==0 otherwise. If not, fail the test and

throw related assertion (6.10.21).

e. bmCapabilities<=1. If not, fail the test and throw related assertion (6.10.22).

f. If bFrameIntervalType==0, check that:

i. dwDefaultFrameInterval==dwMinInterval + j*dwFrameIntervalStep with j
integer and dwDefaultFrameInterval<dwMaxFrameInterval (6.10.23).

ii. dwMinFrameInterval<=dwMaxFrameInterval. If not, fail the test and throw
related assertion (6.10.24).

iii. dwFrameIntervalStep<=(dwMaxFrameInterval-dwMinFrameInterval). If not,
fail the test and throw related assertion (6.10.25).

g. If bFrameIntervalType!=0, check that :

i. dwDefaultFrameInterval is in the set
dwFrameInterval(1)…dwFrameInterval(n). If not, fail the test and throw
related assertion (6.10.23).

ii. dwFrameInterval(1)<=..<=dwFrameInterval(n). If not, fail the test and throw
related assertion (6.10.26)

.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 99

TD 3.3 MJPEG Video Format Descriptor Test.

This test verifies that the MJPEG Video Format Descriptor is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the
next step for every Standard VS Interface and Alternate Setting 0. (Place of the
Format Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find every MJPEG Video Format Descriptor
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FORMAT_MJPEG) .

8. For each MJPEG Video Format Descriptor found check that:

a. bLength==11. If not, fail the test and throw the related assertion (6.10.40).

b. bNumFrameDescriptors!=0. If not, fail the test and throw related assertion
(6.10.41).

c. Bits D7..1 in bmFlags is not set. If not, fail the test and throw related
assertions (6.10.42).

d. Bits D7..6!=11 in bmInterlaceFlags. If not, fail the test and throw related
assertion (6.10.45).

e. Bit D3 in bmInterlaceFlags is not set. If not, fail the test and throw related
assertion (6.10.43).

f. bDefaultFrameIndex<=bNumFrameIndex. If not, fail the test and throw the
related assertion (6.10.44).

g. bCopyProtect<=1. If not, fail the test and throw related assertion (6.10.46).

9. Parse the next bNumFrameDescriptors, store their Frame indexes (bFrameIndex) and
check that they are all MJPEG Frame Descriptors
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FRAME_MJPEG). If not, fail the test and throw related
assertion (6.10.47).

10. Check that all the Frame indexes stored are unique. If not, fail the test and throw
related assertion (6.10.48).

11. Parse the next Descriptor and check that it is not an MJPEG Frame Descriptor. If not,
fail the test and throw the related assertion (6.10.49).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 100

TD 3.4 MJPEG Video Frame Descriptor Test.

This test verifies that the MJPEG Video Frame Descriptor is compliant with the USBVC specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of 9

bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration

Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in

the configuration Descriptor. For the rest of the test only parse Descriptors belonging to the

current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor

(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and

bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the next step for

every Standard VS Interface and Alternate Setting 0. (Place of the Frame Descriptors have been

already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find a Class VS Interface Input Header Descriptor

(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_INPUT_HEADER). If not

found put a flag==0 (will be used later to test the Frame Descriptors). If found, put flag==1 iff

bStillCaptureMethod==1, flag==0 otherwise.

8. Parse the Descriptors to find every MJPEG Video Format Descriptor

(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_FORMAT_MJPEG)

9. Repeat the following steps for every MJPEG Video Format Descriptor found.

a. Parse the next bNumFrameDescriptors Descriptors and verify that they are FRAME

MJPEG.

b. For each Descriptor found, check that:

c. bLength==38 if bFrameIntervalType==0 or bLength==26+4*bFrameIntervalType if

bFrameIntervalType!=0. If not, fail the test and throw the related assertion (6.10.60).

d. bmCapabilities!=0 if flag==1 and bmCapabilities==0 otherwise. If not, fail the test and

throw related assertion (6.10.61)

e. bmCapabilities<=1. If not, fail the test and throw related assertion (6.10.62).

f. If bFrameIntervalType==0, check that:

i. dwDefaultFrameInterval==dwMinInterval + j*dwFrameIntervalStep with j
integer and dwDefaultFrameInterval<dwMaxFrameInterval (6.10.63).

ii. dwMinFrameInterval<=dwMaxFrameInterval. If not, fail the test and throw
related assertion (6.10.64).

iii. dwFrameIntervalStep<=(dwMaxFrameInterval-dwMinFrameInterval). If not,
fail the test and throw related assertion (6.10.65).

g. If bFrameIntervalType!=0, check that :

i. dwDefaultFrameInterval is in the set
dwFrameInterval(1)…dwFrameInterval(n). If not, fail the test and throw
related assertion (6.10.63).

ii. dwFrameInterval(1)<=..<=dwFrameInterval(n). If not, fail the test and throw
related assertion (6.10.66).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 101

TD 3.8 MPEG2 TS Format Descriptor Test.

This test verifies that the MPEG2 TS Frame Descriptor is compliant with the USBVC specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the
next step for every Standard VS Interface and Alternate Setting 0. (Place of the
Format Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find every MPEG2TS Video Format Descriptor
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FORMAT_MPEG4SL) .

8. For each MPEG2TS Video Format Descriptor found check that:

a. bLength==7. If not, fail the test and throw the related assertion (6.10.110).

b. If bDataOffset==0, bStrideLength==bPacketLength. If not fail the test and
throw related assertion (6.10.111).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 102

TD 3.9 DV Payload Descriptor Test.

This test verifies that the DV Payload Descriptor is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the
next step for every Standard VS Interface and Alternate Setting 0. (Place of the
Format Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find every DV Video Format Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_FORMAT_DV) .

8. For each DV Video Format Descriptor found check that:

a. bLength==9. If not, fail the test and throw the related assertion (6.10.120).

b. Bits D6..3 in bFormatType are not set. If not fail the test and throw related
assertion (6.10.121).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 103

TD 3.12 Stream Based Video Format Descriptor Test.

This test verifies that the Stream Based Video Format Descriptor is compliant with the
USBVC specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the
next step for every Standard VS Interface and Alternate Setting 0. (Place of the
Format Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find every Stream Based Video Format Descriptor
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FORMAT_STREAM_BASED).

8. For each Stream Based Video Format Descriptor found check that:

a. bLength==25. If not, fail the test and throw the related assertion (6.10.170).

b. bFixedSize<=1. If not, fail the test and throw the related assertion (6.10.171).

c. If bFixedSize=0, verify that dwPacketLength equals 0. If not, fail the test and
throw related assertion (6.10.172).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 104

TD 3.13 Frame Based Video Format Descriptor Test.

This test verifies that the Frame Based Video Format Descriptor is compliant with the
USBVC specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a
length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data
returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING and bAlternateSettings==0).Run the
next step for every Standard VS Interface and Alternate Setting 0. (Place of the
Format Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find every Frame Based Video Format Descriptor
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FORMAT_FRAME_BASED).

8. For each MJPEG Video Format Descriptor found check that:

a. bLength==28. If not, fail the test and throw the related assertion (6.10.190).

b. bNumFrameDescriptors!=0. If not, fail the test and throw related assertion
(6.10.191).

c. Bits D7..6 are reserved in bmInterlaceFlags. If not, fail the test and throw
related assertion (6.10.192).

d. Bit D3 in bmInterlaceFlags is not set. If not, fail the test and throw related
assertion (6.10.193).

e. bDefaultFrameIndex<=bNumFrameIndex. If not, fail the test and throw the
related assertion (6.10.194).

f. bCopyProtect<=1. If not, fail the test and throw related assertion (6.10.195).

g. bVariableSize<=1. If not, fail the test and throw the related assertion
(6.10.196).

9. Parse the next bNumFrameDescriptors, store their Frame indexes (bFrameIndex) and
check that they are all Frame Based Frame Descriptors
(bDescriptorType==CS_INTERFACE and
bDescriptorSubType==VS_FRAME_FRAME_BASED). If not, fail the test and throw
related assertion (6.10.197).

10. Check that all the Frame indexes stored are unique. If not, fail the test and throw
related assertion (6.10.198).

11. Parse the next Descriptor and check that it is not a Frame Based Frame Descriptor. If
not, fail the test and throw the related assertion (6.10.199).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 105

TD 3.14 Frame Based Video Frame Descriptor Test.

This test verifies that the Frame Based Video Frame Descriptor is compliant with the USBVC

specification.

Device States For Test

This test is run once for each of the following device states: Addressed and Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration Descriptor

command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in the configuration

Descriptor. For the rest of the test only parse Descriptors belonging to the current tested VIC.

6. Parse the Descriptors to find all the Standard VS Interface Descriptor (bDescriptorType==INTERFACE and

bInterfaceClass==CC_VIDEO and bInterfaceSubClass==SC_VIDEOSTREAMING and

bAlternateSettings==0).Run the next step for every Standard VS Interface and Alternate Setting 0. (Place of

the Frame Descriptors have been already checked in test 1.17 and 1.18).

7. Parse the Descriptors to find a Class VS Interface Input Header Descriptor

(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_INPUT_HEADER). If not found put a

flag==0 (will be used later to test the Frame Descriptors). If found, put flag==1 iff bStillCaptureMethod==1,

flag==0 otherwise.

8. Parse the Descriptors to find every Vendor Video Format Descriptor (bDescriptorType==CS_INTERFACE and

bDescriptorSubType==VS_FORMAT_FRAME_BASED)

9. Repeat the following steps for every Frame Based Video Format Descriptor found. Store the value of the

bVariableSizeField, if set to 1 set a flag.

a. Parse the next bNumFrameDescriptors Descriptors and verify that they are all Frame Based Frame

Descriptors.

b. For each Descriptor found, check that:

a. bLength==38 if bFrameIntervalType==0 or bLength==26+4*bFrameIntervalType if

bFrameIntervalType!=0. If not, fail the test and throw the related assertion (6.10.210).

b. bmCapabilities!=0 if flag==1 and bmCapabilities==0 otherwise. If not, fail the test and throw

related assertion (6.10.211)

c. bmCapabilities<=1. If not, fail the test and throw related assertion (6.10.212).

d. If bVariableSize is set to 1 in the Format Descriptor, then verifies that dwBytesPerLine is set

to 0. If not, fail the test and throw the related assertion (6.10.213).

e. If bFrameIntervalType==0, check that:

i. dwDefaultFrameInterval==dwMinInterval + j*dwFrameIntervalStep with j integer
and dwDefaultFrameInterval<dwMaxFrameInterval . If not , fail the test and throw
the relater assertion (6.10.214).

ii. dwMinFrameInterval<=dwMaxFrameInterval. If not, fail the test and throw related
assertion (6.10.215).

iii. dwFrameIntervalStep<=(dwMaxFrameInterval-dwMinFrameInterval). If not, fail
the test and throw related assertion (6.10.216).

f. If bFrameIntervalType!=0, check that :

i. dwDefaultFrameInterval is in the set dwFrameInterval(1)…dwFrameInterval(n). If

not, fail the test and throw related assertion (6.10.214).

ii. dwFrameInterval(1)<=..<=dwFrameInterval(n). If not, fail the test and throw

related assertion (6.10.217).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 106

6.5.2 Video Control tests

6.5.2.1 Interface Control Tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 107

TD 20.1 Power Mode Control Test

This Test verifies that the Power Mode Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).

7. Retrieve the Interface number of this Video Control Interface and begin test on the
Control. This control is mandatory.

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.31). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion.

9. Verify that the control supports all mandatory requests: SET_CUR,GET_CUR and
GET_INFO. Issue all those request and verify that the request succeeded. If not, fail the
test and throw the related assertion (6.20.7). Verify also that if other requests are
supported: GET_MIN, GET_MAX, GET_RES, GET_LEN, and GET_DEF. If the answers
is STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported(D0 and D1 of the returned bit).
If not, fail the test and throw the related assertion (6.20.6).

b. If the Control is Autoupdate or Asynchronous, verify that a Status Interrupt
Endpoint is present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR(Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9).

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. if not fail the test and throw the related assertion
(6.20.10).

11. Issue a SET_CUR request with an invalid Power Mode value. Verify that the Power Mode
Control answers STALL. Check that the Request Error Code is correct. If not, fail the test
and throw the related assertion (6.20.44). If the Control answer is different from STALL,
issue a GET_CUR request. If the Control reports the bogus value, fail the test and throw
the related assertion (6.20.30).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 108

TD 20.2 Request Error Code Control Test:

This Test verifies that Request Error Code Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).

7. Retrieve the Interface number of this Video Control Interface and begin test on the
Control. This control is mandatory.

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion. If the request did not
success, check the Request Error Code Control (issue a GET_CUR Request) and if its
value is 0x06(Invalid Control), then fail the test and throw the related assertion.

9. Verify that the control supports all mandatory requests: SET_CUR,GET_CUR and
GET_INFO. Issue all those request and verify that the request succeeded*. Verify also
that all other requests are not supported: GET_MIN, GET_MAX, GET_RES, GET_LEN,
and GET_DEF. Issue all these requests and verify that the device answers STALL. If not,
fail the test and throw the related assertion. If the answers is STALL, then check the
Request Error Code Control (issue a GET_CUR Request) and verifies that the Request
Error Code is 0x07 (Invalid request)**.If one of the conditions(* and **) above is not met,
fail the test and throw the related assertions.

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported(D0 and D1 of the returned bit
mask). If not, fail the test and throw the related assertion.

b. If the Control is Autoupdate or Asynchronous, verify that a Status Interrupt
Endpoint is present. If not, fail the test and throw the related assertion.

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR(Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion.

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. if not fail the test and throw the related
assertion.

11. Issue a SET_CUR request with an invalid Power Mode value. Verify that the Power Mode
Control answers STALL. Check that the Request Error Code is correct. If not, fail the test
and throw the related assertion. If the Control answer is different from STALL, issue a
GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 109

6.5.2.2 Unit and Terminal Control tests

6.5.2.2.1 Camera Terminal Control tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 110

TD 20.4 Scanning Mode Control Test

This Test verifies that the Scanning Mode Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Configuration

Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC found in the

configuration Descriptor. For the rest of the test only parse Descriptors belonging to the current tested

VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor (bDescriptorType==INTERFACE

and bInterfaceClass==CC_VIDEO and bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the

Interface number of this Video Control Interface and parse descriptors to find a Camera Terminal

Descriptor (bDescriptorType == CS_INTERFACE and bDescriptorSubType ==

VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal Descriptors is

found, stop the test. If a camera Terminal is found, retrieve the Terminal ID and begin the test on the

Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D0==0, issue a GET_CUR request

on the Control and verify that the answer is STALL and the Request Error Code Control is set to 0x06

(invalid control). If not fail the test and throw the related assertions. Do Step 8 to 11 only if D0==1

(Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value returned is valid

(value<=1). If not, fail the test and throw the related assertion (6.20.4 and 6.20.52). If the request did

not success, check the Request Error Code Control (issue a GET_CUR Request) and if its value is

0x06(Invalid Control), then fail the test and throw the related assertion (6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR and GET_INFO. Issue

all those request and verify that the request succeeded. If not, fail the test and throw the related

assertion (6.20.7). Verify also that if other requests are supported: GET_MIN, GET_MAX, GET_RES,

GET_LEN, and GET_DEF. If the answers is STALL, then check the Request Error Code Control

(issue a GET_CUR Request) and verifies that the Request Error Code is 0x07 (Invalid request).If not,

fail the test and throw the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0 and D1 of the returned bit). If not,

fail the test and throw the related assertion (6.20.6).

b. If the Control is Autoupdate or Asynchronous, verify that a Status Interrupt Endpoint is

present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are generated on

SET_CUR(Timeout 5s). Issue a SET_CUR request and wait during 5 s for a Control

Change Interrupt. If no Control Change Interrupt, fail the test and throw the related

assertion (6.20.9).

d. If the control is synchronous, issue a SET_CUR Request and verifies that it completes

in less than 10 ms. if not fail the test and throw the related assertion (6.20.10).

11. Issue a SET_CUR request with an invalid bScanningMode value (value>1). Verify that the Scanning

Mode Control answers STALL. Check that the Request Error Code is correct. If not, fail the test and

throw the related assertion (6.20.44). If the Control answer is different from STALL, issue a

GET_CUR request. If the Control reports the bogus value, fail the test and throw the related assertion

(6.20.51).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 111

TD 20.5 Auto-Exposure Mode Control Test

This Test verifies that the Auto-Exposure Mode Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D1==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 12 only if D1==1 (Control is supported).

8. Issue a GET_RES request and verify that the value is valid (values supported by the
control, no bits over D3 set). If not, fail the test and throw the related assertion (6.20.4 and
6.20.60).

9. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (D0 or D1 or D2 or D3 set, but no other bits set, check with values
returned by RES attribute). If not, fail the test and throw the related assertion (6.20.62). If
the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.42).

10. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR and
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported: GET_MIN, GET_MAX, and GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 112

TD 20.5 11. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported(D0 and D1 of the returned
bit). If not, fail the test and throw the related assertion (6.20.6).

b. If the Control is Autoupdate or Asynchronous, verify that a Status Interrupt
Endpoint is present. If not, fail the test and throw the related assertion
(6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9).

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. if not fail the test and throw the related
assertion (6.20.10).

12. Issue a GET_DEF request and verify that value returned is valid (corresponds to only one
of the modes listed in the RES value). If not, fail the test and throw the related assertion
(6.20.12).

13. Issue a SET_CUR request with an invalid bAutoExposureMode value (0, invalids bits set
defined in RES, more than one bit set). Verify that the AutoExposure Mode Control
answers STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44). If the Control answer is different from STALL, issue
a GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion (6.20.61).

14. Issue a SET_CUR request with a valid value (according to RES). Issue a GET_CUR
requests and verify that the value have been set. If not, fail the test and throw the related
assertion (6.20.63). Verify also that Control Change Interrupt have been sent by the
controls affected by the changes. If not, fail the test and throw the related assertions
(6.20.64, 6.20.65, 6.20.66, 6.20.67)

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 113

TD 20.6 Auto-Exposure Priority Control Test

This Test verifies that the Auto-Exposure Priority Control is compliant with USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D2==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 12 only if D2==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (value<=1). If not, fail the test and throw the related assertion (6.20.4 and
6.20.71). If the request did not success, check the Request Error Code Control (issue a
GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and throw
the related assertion (6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR and
GET_INFO. Issue all those request and verify that the request succeeded. If not, fail the
test and throw the related assertion (6.20.7). Verify also that if other requests are
supported: GET_MIN, GET_MAX, GET_LEN, GET_RES and GET_DEF. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 114

TD 20.6 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported(D0 and D1 of the returned
bit). If not, fail the test and throw the related assertion (6.20.6).

b. If the Control is Autoupdate or Asynchronous, verify that a Status Interrupt
Endpoint is present. If not, fail the test and throw the related assertion
(6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9).

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. if not fail the test and throw the related
assertion (6.20.10).

11. Issue a SET_CUR request with an invalid bAutoExposurePriority value (value >1). Verify
that the AutoExposure Priority Control answers STALL. Check that the Request Error
Code is correct. If not, fail the test and throw the related assertion (6.20.44). If the Control
answer is different from STALL, issue a GET_CUR request. If the Control reports the
bogus value, fail the test and throw the related assertion (6.20.70).

12. Issue a GET_CUR request and then issue a SET_CUR requests with a value different
than the value returned by the GET_CUR request. Verify that the value has been set by
issuing a GET_CUR request. If not fail the test and throw the related assertion (6.20.72).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 115

TD 20.7 Exposure Time (Absolute) Control Test

This Test verifies that the Exposure Time (Absolute) Control is compliant with USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D3==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 18 only if D3==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (value!=0). If not, fail the test and throw the related assertion (6.20.84). If
the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.42 and 6.20.4).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_MIN, GET_MAX,
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported SET_CUR, GET_LEN. If the answers is STALL, then check
the Request Error Code Control (issue a GET_CUR Request) and verifies that the
Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 116

TD 20.7

10. If the Auto Exposure mode Control is supported and is in Auto Mode (D1 set in
bAutoExposureMode) or in Aperture Priority Mode (D3 set in bAutoExposureMode), issue
a GET_INFO Request and verify that D2 and D3 are set. If not, fail the test and throw the
related assertion (6.20.83).

11. If the control is in Auto Mode. Issue a set Request to the Auto-Exposure Mode Control
with a bAutoExposureMode value of 0x01 to disable the auto Mode. Verify that an
asynchronous notification is sent by the Exposure Time (Absolute) Control to notify of the
change. If not, fail the test and throw the related assertion (6.20.64).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. Verify that D3 is not set in the GET_INFO answer. If not, fail the test and
throw the related assertion (6.20.16).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

e. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt, fail the test and throw the related assertion
(6.20.9)

f. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

13. Issue GET_MIN and GET_MAX request to store Min and Max values for the
dwExposureTimeAbsolute value. Verify that MIN<MAX. If not fail the test and throw the
related assertion (6.20.14)

14. Issue a GET_DEF Request and verify that the value returned is between Min and Max. If
not fail the test and throw the related assertion (6.20.12).

15. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.20.80).

16. If SET_CUR is supported. Issue a SET_CUR Request with valid values. Verify that the
values have been set. If not, fail the test and throw the related assertions (6.20.80).

17. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value. Verify that
the device answers STALL. Check that the Request Error Code is correct. If not fail the
test and throw the related assertion (6.20.82).

18. Issue a set Request to the Auto-Exposure Mode Control with a bAutoExposureMode
value of 0x02 or 0x04 to enable the auto Mode. Verify that an asynchronous notification is
sent by the Exposure Time (Absolute) Control to notify of the change (6.20.64). If not, fail
the test and throw the related assertion.

19. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.20.83).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.20.81).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 117

TD 20.8 Exposure Time (Relative) Control Test

This Test verifies that the Exposure Time (Relative) Control is compliant with USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D4==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.42 and 6.20.3). Do Step 8 to 18 only if D4==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (value==0 or 1 or 0xFF). If not, fail the test and throw the related
assertion (6.20.94). If the request did not success, check the Request Error Code Control
(issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and
throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR, and
GET_INFO. Issue all those request and verify that the request succeeded. If not, fail the
test and throw the related assertion (6.20.7). Verify also that if other requests are
supported GET_LEN, GET_MIN, GET_MAX, GET_RES and GET_DEF. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 118

TD 20.8 10. If the Auto Exposure mode Control is supported and is in Auto Mode (D1 set in
bAutoExposureMode) or in Aperture Priority Mode (D3 set in bAutoExposureMode), issue
a GET_INFO Request and verify that D2 and D3 are set. If not, fail the test and throw the
related assertion (6.20.93).

11. If the control is in Auto Mode. Issue a set Request to the Auto-Exposure Mode Control
with a bAutoExposureMode value of 0x00 to disable the auto Mode. Verify that an
asynchronous notification is sent by the Exposure Time (Relative) Control to notify of the
change. If not, fail the test and throw the related assertion (6.20.65).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. Verify that D3 is not set in the GET_INFO answer. If not, fail the test and
throw the related assertion (6.20.16).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

e. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

13. Issue a SET_CUR Request with an invalid value (value != 0, or 1 or 0xFF). Verify that the
answer is STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.92).

14. Issue a GET_CUR request to the Exposure Time(Absolute) Control to store the current
value of the Control.

15. Issue a SET_CUR request with a valid value (value==0 or 1 or 0xFF). Verify that the
request succeeded and issue a GET_CUR Request to verify that the value has been set.
If not, fail the test and throw the related assertion. Verify also that an asynchronous
notification is sent to the Exposure Time (Absolute) Control and that the value has been
updated. If not fail the test and throw the related assertion (6.20.90).

16. Issue a set Request to the Auto-Exposure Mode Control with a bAutoExposureMode
value of 0x01 or 0x04 to enable the auto Mode. Verify that an asynchronous notification is
sent by the Exposure Time (Absolute) Control to notify of the change. If not, fail the test
and throw the related assertion (6.20.65).

17. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.20.93).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.20.91).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 119

TD 20.9 Focus (Absolute) Control Test

This Test verifies that the Focus (Absolute) Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D5==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 18 only if D5==1 (Control is supported).

8. Issue a GET_CUR request. Verify that the request completed with success. If not, fail the
test and throw the related assertion (6.20.4). If the request did not success, check the
Request Error Code Control (issue a GET_CUR Request) and if its value is 0x06(Invalid
Control), then fail the test and throw the related assertion (6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_MIN, GET_MAX,
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported SET_CUR, GET_LEN. If the answers is STALL, then check
the Request Error Code Control (issue a GET_CUR Request) and verifies that the
Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 120

TD 20.9 10. In the Camera Terminal Descriptor, if D17 in bmControls is set. If the Focus, Auto Control
is supported and is in Auto Mode (bFocusAuto=1) issue a GET_INFO Request and verify
that D2 and D3 are set. If not, fail the test and throw the related assertion (6.20.102).

11. If the control is in Auto Mode. Issue a set Request to Focus, Auto Control with a
bFocusAuto value of 0 to disable the auto Mode. Verify that an asynchronous notification
is sent by the Focus (Absolute) Control to notify of the change. If not, fail the test and
throw the related assertion (6.20.103).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. Verify that D3 is not set in the GET_INFO answer. If not, fail the test and
throw the related assertion (6.20.16).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

e. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

f. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

13. Issue GET_MIN and GET_MAX request to store Min and Max values for the
dwFocusAbsolute value. Verify that MIN<MAX. If not fail the test and throw the related
assertion (6.20.14)

14. Issue a GET_DEF Request and verify that the value returned is between Min and Max. If
not fail the test and throw the related assertion (6.20.11).

15. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.20.100).

16. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value. Verify that
the device answers STALL. Check that the Request Error Code is correct. If not fail the
test and throw the related assertion (6.20.101).

17. Issue a set Request to the Focus, Auto Control with a bFocusAuto value of 1 to enable the
auto Mode. Verify that an asynchronous notification is sent by the Focus (Absolute)
Control to notify of the change. If not, fail the test and throw the related assertion
(6.20.103).

18. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.20.102).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.20.104).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 121

TD 20.10 Focus (Relative) Control Test

This test verifies that the Focus (Relative) Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors if found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D6==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.42 and 6.20.3). Do Step 8 to 19 only if D6==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion . If the request did not
success, check the Request Error Code Control (issue a GET_CUR Request) and if its
value is 0x06(Invalid Control), then fail the test and throw the related assertion (6.20.42
and 6.20.4).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 122

TD 20.10 10. In the Camera Terminal Descriptor, if D17 in bmControls is set. If the Focus, Auto Control
is supported and is in Auto Mode (bFocusAuto=1) issue a GET_INFO Request and verify
that D2 and D3 are set. If not, fail the test and throw the related assertion (6.20.113).

11. If the control is in Auto Mode. Issue a set Request to Focus, Auto Control with a
bFocusAuto value of 0 to disable the auto Mode. Verify that an asynchronous notification
is sent by the Focus (Relative) Control to notify of the change. If not, fail the test and throw
the related assertion (6.20.114).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. Verify that D3 is not set in the GET_INFO answer. If not, fail the test and
throw the related assertion (6.20.16).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt,fail
the test and throw the related assertion (6.20.9)

e. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

13. Issue a SET_CUR request with an invalid bFocusRelative value(other than 0xFF, 0x00, or
0x01). Verify that the Focus (Relative) Control answers STALL. Check that the request
Error Code is correct. If not, fail the test and throw the related assertion (6.20.44). If the
Control answer is different from STALL, issue a GET_CUR request. If the control reports
the bogus value, fail the test and throw the related assertion.

14. Issue GET_MIN, GET_MAX,GET_RES,GET_DEF requests and verify that they return 0
for bFocusRelative. If not, fail the test and throw the related assertions (6.20.111).

15. Issue a SET_CUR request with an invalid bSpeed value(issue GET_MIN and GET_MAX
requests to get the range of bSpeed values). Verify that the Focus (Relative) Control
answers STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44). If the Control answer is different from STALL, issue
a GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion.

16. Issue a SET_CUR request with valid values. Verify that the request succeeded and issue
a GET_CUR Request to verify that the value has been set. If not, fail the test and throw
the related assertion. Verify also that an asynchronous notification is sent to the Focus
(Absolute) Control and that the value has been updated. If not fail the test and throw the
related assertion (6.20.115).

18. Issue a set Request to the Focus, Auto Control with a bFocusAuto value of 1 to enable the
auto Mode. Verify that an asynchronous notification is sent to the Focus (Absolute)
Control to notify of the change. If not, fail the test and throw the related assertion
(6.20.114).

19. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.20.113).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.20.120).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 123

TD 20.11 Focus Auto Control Test

This Test verifies that the Focus Auto Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D17==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.42 and 6.20.3). Do Step 8 to 12 only if D17==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (value<=1). If not, fail the test and throw the related assertion (6.20.126).
If the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.42 and 6.20.4).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO and GET_DEF. Issue all those request and verify that the request succeeded.
If not, fail the test and throw the related assertion (6.20.7). Verify also that if other
requests are supported GET_LEN, GET_MIN, GET_MAX, and GET_RES. If the answers
is STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 124

TD 20.11 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt,fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue a SET_CUR request with an invalid bFocusAuto value (value>1). Verify that the
Focus Auto Control answers STALL. Check that the Request Error Code is correct. If not,
fail the test and throw the related assertion (6.20.44). If the Control answer is different
from STALL, issue a GET_CUR request. If the Control reports the bogus value, fail the
test and throw the related assertion (6.20.125).

12. Issue a GET_DEF request and verify that it is a valid value. If not, fail the test and throw
the related assertion (6.20.12).

13. Issue a SET_CUR request with a value valid but different from the current one (retrieved
with a GET_CUR). Verify that the value have been set. If not, fail the test and throw the
related assertion (6.20.127). Verify also that Control Change notification have been sent
by the Focus Absolute and Relative Controls (6.20.103 and 6.20.114)

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 125

TD 20.12 Iris (Absolute) Control Test

This Test verifies that the Iris (Absolute) Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D7==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.4 and 6.20.42). Do Step 8 to 19 only if D7==1 (Control is supported).

8. Issue a GET_CUR request. If the request did not success, check the Request Error Code
Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the
test and throw the related assertion (6.20.3 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_MIN, GET_MAX,
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported SET_CUR, GET_LEN. If the answers is STALL, then check
the Request Error Code Control (issue a GET_CUR Request) and verifies that the
Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 126

TD 20.12 10. If the Auto Exposure mode Control is supported and is in Auto Mode (D1 set in
bAutoExposureMode) or in Shutter Priority Mode (D2 set in bAutoExposureMode), issue a
GET_INFO Request and verify that D2 and D3 are set. If not, fail the test and throw the
related assertion (6.20.133).

11. If the control is in Auto Mode. Issue a set Request to the Auto-Exposure Mode Control
with a bAutoExposureMode value of 0x01 to disable the auto Mode. Verify that an
asynchronous notification is sent by the Iris (Absolute) Control to notify of the change. If
not, fail the test and throw the related assertion (6.20.66).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. Verify that D3 is not set in the GET_INFO answer. If not, fail the test and
throw the related assertion (6.20.16).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

e. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

f. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

13. Issue GET_MIN and GET_MAX request to store Min and Max values for the
dwIrisAbsolute value. Verify that MIN<MAX. If not, fail the test and throw the related
assertion (6.20.14).

14. Issue a GET_DEF Request and verify that the value returned is between Min and Max. If
not fail the test and throw the related assertion (6.20.11).

15. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.20.130).

16. Issue a SET_CUR Request with valid values. Verify that the values have been set. If not,
fail the test and throw the related assertions (6.20.130).

17. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value. Verify that
the device answers STALL. Check that the Request Error Code is correct. If not fail the
test and throw the related assertion (6.20.132).

18. Issue a set Request to the Auto-Exposure Mode Control with a bAutoExposureMode
value of 0x01 or 0x02 to enable the auto Mode or Shutter Priority Mode. Verify that an
asynchronous notification is sent by the Iris (Absolute) Control to notify of the change. If
not, fail the test and throw the related assertion (6.20.66).

19. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.20.133).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.20.131).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 127

TD 20.13 Iris (Relative) Control Test

This Test verifies that the Iris (Relative) Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D8==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.42 and 6.20.3). Do Step 8 to 15 only if D8==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (value==0 or 1 or 0xFF). If not, fail the test and throw the related
assertion (6.20.17). If the request did not success, check the Request Error Code Control
(issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and
throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR, and
GET_INFO. Issue all those request and verify that the request succeeded. If not, fail the
test and throw the related assertion (6.20.7). Verify also if other requests are supported
GET_LEN, GET_MIN, GET_MAX, GET_RES and GET_DEF. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 128

TD 20.13 10. If the Auto Exposure mode Control is supported and is in Auto Mode (D1 set in
bAutoExposureMode) or in Shutter Priority Mode (D2 set in bAutoExposureMode), issue a
GET_INFO Request and verify that D2 and D3 are set. If not, fail the test and throw the
related assertion (6.20.143).

11. If the control is in Auto Mode. Issue a set Request to the Auto-Exposure Mode Control
with a bAutoExposureMode value of 0x00 to disable the auto Mode. Verify that an
asynchronous notification is sent to the Iris (Relative) Control to notify of the change. If
not, fail the test and throw the related assertion (6.20.67).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. Verify that D3 is not set in the GET_INFO answer. If not, fail the test and
throw the related assertion (6.20.16).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt,fail
the test and throw the related assertion (6.20.9)

e. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

13. Issue a SET_CUR Request with an invalid value (value != 0, or 1 or 0xFF). Verify that the
answer is STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44 and 6.20.142).

14. Issue a GET_CUR request to the Iris (Absolute) Control to store the current value of the
Control.

15. Issue a SET_CUR request with a valid value (value==0 or 1 or 0xFF). Verify that the
request succeeded and issue a GET_CUR Request to verify that the value has been set.
If not, fail the test and throw the related assertion (6.20.140). Verify also that an
asynchronous notification is sent to the Iris (Absolute) Control and that the value has been
updated. If not fail the test and throw the related assertion (6.20.66).

16. Issue a set Request to the Auto-Exposure Mode Control with a bAutoExposureMode
value of 0x01 or 0x02 to enable the auto Mode or Shutter Priority Mode. Verify that an
asynchronous notification is sent by the Iris (Relative) Control to notify of the change. If
not, fail the test and throw the related assertion (6.20.67).

17. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.20.143).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.20.141).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 129

TD 20.14 Zoom (Absolute) Control Test

This Test verifies that the Zoom (Absolute) Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D9==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.42 and 6.20.3). Do Step 8 to 16 only if D9==1 (Control is supported).

8. Issue a GET_CUR request. If the request did not success, check the Request Error Code
Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the
test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_MIN, GET_MAX,
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported SET_CUR, GET_LEN. If the answers is STALL, then check
the Request Error Code Control (issue a GET_CUR Request) and verifies that the
Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 130

TD 20.14 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

e. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wObjectiveFocalLength value . Verify that MIN<MAX. If not fail the test and throw the
related assertion (6.20.14)

12. Issue a GET_DEF Request and verify that the value returned is between Min and Max. If
not fail the test and throw the related assertion (6.20.11).

13. Issue a GET_RES request. Verify that the value returned is 1 for wObjectiveFocalLength.
If not, fail the test and throw the related assertion (6.20.152).

14. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.20.150).

15. If SET_CUR is supported. Issue a SET_CUR Request with valid values. Verify that the
values have been set. If not, fail the test and throw the related assertion (6.20.150).

16. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value. Verify that
the device answers STALL. Check that the Request Error Code is correct. If not fail the
test and throw the related assertion (6.20.151).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 131

TD 20.15 Zoom (Relative) Control Test

This test verifies that the Zoom (Relative) Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors if found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D10==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 15 only if D10==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (bZoom==0 or 1 or 0xFF, bDigitalZoom==0 or 1,). If not, fail the test and
throw the related assertion (6.20.17). If the request did not success, check the Request
Error Code Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control),
then fail the test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 132

TD 20.15 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt,fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue a SET_CUR request with an invalid bZoom value(other than 0xFF, 0x00, or 0x01).
Verify that the Zoom (Relative) Control answers STALL. Check that the Request Error
Code is correct. If not, fail the test and throw the related assertion (6.20.44). If the Control
answer is different from STALL, issue a GET_CUR request. If the control reports the
bogus value, fail the test and throw the related assertion (6.20.160).

12. Issue a SET_CUR request with an invalid bDigitalZoom value(other than 0x00, or 0x01).
Verify that the Zoom (Relative) Control answers STALL. Check that the Request Error
Code is correct. If not, fail the test and throw the related assertion (6.20.44). If the Control
answer is different from STALL, issue a GET_CUR request. If the control reports the
bogus value, fail the test and throw the related assertion (6.20.162).

13. Issue GET_MIN, GET_MAX,GET_RES,GET_DEF requests and verify that they return 0
for bZoom and bDigitalZoom. If not, fail the test and throw the related assertions (6.20.161
and 6.20.163). Verify also that MIN<MAX for bSpeed. If not, fail the test and throw the
related assertion (6.20.166). Verify also that DEF fro bSpeed is between MIN and MAX. If
not, fail the test and throw the related assertion. (6.20.167)

14. Issue a SET_CUR request with an invalid bSpeed value (issue GET_MIN and GET_MAX
requests to get the range of bSpeed values). Verify that the Zoom (Relative) Control
answers STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44). If the Control answer is different from STALL, issue
a GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion (6.20.164).

15. Issue a GET_CUR request to the Zoom (Absolute) Control to store the current value.

16. Issue a SET_CUR Request with valid values for bZoom. Verify that the values have been
set. If not, fail the test and throw the related assertion. Verify also that an asynchronous
notification is sent to the Zoom (Absolute) Control and that the value has been updated. If
not fail the test and throw the related assertion (6.20.165 and 6.20.168).

17. Issue a SET_CUR Request with valid values for bDigitalZoom. Verify that the values have
been set. If not, fail the test and throw the related assertion. Verify also that an
asynchronous notification is sent to the Zoom (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.165 and 6.20.169).

18. Issue a SET_CUR Request with valid values for bSpeed. Verify that the values have been
set. If not, fail the test and throw the related assertion. Verify also that an asynchronous
notification is sent to the Zoom (Absolute) Control and that the value has been updated. If
not fail the test and throw the related assertion (6.20.165 and 6.20.189).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 133

TD 20.16 Pan Tilt (Absolute) Control Test

This Test verifies that the Pan Tilt (Absolute) Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D11==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 14 only if D11==1 (Control is supported).

8. Issue a GET_CUR request. If the request did not success, check the Request Error Code
Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the
test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_MIN, GET_MAX,
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported SET_CUR, GET_LEN. If the answers is STALL, then check
the Request Error Code Control (issue a GET_CUR Request) and verifies that the
Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 134

TD 20.16 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

e. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the
dwPanAbsolute and dwTiltAbsolute value. Verify that Min and Max are in the range –
180*3600 to +180*3600 for dwPanAbsolute (6.20.170 and 6.20.171). Verify also that Min
and Max are in the range –180*3600 to +180*3600 for dwTiltAbsolute (6.20.173 and
6.20.174).

12. Verify also that MIN<MAX for dwPanAbsolute and dwTiltRelative. If not, fail the test and
throw the relative assertion (6.20.179 and 6.20.180).

13. Issue a GET_DEF Request and verify that the DEF value is 0 for dwPanAbsolute and
dwTiltAbsolute. If not fail the test and throw the related assertion (6.20.172 and 6.20.175).

14. If SET_CUR is supported. Issue a SET_CUR request with values equal to the default
values. Verify that the request succeeded and issue a GET_CUR Request to verify that
the values have been set. If not, fail the test and throw the related assertion (6.20.178).
Repeat the same procedure for values inside the range.

15. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound values (MIN-1,
MAX+1, LONG_MIN, LONG_MAX) for dwPanAbsolute. Verify that the device answers
STALL. Check that the Request Error Code is correct. If not fail the test and throw the
related assertion (6.20.44 and 6.20.176).

16. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound values (MIN-1,
MAX+1, LONG_MIN, LONG_MAX) for dwTiltAbsolute. Verify that the device answers
STALL. Check that the Request Error Code is correct. If not fail the test and throw the
related assertion (6.20.44 and 6.20.177).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 135

 TD 20.17 Pan Tilt (Relative) Control Assertion.

This test verifies that the Pan Tilt (Relative) Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Config
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors if found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D12==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 23 only if D12==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt,fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 136

TD 20.17 11. Issue a SET_CUR request with an invalid bPanRelative value (other than 0xFF, 0x00, or
0x01). Verify that the Pan Tilt (Relative) Control answers STALL. Check that the Request
Error Code is correct. If not, fail the test and throw the related assertion (6.20.44). If the
Control answer is different from STALL, issue a GET_CUR request. If the control reports
the bogus value, fail the test and throw the related assertion (6.20.190).

12. Issue GET_MIN, GET_MAX, GET_RES and GET_DEF requests and verify that they
return 0 for bPanRelative and for bTitltRelative. If not, fail the test and throw the related
assertions (6.20.191 and 6.20.194).

13. Verify also that MIN<MAX for bPanSpeed. If not, fail the test and throw the related
assertion (6.20.196).

14. Verify that MIN<MAX for bTiltSpeed. If not, fail the test and throw the related assertion
(6.20.197).

15. Verify that DEF value is between MIN and MAX for bPanSpeed. If not, fail the test and
throw the related assertion (6.20.198).

16. Verify that DEF value is between MIN and MAX for bTiltSpeed. If not, fail the test and
throw the related assertion (6.20.199).

17. Issue a SET_CUR request with an invalid bPanSpeed value (issue GET_MIN and
GET_MAX requests to get the range of bPanSpeed values). Verify that the Pan Tilt
(Relative) Control answers STALL Check that the Request Error Code is correct. If not,
fail the test and throw the related assertion (6.20.44). If the Control answer is different
from STALL, issue a GET_CUR request. If the Control reports the bogus value, fail the
test and throw the related assertion (6.20.192).

18. Issue a GET_CUR and store the value returned. Issue a SET_CUR request with an
invalid bTiltRelative value(other than 0xFF, 0x00, or 0x01). Verify that the Pan Tilt
(Relative) Control answers STALL Check that the Request Error Code is correct and by
issuing a GET_CUR that the value is unchanged. If not, fail the test and throw the related
assertion (6.20.44). If the Control answer is different from STALL, issue a GET_CUR
request. If the control reports the bogus value, fail the test and throw the related assertion
(6.20.193).

19. Issue a GET_CUR and store the value returned. Issue a SET_CUR request with an
invalid bTiltSpeed value (issue GET_MIN and GET_MAX requests to get the range of
bPanSpeed values). Verify that the Pan Tilt (Relative) Control answers STALL. Check that
the Request Error Code is correct and by issuing a GET_CUR that the value is
unchanged. If not, fail the test and throw the related assertion (6.20.44). If the Control
answer is different from STALL, issue a GET_CUR request. If the Control reports the
bogus value, fail the test and throw the related assertion (6.20.195).

20. Issue a SET_CUR Request with valid values bPanRelative. Verify that the value has been
updated. If not, fail the test and throw the related assertion. Verify also that an
asynchronous notification is sent to the PanTilt (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.200 and 6.20.181).

21. Issue a SET_CUR Request with valid values for bPanSpeed. Verify that the value has
been updated. If not, fail the test and throw the related assertion. Verify also that an
asynchronous notification is sent to the PanTilt (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.201 and 6.20.181).

22. Issue a SET_CUR Request with valid values for bTiltRelative. Verify that the value has
been updated. If not, fail the test and throw the related assertion. Verify also that an
asynchronous notification is sent to the PanTilt (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.202 and 6.20.181).

23. Issue a SET_CUR Request with valid values for bTiltSpeed. Verify that the value has
been updated. If not, fail the test and throw the related assertion. Verify also that an
asynchronous notification is sent to the PanTilt (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.203 and 6.20.181).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 137

TD 20.18 Roll (Absolute) Control Test

This Test verifies that the Pan Tilt (Absolute) Control is compliant with USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL). Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors is found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D13==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 14 only if D13==1 (Control is supported).

8. Issue a GET_CUR request. If the request did not success, check the Request Error Code
Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the
test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_MIN, GET_MAX,
GET_INFO, GET_RES and GET_DEF. Issue all those request and verify that the request
succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify also that if
other requests are supported SET_CUR, GET_LEN. If the answers is STALL, then check
the Request Error Code Control (issue a GET_CUR Request) and verifies that the
Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 138

TD 20.18 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

e. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wRollAbsolute value. Verify that Min and Max are in the range –180 to +180 and
MIN<MAX. If not fail the test and throw the related assertion (6.20.11).

12. Issue a GET_DEF Request and verify that the value returned is 0. If not fail the test and
throw the related assertion (6.20.212).

13. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion. Repeat the same
procedure for values inside the range (6.20.211).

14. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion (6.20.44
and 6.20.210).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 139

TD 20.19 Roll (Relative) Control Assertion.

This test verifies that the Roll (Relative) Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors if found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D14==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 18 only if D14==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion. If the request did not
success, check the Request Error Code Control and if its value is 0x06(Invalid Control),
then fail the test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 140

TD 20.19 11. Issue a SET_CUR request with an invalid bRollRelative value (other than 0xFF, 0x00, or
0x01). Verify that the Pan Tilt (Relative) Control answers STALL. Check that the Request
Error Code is correct. If not, fail the test and throw the related assertion (6.20.44). If the
Control answer is different from STALL, issue a GET_CUR request. If the control reports
the bogus value, fail the test and throw the related assertion (6.20.220).

12. Issue GET_MIN, GET_MAX,GET_RES,GET_DEF requests and verify that they return 0
for bRollRelative. If not, fail the test and throw the related assertions (6.20.221).

13. Verify also that MIN<MAX for bSpeed. If not, fail the test and throw the related assertion
(6.20.224).

14. Verify that DEF value is between MIN and MAX fro bSpeed. If not, fail the test and throw
the related assertion (6.20.225).

15. Issue a SET_CUR request with an invalid bSpeed value(issue GET_MIN and GET_MAX
requests to get the range of bSpeed values). Verify that the Roll (Relative) Control
answers STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44). If the Control answer is different from STALL, issue
a GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion (6.20.222).

16. Issue a SET_CUR Request to the Roll (Absolute) Control to store its Current Value.

17. Issue a SET_CUR Request with valid values for bRollRelative. Verify that the value have
been set. If not, fail the test and throw the related assertion (6.20.226) Verify also that an
asynchronous notification is sent to the Roll (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.223).

18. Issue a SET_CUR Request with valid values for bSpeed. Verify that the value have been
set. If not, fail the test and throw the related assertion (6.20.227) Verify also that an
asynchronous notification is sent to the Roll (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.223).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 141

TD 20.20 Privacy Control Assertion.

This test verifies that the Privacy Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find a Camera Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL and wTerminalType == ITT_CAMERA). If no Camera Terminal
Descriptors if found, stop the test. If a camera Terminal is found, retrieve the Terminal ID
and begin the test on the Control.

7. Check the bmControls field of the Camera Terminal Descriptor. If D15==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D15==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (0 or 1). If not, fail the test and throw the related assertion (6.20.230). If
the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.42 and 6.20.4).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO. Issue all
those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported SET_CUR,
GET_MIN, GET_MAX, GET_RES, GET_DEF and GET_LEN. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 142

TD 20.20 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If D3==0 in GET_INFO. Fail the test and throw the related assertion
(6.20.231).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

e. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

f. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

11. If SET_CUR is supported. Issue a SET_CUR request with an invalid bPrivacy value (other
than 0x00, or 0x01). Verify that the Privacy Control answers STALL. Check that the
Request Error Code is correct. If not, fail the test and throw the related assertion
(6.20.44). If the Control answer is different from STALL, issue a GET_CUR request. If the
control reports the bogus value, fail the test and throw the related assertion (6.20.232).

12. Issue a SET_CUR Request with valid values for bSpeed. Verify that the value have been
set. If not, fail the test and throw the related assertion (6.20.233) Verify also that an
asynchronous notification is sent to the Roll (Absolute) Control and that the value has
been updated. If not fail the test and throw the related assertion (6.20.234).

6.5.2.2.2 Selector Unit Control Tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 143

TD 20.21 Selector Unit Control Test.

This test verifies that the Selector Unit Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Selector Unit Descriptor (bDescriptorType
== CS_INTERFACE and bDescriptorSubType == VC_SELECTOR_UNIT. If no Selector
Unit Descriptors if found, stop the test. If a Selector Unit is found, retrieve the Unit ID and
begin the test on the Control.

7. If a selector Unit is present, then this control has to be supported.

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (1 up to the number of Input Pins of the selector Unit bNrInPins). If not,
fail the test and throw the related assertion (6.21.5). If the request did not success, check
the Request Error Code Control (issue a GET_CUR Request) and if its value is
0x06(Invalid Control), then fail the test and throw the related assertion (6.21.7 and
6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX and GET_RES. Issue all those request and verify that
the request succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify
also that if other requests are supported GET_LEN and GET_DEF. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 144

TD 20.21

11. Issue a GET_RES request, verify whether it is supported or not. If it is not supported,
verify that the control answers STALL and check the Request Error Code Control (value
0x07). If the request is supported, verify that the returned value is 1. if not fail the test and
throw the related assertion (6.21.2)

12. Issue GET_MIN, GET_MAX requests and verify that they return 1 for minimum and
bNrInPins for Maximum as the bSelector value. If not, fail the test and throw the related
assertions (6.21.1 and 6.21.3).

13. Issue a SET_CUR request with out-of-bound bSelector value (0,MAX+1). Verify that the
Selector Unit Control answers STALL. Check that the Request Error Code is correct
(6.20.44). If not, fail the test and throw the related assertion. If the Control answer is
different from STALL, issue a GET_CUR request. If the Control reports the bogus value,
fail the test and throw the related assertion (6.21.4).

14. Issue a GET_CUR request to store the current value. Then issue a SET_CUR request
with a value different from the stored value but valid. Issue a GET_CUR request to verify
that the value has been set. If not, fail the test and throw the related assertion (6.21.6).

6.5.2.2.3 Processing Unit Control Tests

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 145

TD 20.22 BackLight Compensation Control Test.

This test verifies that the Backlight Compensation Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Config Descriptor for the selected configuration by issuing a Get Configuration
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D8==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D8==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_DEF and GET_RES. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 146

TD 20.22

11. Issue GET_MIN, GET_MAX and GET_DEF requests and verify that they return a DEF
value inside the Min-Max Range. Verify also that MIN<=MAX. If not, fail the test and throw
the related assertions (6.20.14 and 6.20.11).

12. Issue a GET_RES request and check that the returned value is valid. If not, fail the test
and throw the related assertion (6.20.17).

13. Issue a SET_CUR request with out-of-bound wBackLightCompensation value. Verify that
the BackLight Compensation Control answers STALL. Check that the Request Error Code
is correct. If not, fail the test and throw the related assertion (6.20.44). If the Control
answer is different from STALL, issue a GET_CUR request. If the Control reports the
bogus value, fail the test and throw the related assertion (6.22.1).

14. Issue a SET_CUR Request with valid values for wBacklightCompensation. Verify that the
value have been set. If not, fail the test and throw the related assertion (6.22.2).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 147

TD 20.23 Brightness Control Test.

This test verifies that the Brightness Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D0==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D0==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_DEF and GET_RES. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 148

TD 20.23

11. Issue a GET_RES request, verify that the returned value is 1. If not fail the test and throw
the related assertion (6.22.12).

12. Issue GET_MIN, GET_MAX and GET_DEF requests and verify that they return a DEF
value inside the Min-Max Range. Verify also that MIN<=MAX. If not, fail the test and throw
the related assertions (6.20.12 and 6.20.11).

13. Issue a SET_CUR request with out-of-bound wBrigtness value. Verify that the Brightness
Control answers STALL. Check that the Request Error Code is correct. If not, fail the test
and throw the related assertion (6.20.44). If the Control answer is different from STALL,
issue a GET_CUR request. If the Control reports the bogus value, fail the test and throw
the related assertion (6.22.11).

14. Issue a SET_CUR Request with valid values for wBrightness. Verify that the value have
been set. If not, fail the test and throw the related assertion (6.22.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 149

TD 20.24 Contrast Control Test.

This test verifies that the Contrast Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D1==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D1==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_DEF and GET_RES. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 150

TD 20.24

11. Issue a GET_RES request, verify that the returned value is 1. If not fail the test and throw
the related assertion (6.22.22).

12. Issue GET_MIN, GET_MAX and GET_DEF requests and verify that they return a DEF
value inside the Min-Max Range. Verify also that MIN<=MAX. If not, fail the test and
throw the related assertions (6.20.11 and 6.20.12).

13. Issue a SET_CUR request with out-of-bound wContrast value. Verify that the Contrast
Control answers STALL. Check that the Request Error Code is correct. If not, fail the test
and throw the related assertion (6.20.44). If the Control answer is different from STALL,
issue a GET_CUR request. If the Control reports the bogus value, fail the test and throw
the related assertion (6.22.21).

14. Issue a SET_CUR Request with valid values for wContrast. Verify that the value have
been set. If not, fail the test and throw the related assertion (6.22.20).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 151

TD 20.25 Gain Control Test.

This test verifies that the Gain Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D9==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D9==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_DEF and GET_RES. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 152

TD 20.25

11. Issue a GET_RES request, verify that the returned value is 1. If not fail the test and throw
the related assertion (6.22.32).

12. Issue GET_MIN, GET_MAX and GET_DEF requests and verify that they return a DEF
value inside the Min-Max Range. Verify also that MIN<=MAX. If not, fail the test and
throw the related assertions (6.20.11 and 6.20.12).

13. Issue a SET_CUR request with out-of-bound wGain value. Verify that the Gain Control
answers STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44). If the Control answer is different from STALL, issue
a GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion (6.22.31).

14. Issue a SET_CUR Request with valid values for wBrightness. Verify that the value have
been set. If not, fail the test and throw the related assertion (6.22.30).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 153

TD 20.26 Power Line Frequency Control Test.

This test verifies that the Power Line Frequency Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get Config
Descriptor command with a length of wTotalLength from the data returned in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D10==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D10==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (bPowerLineFrequency==0,1 or 2). If not, fail the test and throw the
related assertion (6.22.41). If the request did not success, check the Request Error Code
Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the
test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO and GET_DEF. Issue all those request and verify that the request succeeded.
If not, fail the test and throw the related assertion (6.20.7). Verify also that if other
requests are supported GET_LEN, GET_MIN, GET_MAX and GET_RES. If the answers
is STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 154

TD 20.26

11. Issue a GET_DEF request, verify that the returned value is 0,1 or 2. If not fail the test and
throw the related assertion (6.22.42)

12. Issue a SET_CUR with an invalid value (other than 0,1 or 2). Verify that the Gain Control
answers STALL. Check that the Request Error Code is correct. If not, fail the test and
throw the related assertion (6.20.44). If the Control answer is different from STALL, issue
a GET_CUR request. If the Control reports the bogus value, fail the test and throw the
related assertion (6.22.40).

13. Issue a SET_CUR with a valid value. Verify that the request succeeded and that the
correct value has been set. If not, fail the test and throw the related assertion (6.22.43).

TD 20.27 Hue Control Test.

This test verifies that the Hue Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D2==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D2==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_DEF and GET_RES. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 155

TD 20.27 10. In the Processing Unit Descriptor, if D11 in bmControls is set. If the Hue, Auto Control is
supported and is in Auto Mode (bHueAuto=1) issue a GET_INFO Request and verify that
D2 and D3 are set. If not, fail the test and throw the related assertion (6.22.60).

11. If the control is in Auto Mode. Issue a set Request to Hue, Auto Control with a bHueAuto
value of 0 to disable the auto Mode. Verify that an asynchronous notification is sent to the
Hue Control to notify of the change. If not, fail the test and throw the related assertion
(6.22.65).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

e. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

13. Issue GET_MIN and GET_MAX request to store Min and Max values for the wHue value.
Verify that Min and Max are in the range –18000 to +18000 and that MIN<=MAX. If not,
fail the test and throw the related assertion (6.22.50, 6.22.51 and 6.20.12).

14. Issue a GET_DEF Request and verify that the value returned is 0. If not fail the test and
throw the related assertion (6.22.52).

15. Issue a GET_RES Request and verify that the value returned is valid. If not fail the test
and throw the related assertion (6.20.18).

16. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion. Repeat this test
with all the values in the Min-Max Range, fail the test and throw the related assertion if the
test does not succeed (6.22.53).

17. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value(MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion (6.20.44
and 6.22.54).

18. Issue a set Request to the Hue, Auto Control with a bHueAuto value of 1 to enable the
auto Mode. Verify that an asynchronous notification is sent to the Hue Control to notify of
the change. If not, fail the test and throw the related assertion (6.22.65).

19. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.22.60).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.22.66).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 156

TD 20.28 Hue, Auto Control Test.

This test verifies that the Hue, Auto Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D11==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D11==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (bHueAuto==0 or 1). If not, fail the test and throw the related assertion
(6.22.62). If the request did not success, check the Request Error Code Control (issue a
GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and throw
the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO and GET_DEF. Issue all those request and verify that the request succeeded.
If not, fail the test and throw the related assertion (6.20.7). Verify also that if other
requests are supported GET_LEN, GET_MIN, GET_MAX, and GET_RES. If the answers
is STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 157

TD 20.28

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue a SET_CUR with a value of 1, verify that the request succeeded by issuing a
GET_CUR request and then try to issue a SET_CUR request to the Hue Control. If the
Hue Control answer STALL. Check that the Request Error Code is correct. Check that the
request did not succeed. If not, fail the test and throw the related assertion (6.22.66).
Verify also that an asynchronous notification has been sent to the Hue Control to notify of
the change. If not, fail the test and throw the related assertion (6.22.65).

12. Issue a GET_DEF Request and verify that the value returned is 0or 1. If not fail the test
and throw the related assertion (6.22.63).

13. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value(>1). Verify
that the device answers STALL. Check that the Request Error Code is correct. If not fail
the test and throw the related assertion (6.20.44 and 6.22.61).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 158

TD 20.29 Saturation Control Test.

This test verifies that the Saturation Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D3==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D3==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 159

TD 20.29

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the wSaturation
value. Verify that MIN<=MAX. If not, fail the test and throw the related assertion (6.20.12).
Issue a GET_DEF Request and verify that the value returned between the Min-Max
Range. If not fail the test and throw the related assertion (6.20.11).

12. Issue a GET_RES request and verify that the answer is 1. If not, fail the test and throw the
related assertion (6.22.72).

13. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.22.70). Repeat
this test with all values in the Min-Max Range, fail the test and throw the related assertion
if the test does not succeed (6.22.70).

14. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value(MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion (6.22.71
and 6.20.44).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 160

TD 20.30 Sharpness Control Test.

This test verifies that the Sharpness Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D4==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D4==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 161

TD 20.30

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the wSharpness
value. Verify that MIN<=MAX. If not, fail the test and throw the related assertion (6.20.12)
Issue a GET_DEF Request and verify that the value returned between the Min-Max
Range. If not fail the test and throw the related assertion (6.20.11).

12. Issue a GET_RES request and verify that the answer is 1. If not, fail the test and throw the
related assertion (6.22.82).

13. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.22.80). Repeat
this test with all values in the Min-Max Range, fail the test and throw the related assertion
if the test does not succeed (6.22.80).

14. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value(MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion (6.22.81).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 162

TD 20.31 Gamma Control Test.

This test verifies that the Gamma Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D5==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D5==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 163

TD 20.31

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue a GET_RES Request and verify that the value returned is valid. If not fail the test
and throw the related assertion (6.20.18).

12. Issue GET_MIN and GET_MAX request to store Min and Max values for the wGamma
value. Verify that min is >=1 and MAX is <=500 and MIN<=MAX. If not, fail the test and
throw the related assertions (6.22.90 and 6.22.91). Verify that MIN<MAX. If not, fail the
test and throw the related assertion (6.20.12) Issue a GET_DEF Request and verify that
the value returned is between the Min-Max Range. If not fail the test and throw the related
assertion (6.20.11).

13. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.22.92). Repeat
this test with all values in the Min-Max Range, fail the test and throw the related assertion
if the test does not succeed (6.22.92).

14. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion (6.20.44
and 6.22.93).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 164

TD 20.32 White Balance Temperature Control Test.

This test verifies that the White Balance Temperature Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D6==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D6==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (in the range of 2800 to 6500). If not, fail the test and throw the related
assertion (6.20.17). If the request did not success, check the Request Error Code Control
(issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and
throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO,
GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and verify that
the request succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify
also that if other requests are supported SET_CUR, GET_LEN. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 165

TD 20.32 10. In the Processing Unit Descriptor, if D12 in bmControls is set. If the White Balance
Temperature, Auto Control is supported and is in Auto Mode
(wWhiteBalanceTemperatureAuto=1) issue a GET_INFO Request and verify that D2 and
D3 are set. If not, fail the test and throw the related assertion (6.22.110).

11. If the control is in Auto Mode. Issue a set Request to White balance Temperature, Auto
Control with a wWhiteBalanceTemperatureAuto value of 0 to disable the auto Mode.
Verify that an asynchronous notification is sent to the White Balance Temperature Control
to notify of the change. If not, fail the test and throw the related assertion (6.22.115).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

e. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

13. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wWhiteBalanceTemperature value. Verify that min is <=2800 and MAX is >=6500 and that
MIN<=MAX. if not, fail the test and throw the related assertions (6.20.12, 6.22.100 and
6.22.101). Issue a GET_DEF Request and verify that the value returned is between the
Min-Max Range. If not fail the test and throw the related assertion (6.20.11).

14. Issue a GET_RES Request and verify that the value returned is valid. If not fail the test
and throw the related assertion (6.20.18).

15. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.22.102). Repeat
this test with all values in the Min-Max Range, fail the test and throw the related assertion
if the test does not succeed (6.22.102).

16. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value(MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion (6.20.44
and 6.22.103).

17. Issue a set Request to the Whit Balance Temperature, Auto Control with a
wWhiteBalanceTemperatureAuto value of 1 to enable the auto Mode. Verify that an
asynchronous notification is sent to the White Balance Temperature Control to notify of
the change. If not, fail the test and throw the related assertion (6.22.115).

18. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.22.110).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.22.116).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 166

TD 20.33 White Balance Temperature, Auto Control Test.

This test verifies that the White Balance Temperature, Auto Control is compliant with the
USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D12==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D12==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (0 or 1). If not, fail the test and throw the related assertion (6.22.112). If
the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO and GET_DEF. Issue all those request and verify that the request succeeded.
If not, fail the test and throw the related assertion (6.20.7). Verify also that if other
requests are supported GET_LEN, GET_MIN, GET_MAX, and GET_RES. If the answers
is STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 167

TD 20.33

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue a GET_DEF Request and verify that the value returned is 0 or 1. If not fail the test
and throw the related assertion (6.22.113).

12. Issue a SET_CUR Request with value of 1 (Auto Mode enabled) and now issue a
SET_CUR on the White Balance Temperature Control and verify that the request does not
success, device answers STALL. If not, fail the test and throw the related assertion
(6.22.116).

13. Issue a SET_CUR request with a value equal to a value different from the default value.
Verify that the request succeeded and issue a GET_CUR Request to verify that the value
has been set. If not, fail the test and throw the related assertion (6.22.114). Verify also that
an asynchronous notification has been sent by the White Balance Temperature Control to
notify of the change. If not, fail the test and throw the related assertion (6.22.115).

14. If SET_CUR is supported. Issue a SET_CUR request with invalid value(value >1). Verify
that the device answers STALL. Check that the Request Error Code is correct. If not fail
the test and throw the related assertion (6.20.44 and 6.22.111).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 168

TD 20.34 White Balance Component Control Test.

This test verifies that the White Balance Component Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D7==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D7==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (in the range of 2800 to 6500). If not, fail the test and throw the related
assertion (6.20.17). If the request did not success, check the Request Error Code Control
(issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and
throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO,
GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and verify that
the request succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify
also that if other requests are supported SET_CUR, GET_LEN. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 169

TD 20.34 10. In the Processing Unit Descriptor, if D13 in bmControls is set. If the White Balance
Component, Auto Control is supported and is in Auto Mode
(wWhiteBalanceComponentAuto=1) issue a GET_INFO Request and verify that D2 and
D3 are set. If not, fail the test and throw the related assertion (6.22.130).

11. If the control is in Auto Mode. Issue a set Request to White Balance Component, Auto
Control with a wWhiteBalanceComponentAuto value of 0 to disable the auto Mode. Verify
that an asynchronous notification is sent by the White Balance Component Control to
notify of the change. If not, fail the test and throw the related assertion (6.22.135).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

d. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

e. If the control is synchronous and SET_CUR supported, issue a SET_CUR
Request and verifies that it completes in less than 10 ms. If not fail the test
and throw the related assertion (6.20.10).

13. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wWhiteBalanceBlue and wWhiteBalanceRed values. Verify that MIN<=MAX. If not, fail the
test and throw the related assertions (6.22.123 and 6.22.124) Issue a GET_DEF Request
and verify that the value returned is between the Min-Max Range. If not fail the test and
throw the related assertions (6.22.125 and 6.22.126).

14. Issue a GET_RES Request and verify that the value returned is valid. If not fail the test
and throw the related assertion (6.20.18).

15. If SET_CUR is supported. Issue a SET_CUR request with values equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertions (6.22.120). Repeat
this test with all values in the Min-Max Range, fail the test and throw the related assertion
if the test does not succeeds (6.22.127 and 6.22.128).

16. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound values for
wWhiteBalanceBlue and wWhiteBalanceRed (MIN-1, MAX+1, LONG_MIN, LONG_MAX).
Verify that the device answers STALL. Check that the Request Error Code is correct. If
not fail the test and throw the related assertions (6.22.121 and 6.22.122).

17. Issue a set Request to the Whit Balance Temperature, Auto Control with a
wWhiteBalanceTemperatureAuto value of 1 to enable the auto Mode. Verify that an
asynchronous notification is sent to the White Balance Component Control to notify of the
change. If not, fail the test and throw the related assertion (6.22.135).

18. Issue a GET_INFO request:

a. Verify that the answer of the GET_INFO specifies that the control is in Auto
Mode. If not, fail the test and throw the related assertion (6.22.130).

b. Verify that the SET_CUR Request result in STALL. Check that the request
error code is correct. If not fail the test and throw the related assertion
(6.22.136).

c. Since the control is in Auto Mode, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 170

TD 20.35 White Balance Component, Auto Control Test.

This test verifies that the White Balance Component, Auto Control is compliant with the
USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D13==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D13==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (0 or 1). If not, fail the test and throw the related assertion (6.22.132). If
the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO and GET_DEF. Issue all those request and verify that the request succeeded.
If not, fail the test and throw the related assertion (6.20.7). Verify also that if other
requests are supported GET_LEN, GET_MIN, GET_MAX, and GET_RES. If the answers
is STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 171

TD 20.35

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue a GET_DEF Request and verify that the value returned is 0 or 1. If not fail the test
and throw the related assertion (6.22.133).

12. Issue a SET_CUR Request with value of 1 (Auto Mode enabled) and now issue a
SET_CUR on the White Balance Temperature Control and verify that the request does not
success, device answers STALL. If not, fail the test and throw the related assertion
(6.22.136).

13. Issue a SET_CUR request with a value equal to a value different from the default value.
Verify that the request succeeded and issue a GET_CUR Request to verify that the value
has been set. If not, fail the test and throw the related assertion (6.22.134). Verify also that
an asynchronous notification has been sent to the Hue Control to notify of the change. If
not, fail the test and throw the related assertion (6.22.135).

14. If SET_CUR is supported. Issue a SET_CUR request with invalid value(value >1). Verify
that the device answers STALL. Check that the Request Error Code is correct. If not fail
the test and throw the related assertion (6.20.44 and 6.22.131).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 172

TD 20.36 Digital Multiplier Control Test

This test verifies that the Digital Multiplier Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D14==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D14==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 173

TD 20.36

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wMultiplierStep value. Verify that MIN<=MAX. If not, fail the test and throw the related
assertion (6.20.12). Issue a GET_DEF Request and verify that the value returned
between the Min-Max Range. If not fail the test and throw the related assertion (6.20.11).

12. Issue a GET_RES request and verify that the answer is 1. If not, fail the test and throw the
related assertion (6.22.142).

13. Issue a GET_CUR request on the Digital Multiplier Limit Control (If supported). Update
then the range of valid values according to the value retrieved from the Digital Multiplier
Limit Control.

14. Issue a SET_CUR request with a value equal to the default value. Verify that the request
succeeded and issue a GET_CUR Request to verify that the value has been set. If not,
fail the test and throw the related assertion (6.22.140). Repeat this test with all values in
the Min-LimitMax Range, fail the test and throw the related assertion if the test does not
succeed.

15. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value(MIN-1,
MAX+1, LONG_MIN, LONG_MAX and Zlimit+1). Verify that the device answers STALL.
Check that the Request Error Code is correct. If not fail the test and throw the related
assertion (6.20.44 and 6.22.141).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 174

TD 20.37 Digital Multiplier Limit Control Test

This test verifies that the Digital Multiplier Limit Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D15==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D15==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.17). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and
verify that the request succeeded. If not, fail the test and throw the related assertion
(6.20.7). Verify also that if other requests are supported GET_LEN. If the answers is
STALL, then check the Request Error Code Control (issue a GET_CUR Request) and
verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw
the related assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 175

TD 20.38

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

c. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.20.9)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.20.10).

11. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wMultiplierLimit value. Verify that MIN<MAX. If not, fail the test and throw the related
assertion (6.20.12). Issue a GET_DEF Request and verify that the value returned is
between the Min-Max Range. If not fail the test and throw the related assertion (6.20.11).

12. Issue a GET_RES Request and verify that it returns 1. If not, fail the test and throw the
related assertion (6.22.152).

13. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.22.150).

14. Issue a SET_CUR Request to the Digital Multiplier Control to set its value to Max. Issue
now a SET_CUR request to the Digital Multiplier Limit Control. Verify that the request
succeeded. If not, fail the test and throw the related assertion (6.22.150). Verify also that
the a Control Change notification is sent by the Digital Multiplier Limit Control to notify that
its value has been updated according to new limit. If not, fail the test and throw the related
assertion (). Repeat the same procedure for values inside the range in decreasing order.

15. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (MIN-1,
MAX+1, LONG_MIN, LONG_MAX). Verify that the device answers STALL. Check that the
Request Error Code is correct. If not fail the test and throw the related assertion
(6.22.151).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 176

TD 20.43 Analog Video Standard Control Test

This test verifies that the Analog Video Standard Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

7. Check the bmControls field of the Processing Unit Descriptor. If D16==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D16==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.22.155). If the
request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR and GET_INFO. Issue
all those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported GET_LEN. If the
answers is STALL, then check the Request Error Code Control (issue a GET_CUR
Request) and verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the
test and throw the related assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Get requests is supported (D1==1). If not, fail the test and throw
the related assertion (6.20.6).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 177

TD 20.44 Analog Video Lock Status Control Test

This test verifies that the Analog Video Lock Status Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

11. Execute the Init procedure

12. Put the device in the desired state

13. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

14. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

15. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

16. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Processing Unit Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_PROCESSING_UNIT. If no Processing Unit Descriptors if found, stop the test. If a
Processing Unit is found, retrieve the Unit ID and begin the test on the Control.

17. Check the bmControls field of the Processing Unit Descriptor. If D17==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D17==1 (Control is supported).

18. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.22.157). If the
request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.4 and 6.20.42).

19. Verify that the control supports all mandatory requests: GET_CUR and GET_INFO. Issue
all those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported GET_LEN. If the
answers is STALL, then check the Request Error Code Control (issue a GET_CUR
Request) and verifies that the Request Error Code is 0x07 (Invalid request).If not, fail the
test and throw the related assertion (6.20.43).

20. Issue a GET_INFO request:

c. Verify that Get requests is supported (D1==1). If not, fail the test and throw
the related assertion (6.20.6).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

6.5.2.2.4 Extension Unit Control Test

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 178

TD 20.38 Extension Unit Control Test

This test verifies that the Extension Unit Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Extension Unit Descriptor (bDescriptorType
== CS_INTERFACE and bDescriptorSubType == VC_EXTENSION_UNIT. If no Extension
Unit Descriptors if found, stop the test. If an Extension Unit is found, retrieve the Unit ID
and begin the test on the Control.

7. For every Control specified in bmControls and with a value less than bNumControls,
execute steps 8 to 11. For every other Control verify that they are not supported. If not, fail
the test and throw the related assertions (6.22.161 and 6.22.162).

8. Issue a GET_LEN request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.20.13). If the request
did not success, check the Request Error Code Control (issue a GET_CUR Request) and
if its value is 0x06(Invalid Control), then fail the test and throw the related assertion
(6.22.160 and 6.20.42).

9. The LEN value is now the length of Parameter returned in every request, verify that every
supported request return the correct Length. If not, fail the test and throw the related
assertion (6.20.15).

10. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO,
GET_MIN, GET_MAX, GET_RES and GET_DEF. Issue all those request and verify that
the request succeeded. If not, fail the test and throw the related assertion (6.20.7). Verify
also that if other requests are supported SET_CUR, GET_LEN. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

11. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==optional). If
not, fail the test and throw the related assertion (6.20.6).

b. If the control is Auto-Update or Asynchronous, verify that a Status Interrupt
Endpoint is present. If not, fail the test and throw the related assertion
(6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 179

6.5.2.2.5 Media Transport Terminal Control Tests

TD 20.39 Transport Control Test

This test verifies that the Transport Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Input Or Output Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL or bDescriptorSubType == VC_OUTPUT_TERMINAL. If no Input
or Output Terminal Descriptors are found, stop the test. For every Input or Output
Terminal Descriptor found, check that wTerminalType=ITT_MEDIA_TRANSPORT_INPUT
or wTerminalType=OTT_MEDIA_TRANSPORT_TERMINAL_OUTPUT. If we found an
MTT, retrieve the Terminal ID and begin the test on the Control.

7. Check the bmControls field of the Media Terminal Descriptor. If D0==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D0==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid. If not, fail the test and throw the related assertion (6.22.177). If the
request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO. Issue all
those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported SET_CUR,
GET_LEN, GET_MIN, GET_MAX, GET_RES and GET_DEF. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 180

TD 20.39

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If SET_CUR is supported, verify that the control is reported as
Asynchronous (D4 set in GET_INFO). If not, fail the test and throw the
related assertion (6.22.178).

d. Verify that the control is reported as Auto Update (D3 set in GET_INFO). If
not, fail the test and throw the related assertion (6.22.179).

e. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

f. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

11. If SET_CUR is supported, retrieve the bmTransportMode Bitmap. For every Transport
Mode supported, issue a SET_CUR with the value of the Transport Mode. If the control is
Autoupdate or Asynchronous, verify that the correct Control Change have been issued by
the Control. If not, fail the test and throw the related assertion. Verify that the request
succeeded by issuing a GET_CUR. If not, fail the test and throw the related assertion
(6.22.170).

12. If SET_CUR is supported, for every Transport Mode that is not supported, issue a
SET_CUR with the value of the Transport Mode. Verify that the request result in s STALL
and that no Control Change Interrupt is sent. If not, fail the test and throw the related
assertion (6.22.180).

13. If SET_CUR is supported, for every reserved value of bmTransportMode, issue a
SET_CUR with the reserved value. Verify that the request result in s STALL and that no
Control Change Interrupt is sent. If not, fail the test and throw the related assertion
(6.22.171, 6.22.172, 6.22.173, 6.22.174, 6.22.175).

14. If SET_CUR is supported, for every Status Mode value of bmTransportMode, issue a
SET_CUR with the status value. Verify that the request result in s STALL and that no
Control Change Interrupt is sent. If not, fail the test and throw the related assertion
(6.22.176).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 181

TD 20.40 Absolute Track Number (ATN) Control Test

This test verifies that the Absolute Track Number (ATN) Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Input Or Output Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL or bDescriptorSubType == VC_OUTPUT_TERMINAL. If no Input
or Output Terminal Descriptors are found, stop the test. For every Input or Output
Terminal Descriptor found, check that wTerminalType=ITT_MEDIA_TRANSPORT_INPUT
or wTerminalType=OTT_MEDIA_TRANSPORT_TERMINAL_OUTPUT. If we found an
MTT, retrieve the Terminal ID and begin the test on the Control.

7. Check the bmControls field of the Media Terminal Descriptor. If D1==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D1==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (no reserved bits Set in bmMediumType, no reserved bits in
dwATN_Data). If not, fail the test and throw the related assertion (6.22.190 and 6.22.191).
If the request did not success, check the Request Error Code Control (issue a GET_CUR
Request) and if its value is 0x06(Invalid Control), then fail the test and throw the related
assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO. Issue all
those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported SET_CUR,
GET_LEN, GET_MIN, GET_MAX, GET_RES and GET_DEF. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 182

TD 20.40 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If SET_CUR is supported, verify that the control is reported as
Asynchronous (D4 set in GET_INFO). If not, fail the test and throw the
related assertion (6.22.195).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

e. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

11. If SET_CUR is supported. Issue a SET_CUR request with a correct dwATN_Data value to
move the media to a different position. If the control is Autoupdate or Asynchronous, verify
that the correct Control Change have been issued by the Controls (Transport and ATN). If
not, fail the test and throw the related assertion (6.22.197). Verify that the request
succeeded by issuing a GET_CUR. If not, fail the test and throw the related assertion
(6.22.192).

12. If SET_CUR is supported. Issue a SET_CUR request with an invalid dwATN_Data value
(some of the reserved bits D24..D31 set).Verify that the request results in STALL and that
no Control Change Interrupt is sent. If not, fail the test and throw the related assertion
(6.22.194).

13. If SET_CUR is supported. Issue a SET_CUR request with an invalid bmMediumType
value (some of the reserved bits D4..D7 set).Verify that the request results in STALL and
that no Control Change Interrupt is sent. If not, fail the test and throw the related assertion
(6.22.193).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 183

TD 20.41 Media Information Control Test

This test verifies that the Media Information Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Input Or Output Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL or bDescriptorSubType == VC_OUTPUT_TERMINAL. If no Input
or Output Terminal Descriptors are found, stop the test. For every Input or Output
Terminal Descriptor found, check that wTerminalType=ITT_MEDIA_TRANSPORT_INPUT
or wTerminalType=OTT_MEDIA_TRANSPORT_TERMINAL_OUTPUT. If we found an
MTT, retrieve the Terminal ID and begin the test on the Control.

7. Check the bmControls field of the Media Terminal Descriptor. If D2==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D2==1 (Control is supported).

8. Issue a GET_CUR request. If the request completed with success, verifies that value
returned is valid (no reserved bits Set in bmMediaType, no reserved bits in
bmWriteProtect). If not, fail the test and throw the related assertion (6.22.200 and
6.22.201). If the request did not success, check the Request Error Code Control (issue a
GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the test and throw
the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO. Issue all
those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported SET_CUR,
GET_LEN, GET_MIN, GET_MAX, GET_RES and GET_DEF. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported(D0==1 and D1==0). If not,
fail the test and throw the related assertion (6.20.6).

b. If D1==0(SET_CUR Request not supported) verify that the SET_CUR
Request is not supported. If not fail the test and throw the related assertion
(6.20.5).

c. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 184

TD 20.42 Time Code Information Control Test

This test verifies that the Time Code Information Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find Input Or Output Terminal Descriptor
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VC_INPUT_TERMINAL or bDescriptorSubType == VC_OUTPUT_TERMINAL. If no Input
or Output Terminal Descriptors are found, stop the test. For every Input or Output
Terminal Descriptor found, check that wTerminalType=ITT_MEDIA_TRANSPORT_INPUT
or wTerminalType=OTT_MEDIA_TRANSPORT_TERMINAL_OUTPUT. If we found an
MTT, retrieve the Terminal ID and begin the test on the Control.

7. Check the bmControls field of the Media Terminal Descriptor. If D3==0, issue a
GET_CUR request on the Control and verify that the answer is STALL and the Request
Error Code Control is set to 0x06 (invalid control). If not fail the test and throw the related
assertions (6.20.3 and 6.20.42). Do Step 8 to 13 only if D3==1 (Control is supported).

8. Issue a GET_CUR request. If the request did not success, check the Request Error Code
Control (issue a GET_CUR Request) and if its value is 0x06(Invalid Control), then fail the
test and throw the related assertion (6.20.4 and 6.20.42).

9. Verify that the control supports all mandatory requests: GET_CUR, GET_INFO. Issue all
those request and verify that the request succeeded. If not, fail the test and throw the
related assertion (6.20.7). Verify also that if other requests are supported SET_CUR,
GET_LEN, GET_MIN, GET_MAX, GET_RES and GET_DEF. If the answers is STALL,
then check the Request Error Code Control (issue a GET_CUR Request) and verifies that
the Request Error Code is 0x07 (Invalid request).If not, fail the test and throw the related
assertion (6.20.43).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 185

TD 20.42 10. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==Optional).
If not, fail the test and throw the related assertion (6.20.6).

b. If D1==1 in GET_INFO. Verify that the SET_CUR Request is supported. If
not fail the test and throw the related assertion (6.20.7).

c. If SET_CUR is supported, verify that the control is reported as
Asynchronous (D4 set in GET_INFO). If not, fail the test and throw the
related assertion (6.22.211).

d. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.20.8).

e. If the control is Asynchronous and SET_CUR supported, verify that Control
Change Interrupts are generated on SET_CUR (Timeout 5s). Issue a
SET_CUR request and wait during 5 s for a Control Change Interrupt. If no
Control Change Interrupt,fail the test and throw the related assertion (6.20.9)

11. If SET_CUR is supported. Issue a SET_CUR request with a correct bdcFrame,
bcdSecond, bcdMinute, bcdHour value to move the media to a different position. If the
control is Autoupdate or Asynchronous, verify that the correct Control Change have been
issued by the Controls (Transport and Media Information). If not, fail the test and throw the
related assertion (6.22.213). Verify that the request succeeded by issuing a GET_CUR. If
not, fail the test and throw the related assertion (6.22.210).

6.5.3 Video Streaming Control Tests.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 186

TD 23.1 Video Probe and Commit Controls Test

This test verifies that the Probe and Commit Controls are compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every Format Descriptors (bDescriptorType
== CS_INTERFACE and bDescriptorSubType == VS_FORMAT_*.

7. For every Format Descriptor found, if the format is a frame based format, parse the
descriptors to find every associated Frame descriptors (bDescriptorType ==
CS_INTERFACE and bDescriptorSubType == VS_FRAME_*).

8. Verify that the Probe Control supports all mandatory and Request and that the Data
Length returned has a correct size. If not, fail the test and throw the related assertions
(6.20.15 and 6.23.27)

9. For every Frame (or Format if the Format is not a frame based format) descriptor found,
repeat steps 9 to 14 :

10. Get the negotiable fields by retrieving the bmaControls[bFormatIndex] field of the Header
Descriptor for the currently tested format. If the Format is Stream-based, verify that the
Header does not advertise that the Format support Frame Interval, KeyFrameRate or
PFrameRate as a parameter. If not, fail the test and throw the related assertions (6.23.7,
6.23.8 and 6.23.9).

11. Issue a SET_CUR to Probe Control to initialize Format and Frame Index.

12. For every Frame Interval (if applicable, i.e. if the Format is Frame-based):

a. Issue a SET_CUR in Probe Control with the current values of Format/Frame
indexes and Frame Interval (If applicable), all other fields are set to 0.

b. Issue a GET_MIN to probe Control and store the Min values for
compression fields. Verify that the Request succeeded. If not, fail the test
and throw the related assertion (6.23.28).

c. Issue a GET_MAX to probe control and store the Max values for
compression fields. Verify that the Request succeeded. If not, fail the test
and throw the related assertion (6.23.29). Verify that MIN<=MAX for every
parameter. If not, fail the test and throw the related assertions (6.23.11,
6.23.15, 6.23.19 and 6.23.23).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 187

TD 23.1

d. Issue a GET_DEF to probe control and store the Def values for compression
fields. Verify that the Request succeeded. If not, fail the test and throw the
related assertion (6.23.30). Verify that the value is valid. If not fail the test
and throw assertion the related assertion (6.23.12, 6.23.16, 6.23.20 and
6.23.24). Verify the values against the one specified in the Frame/Format
Descriptor. If they are not valid, fail the test and throw the related assertions.

e. Issue a GET_RES to probe control and store the RES value for compression
field. Verify that the Request succeeded. If not, fail the test and throw the
related assertion (6.23.31). Verify that the RES values are consistent with
MIN and MAX. If not, fail the test and throw the related assertion (6.23.13,
6.23.17, 6.23.21, 6.23.25). Verify also that if RES=0, then MIN=MAX. if not,
fail the test and throw the related assertions (6.23.14, 6.23.18, 6.23.22,
6.23.26).

f. For every possible value of the compression parameters, issue a SET_CUR
to Probe Control with the bmHint set to zero since we cycle only through
Frame Intervals. Then issue a GET_CUR to retrieve the negotiated values.
Verify that the Request succeeded, if not fail the test and throw the related
assertion (6.23.32). Save the MaxPayloadTransferSize negotiated

g. Verify that the MaxPaylaodTransferSize is achievable with the values
provided in the alternate setting. If not, fail the test and throw the related
assertion (6.23.1).

h. Verify that the negotiated MaxPaylaodTransferSize is lower than the
previous negotiated one. If not, fail the test and throw the related assertions
(6.23.2, 6.23.3, 6.23.4, 6.23.5 and 6.23.6).

13. For every Frame Interval (if applicable, i.e. if the Format is Frame-based):

a. Issue a SET_CUR in Probe Control with the current values of Format/Frame
indexes and Frame Interval (If applicable), all other fields are set to 0.

b. Issue a GET_MIN to probe Control and store the Min values for
compression fields. Verify that the Request succeeded. If not, fail the test
and throw the related assertion (6.23.28).

c. Issue a GET_MAX to probe control and store the Max values for
compression fields. Verify that the Request succeeded. If not, fail the test
and throw the related assertion (6.23.29). Verify that MIN<=MAX for every
parameter. If not, fail the test and throw the related assertions (6.23.11,
6.23.15, 6.23.19 and 6.23.23).

d. Issue a GET_DEF to probe control and store the Def values for compression
fields. Verify that the value is valid. If not fail the test and throw assertion the
related assertion (6.23.30). Verify that the value is valid. If not fail the test
and throw assertion the related assertion (6.23.12, 6.23.16, 6.23.20 and
6.23.24). Verify the values against the one specified in the Frame/Format
Descriptor. If they are not valid, fail the test and throw the related assertions.

e. Issue a GET_RES to probe control and store the RES value for compression
field. Verify that the RES values are consistent with MIN and MAX. If not, fail
the test and throw the related assertion (6.23.31). Verify that the RES values
are consistent with MIN and MAX. If not, fail the test and throw the related
assertion (6.23.13, 6.23.17, 6.23.21, 6.23.25). Verify also that if RES=0, then
MIN=MAX. if not, fail the test and throw the related assertions (6.23.14,
6.23.18, 6.23.22, 6.23.26).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 188

TD 23.1

f. For every negotiable parameter for the current Format/Frame:
KeyFrameRate, PFrameRate, CompQuality, CompWindowSize.

i. For every Value between MAX and MIN, by decrement of RES:

1. For every possible value of the compression parameters,
issue a SET_CUR to Probe Control with the bmHint set to
fixed/Variable according to the parameter we will cycle
through. Then issue a GET_CUR to retrieve the
negotiated values. Verify that the Request succeeded, if
not fail the test and throw the related assertion (6.23.32).
Save the MaxPayloadTransferSize negotiated

2. Verify that the MaxPaylaodTransferSize is achievable with
the values provided in the alternate setting. If not, fail the
test and throw the related assertion (6.23.1).

3. Verify that the negotiated MaxPaylaodTransferSize is
lower than the previous negotiated one. If not, fail the test
and throw the related assertions (6.23.2, 6.23.3, 6.23.4,
6.23.5 and 6.23.6).

14. For every Stream-Based Format Descriptor:

a. Issue a SET_CUR in Probe Control with the current values of Format Index,
all other fields being set to 0.

b. Issue a GET_MIN to probe Control and store the Min values for
compression fields. Verify that the Request succeeded. If not, fail the test
and throw the related assertion (6.23.28).

c. Issue a GET_MAX to probe control and store the Max values for
compression fields. Verify that the Request succeeded. If not, fail the test
and throw the related assertion (6.23.29). Verify that MIN<=MAX for every
parameter. If not, fail the test and throw the related assertions (6.23.11,
6.23.15, 6.23.19 and 6.23.23).

d. Issue a GET_DEF to probe control and store the Def values for compression
fields. Verify that the value is valid. If not fail the test and throw assertion the
related assertion (6.23.30). Verify that the value is valid. If not fail the test
and throw assertion the related assertion (6.23.12, 6.23.16, 6.23.20 and
6.23.24). Verify the values against the one specified in the Frame/Format
Descriptor. If they are not valid, fail the test and throw the related assertions.

e. Issue a GET_RES to probe control and store the RES value for compression
field. Verify that the RES values are consistent with MIN and MAX. If not, fail
the test and throw the related assertion (6.23.31). Verify that the RES values
are consistent with MIN and MAX. If not, fail the test and throw the related
assertion (6.23.13, 6.23.17, 6.23.21, 6.23.25). Verify also that if RES=0, then
MIN=MAX. if not, fail the test and throw the related assertions (6.23.14,
6.23.18, 6.23.22, 6.23.26).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 189

 f. For every negotiable parameter for the current Format/Frame: CompQuality,
CompWindowSize.

i. For every Value between MAX and MIN, by decrement of RES:

1. For every possible value of the compression parameters,
issue a SET_CUR to Probe Control with the bmHint set to
fixed/Variable according to the parameter we will cycle
through. Then issue a GET_CUR to retrieve the
negotiated values. Verify that the Request succeeded, if
not fail the test and throw the related assertion (6.23.32).
Save the MaxPayloadTransferSize negotiated

2. Verify that the MaxPaylaodTransferSize is achievable with
the values provided in the alternate setting. If not, fail the
test and throw the related assertion (6.23.1).

3. Verify that the negotiated MaxPaylaodTransferSize is
lower than the previous negotiated one. If not, fail the test
and throw the related assertions (6.23.2, 6.23.3, 6.23.4,
6.23.5 and 6.23.6).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 190

TD 23.2 Video Still Probe and Still Commit Controls Test

This test verifies that the Still Probe and Still Commit Controls are compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every Format Descriptors (bDescriptorType
== CS_INTERFACE and bDescriptorSubType == VS_FORMAT_*.

7. For every Format Descriptor found, if the format is a frame based format, parse the
descriptors to find every associated Frame descriptors (bDescriptorType ==
CS_INTERFACE and bDescriptorSubType == VS_FRAME_*).Parse the next Descriptor
for Still Image Frame Descriptor. If a Still Image Frame descriptor has been found
associated with the Format, execute steps 8 to 14.

8. Verify that the Still Probe Control supports all mandatory and Request and that the Data
Length returned has a correct size. If not, fail the test and throw the related assertions
(6.20.15 and 6.23.50)

9. For every Frame descriptor found, repeat steps 9 to 14 :

10. Issue a SET_CUR to Still Probe Control to initialize Format and Frame Index.

11. Issue a GET_MIN to Still Probe Control and store the Min values for bCompressionIndex
and dwMaxVideoFrameSize. Verify that the Request succeeded. If not, fail the test and
throw the related assertion (6.23.51). Verify that the returned values correspond to the
fields in the Still Image Frame Descriptor. If not fail the test and throw the related assertion
(6.23.63).

12. Issue a GET_MAX to Still Probe Control and store the Max values for bCompressionIndex
and dwMaxVideoFrameSize. Verify that the Request succeeded. If not, fail the test and
throw the related assertion (6.23.52). Verify that the returned values correspond to the
fields in the Still Image Frame Descriptor. If not fail the test and throw the related assertion
(6.23.63).Verify that MIN<=MAX for every parameter. If not, fail the test and throw the
related assertions (6.23.53 and 6.23.54).

13. Issue a GET_DEF to Still Probe Control and store the DEF values for bCompressionIndex
and dwMaxVideoFrameSize. Verify that the Request succeeded. If not, fail the test and
throw the related assertion (6.23.55). Verify that the returned values correspond to the
fields in the Still Image Frame Descriptor. If not fail the test and throw the related assertion
(6.23.63).Verify that MIN<=DEF<=MAX for every parameter. If not, fail the test and throw
the related assertions (6.23.56 and 6.23.57).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 191

 14. For every bCompressionIndex (retrieved in the corresponding field (bCompression(i)) of
the Still Image Frame Descriptor):

a. Issue a SET_CUR to Still Probe Control with the current values of
Format/Frame indexes and bCompressionIndex, all other fields are set to 0.

b. Then issue a GET_CUR to Still Probe Control to retrieve the negotiated
values. Verify that the Request succeeded, if not fail the test and throw the
related assertion (6.23.58). Save the MaxPayloadTransferSize Negotiated

c. Verify that the MaxPaylaodTransferSize is achievable with the values
provided in the alternate setting. If not, fail the test and throw the related
assertion (6.23.59).

d. Verify that the dwMaxVideoFrameSize specified by the Device correspond
to on of the sizes specified in the Still Image Frame Descriptor. If not, fail the
test and throw the related assertion (6.23.61).

e. Verify that the negotiated MaxPayloadTransferSize is lower than the
previous negotiated one. If not, fail the test and throw the related assertions
(6.23.60).

f. Issue a Commit to the Still Commit Control with the negotiated values and
verify that the request succeeds. If not fail the test and throw the related
assertion. (6.23.62)

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 192

TD 23.3 MJPEG Payload Header Validation Test

This test verifies that the MJPEG payload Header is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every MJPEG Format Descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FORMAT_MJPEG).

7. Parse the following Descriptor to find every MJPEG Frame descriptors (bDescriptorType
== CS_INTERFACE and bDescriptorSubType == VS_FRAME_MJPEG). For every Frame
Descriptor found do the following.

8. Issue a Probe and Commit negotiation to set the compression parameters and retrieve the
MaxPaylaodTransferSize. Attempt to select the corresponding alternate setting to start the
stream. If the Alternate setting selection succeeds, store the value returned by the Commit
Control and perform steps 9 to 10. Otherwise repeat step 8 with decreasing bandwidth
requirements.

9. Poll data from the Device for a complete duration of at least two Full Frames. This will
ensure that we will have stored an entire Frame. Parse all frame Header by monitoring
FID bits of BFH[0], stop parsing when the bit toggles. If the bit never toggles through all
the Frames, fail the test and throw the related assertion (6.23.80).

a. Verify that EOF bit of BFH[0] is not set for this Frame. If not, fail the test and
throw the related assertion (6.23.81).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.82).

c. If the SCR bit of BFH[0] is set, verify that the SCR field (6 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.83).

d. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 193

TD 23.3 10. Parse every following Stream header until a header with EOF bit set is found. If no Header
with EOF bit set is found, fail the test and throw the related assertion (6.23.86). For every
Stream Header parsed:

a. Verify that the FID field of BFH[0] is constant (No toggle). If not, fail the test
and throw the related assertion (6.23.87).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the PTS value of the first Stream Header. If not, fail the test
and throw the related assertion (6.23.88).

c. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

d. If the ERR bit of BFH[0] is set, issue a SET_CUR to the Stream Error Code
Control and verify that the value returned is different from 0. If not, fail the
test and throw the related assertion (6.23.89).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 194

TD 23.4 Uncompressed Payload Header Validation Test

This test verifies that the Uncompressed payload Header is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every Uncompressed Format Descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FORMAT_UNCOMPRESSED).

7. Parse the following Descriptor to find every Uncompressed Frame descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FRAME_UNCOMPRESSED). For every Frame Descriptor found do the following.

8. Issue a Probe and Commit negotiation to set the compression parameters and retrieve the
MaxPaylaodTransferSize. Attempt to select the corresponding alternate setting to start the
stream. If the Alternate setting selection succeeds, store the value returned by the Commit
Control and perform steps 9 to 10. Otherwise repeat step 8 with decreasing bandwidth
requirements.

9. Poll data from the Device for a complete duration of at least two Full Frames. This will
ensure that we will have stored an entire Frame. Parse all frame Header by monitoring
FID bits of BFH[0], stop parsing when the bit toggles. If the bit never toggles through all
the Frames, fail the test and throw the related assertion (6.23.80).

a. Verify that EOF bit of BFH[0] is not set for this Frame. If not, fail the test and
throw the related assertion (6.23.81).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.82).

c. If the SCR bit of BFH[0] is set, verify that the SCR field (6 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.83).

d. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 195

TD 23.4 10. Parse every following Stream header until a header with EOF bit set is found. If no Header
with EOF bit set is found, fail the test and throw the related assertion (6.23.86). For every
Stream Header parsed:

a. Verify that the FID field of BFH[0] is constant (No toggle). If not, fail the test
and throw the related assertion (6.23.87).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the PTS value of the first Stream Header. If not, fail the test
and throw the related assertion (6.23.88).

c. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

d. If the ERR bit of BFH[0] is set, issue a SET_CUR to the Stream Error Code
Control and verify that the value returned is different from 0. If not, fail the
test and throw the related assertion (6.23.89).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 196

TD 23.5 DV Payload Header Validation Test

This test verifies that the DV payload Header is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every DV Format Descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType == VS_FORMAT_DV).

7. Parse the following Descriptor to find every DV Frame descriptors (bDescriptorType ==
CS_INTERFACE and bDescriptorSubType == VS_FRAME_DV). For every Frame
Descriptor found do the following.

8. Issue a Probe and Commit negotiation to set the compression parameters and retrieve the
MaxPaylaodTransferSize. Attempt to select the corresponding alternate setting to start the
stream. If the Alternate setting selection succeeds, store the value returned by the Commit
Control and perform steps 9 to 10. Otherwise repeat step 8 with decreasing bandwidth
requirements.

9. Poll data from the Device for a complete duration of at least two Full Frames. This will
ensure that we will have stored an entire Frame. Parse all frame Header by monitoring
FID bits of BFH[0], stop parsing when the bit toggles. If the bit never toggles through all
the Frames, fail the test and throw the related assertion (6.23.80).

a. Verify that EOF bit of BFH[0] is not set. If not, fail the test and throw the
related assertion (6.23.81).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.82).

c. If the SCR bit of BFH[0] is set, verify that the SCR field (6 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.83).

d. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 197

TD 23.5 10. For every Stream Header parsed:

a. Verify that the EOF bit is never set. If not fail the test and throw the related
assertion (6.23.81).

b. Verify that the FID field of BFH[0] is constant (No toggle). If not, fail the test
and throw the related assertion (6.23.87).

c. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the PTS value of the first Stream Header. If not, fail the test
and throw the related assertion (6.23.88).

d. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

e. If the ERR bit of BFH[0] is set, issue a SET_CUR to the Stream Error Code
Control and verify that the value returned is different from 0. If not, fail the
test and throw the related assertion (6.23.89).

f. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 198

TD 23.6 Frame based Payload Header Validation Test

This test verifies that the Frame based payload Header is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every Frame Based Format Descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FORMAT_FRAME_BASED).

7. Parse the following Descriptor to find every Frame Based Frame descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FRAME_FRAME_BASED). For every Frame Descriptor found do the following.

8. Issue a Probe and Commit negotiation to set the compression parameters and retrieve the
MaxPaylaodTransferSize. Attempt to select the corresponding alternate setting to start the
stream. If the Alternate setting selection succeeds, store the value returned by the Commit
Control and perform steps 9 to 10. Otherwise repeat step 8 with decreasing bandwidth
requirements.

9. Poll data from the Device for a complete duration of at least two Full Frames. This will
ensure that we will have stored an entire Frame. Parse all frame Header by monitoring
FID bits of BFH[0], stop parsing when the bit toggles. If the bit never toggles through all
the Frames, fail the test and throw the related assertion (6.23.80).

a. Verify that EOF bit of BFH[0] is not set for this Frame. If not, fail the test and
throw the related assertion (6.23.81).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.82).

c. If the SCR bit of BFH[0] is set, verify that the SCR field (6 bytes) is set and is
consistent with the dwClockFrequency value specified in the stored Probe
Commit value. If not, fail the test and throw the related assertion (6.23.83).

d. Verify also that the STI field of BFH[0] is set to zero. If not, fail the test and
throw the related assertion (6.23.84).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 199

TD 23.6 10. Parse every following Stream header until a header with EOF bit set is found. If no Header
with EOF bit set is found, fail the test and throw the related assertion (6.23.86). For every
Stream Header parsed:

a. Verify that the FID field of BFH[0] is constant (No toggle). If not, fail the test
and throw the related assertion (6.23.87).

b. If the PTS bit of BFH[0] is set, verify that the PTS field (4 bytes) is set and is
consistent with the PTS value of the first Stream Header. If not, fail the test
and throw the related assertion (6.23.88).

c. Verify also that the STI field of BFH[0] is not set. If not, fail the test and throw
the related assertion (6.23.84).

d. If the ERR bit of BFH[0] is set, issue a SET_CUR to the Stream Error Code
Control and verify that the value returned is different from 0. If not, fail the
test and throw the related assertion (6.23.89).

e. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 200

TD 23.7 MPEG2 TS Payload Header Validation Test

This test verifies that the MPEG2 TS payload Header is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every MPEG2 TS Format Descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FORMAT_MPEG2TS).

7. Issue a Probe and Commit negotiation to set the compression parameters and retrieve the
MaxPaylaodTransferSize. Attempt to select the corresponding alternate setting to start the
stream. If the Alternate setting selection succeeds, store the value returned by the Commit
Control and perform steps 9 to 11. Otherwise repeat step 8 with decreasing bandwidth
requirements.

8. Poll data from the Device for a complete duration of at least two Full Frames. This will
ensure that we will have stored an entire Frame.

9. For every Stream header verify that:

a. Verify that the PTS field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.100).

b. Verify that the SCR field of BFH[0] is set to zero. If not, fail the test and
throw the related assertion (6.23.101).

c. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

d. Verify that the STI field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.84).

e. If the ERR bit of BFH[0] is set, issue a SET_CUR to the Stream Error Code
Control and verify that the value returned is different from 0. If not, fail the
test and throw the related assertion (6.23.89).

f. Verify that EOH is set to 1. If not fail the test and throw the related assertion
(6.23.102).

10. If D0 of bmFramingInfo is not set in the stored Commit Structure, parse all Parse all
Stream Headers by monitoring FID bit of BFH[0]. Verify that the FID is never set. If not, fail
the test and throw the related assertion (6.23.103).

11. If D1 of bmFramingInfo is not set in the stored Commit Structure, parse all Parse all
Stream Headers by monitoring EOF bit of BFH[0]. Verify that the EOF is never set. If not,
fail the test and throw the related assertion (6.23.104).

12.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 201

TD 20.9 Stream Based Payload Header Validation Test

This test verifies that the Stream Based payload Header is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find the Video Control Interface Descriptor
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOCONTROL).Retrieve the Interface number of this Video
Control Interface and parse descriptors to find every Stream Based Format Descriptors
(bDescriptorType == CS_INTERFACE and bDescriptorSubType ==
VS_FORMAT_STREAM_BASED).

7. Issue a Probe and Commit negotiation to set the compression parameters and retrieve the
MaxPaylaodTransferSize. Attempt to select the corresponding alternate setting to start the
stream. If the Alternate setting selection succeeds, store the value returned by the Commit
Control and perform steps 9 to 11. Otherwise repeat step 8 with decreasing bandwidth
requirements.

8. Poll data from the Device for a complete duration of at least two Full Frames. This will
ensure that we will have stored an entire Frame.

9. For every Stream header verify that:

a. Verify that the PTS field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.100).

b. Verify that the SCR field of BFH[0] is set to zero. If not, fail the test and
throw the related assertion (6.23.101).

c. Verify that the RES field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.85).

d. Verify that the STI field of BFH[0] is set to zero. If not, fail the test and throw
the related assertion (6.23.84).

e. If the ERR bit of BFH[0] is set, issue a SET_CUR to the Stream Error Code
Control and verify that the value returned is different from 0. If not, fail the
test and throw the related assertion (6.23.89).

f. Verify that EOH is set to 1. If not fail the test and throw the related assertion
(6.23.102).

10. If D0 of bmFramingInfo is not set in the stored Commit Structure, parse all Stream
Headers by monitoring FID bit of BFH[0]. Verify that the FID is never set. If not, fail the
test and throw the related assertion (6.23.103).

11. If D1 of bmFramingInfo is not set in the stored Commit Structure, parse all Parse all
Stream Headers by monitoring EOF bit of BFH[0]. Verify that the EOF is never set. If not,
fail the test and throw the related assertion (6.23.104).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 202

TD23.10 Synch Delay Control Test

This test verifies that the Synch Delay Control is compliant with the USBVC Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find Video Streaming Interface Descriptors
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING).

7. For every Video Streaming Interface found:

8. Issue a GET_CUR request to the Synch Delay Control. If the control is supported execute
steps 9 to 15. If the Device answered STALL, the control is not supported and end of the
test.

9. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_LEN, GET_RES and GET_DEF. Issue all those
request and verify that the request succeeded. If not, fail the test and throw the related
assertion (6.30.4). Verify also that GET_LEN answers the correct Length (2). If not, fail the
test and throw the related assertion (6.30.10). Verify also that all requests return the
correct size of parameter. If not, fail the test and throw the related assertion (6.30.12).

10. Verify that the value returned by a GET_CUR request is between MIN and MAX. If not, fail
the test and throw the related assertion (6.30.13).

11. Issue a GET_INFO request:

e. Verify that Set and Get requests are supported (D0==1 and D1==1). If not,
fail the test and throw the related assertion (6.30.3).

f. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is
present. If not, fail the test and throw the related assertion (6.30.5).

g. If the control is Asynchronous, verify that Control Change Interrupts are
generated on SET_CUR (Timeout 5s). Issue a SET_CUR request and wait
during 5 s for a Control Change Interrupt. If no Control Change Interrupt, fail
the test and throw the related assertion (6.30.6)

h. If the control is synchronous, issue a SET_CUR Request and verifies that it
completes in less than 10 ms. If not fail the test and throw the related
assertion (6.30.7).

12. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (MIN-1,
MAX+1, CHAR_MIN, CHAR_MAX). Verify that the device answers STALL. If not fail the
test and throw the related assertion (6.30.30).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 203

TD 23.10 13. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wMultiplierLimit value. Verify that MIN<MAX. If not, fail the test and throw the related
assertion (6.30.11). Issue a GET_DEF Request and verify that the value returned is
between the Min-Max Range. If not fail the test and throw the related assertion (6.30.8).

14. Issue a GET_RES Request and verify that (MAX-MIN)/RES is an integral number. If not,
fail the test and throw the related assertion (6.30.14).

15. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.30.31). Repeat
this step for all the values in the Range.

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 204

TD 23.11 Still Image Trigger Control Test

This test verifies that the Still Image Trigger Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find a Class Specific VC Interface Input Header Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_INPUT_HEADER).
If no input Header found, issue a GET_CUR request to the Still Image Trigger Control and
verify that the device answers Stall. If not, fail the test and throw the related assertion
(6.30.50), exit the test. If an Input Header was found, check the bStillCaptureMethod field.
If the method of capture is method 1, issue a GET_CUR to the Still Image Trigger Control
and verify that the control is not supported. If not, fail the test and throw the related
assertion (6.30.51), exit the test. If the method is method 2 or 3, execute steps 7 to 17.

7. Parse the Descriptors to find Video Streaming Interface Descriptors
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING).

8. For every Video Streaming Interface found:

9. Issue a GET_CUR request to the Still Image Trigger Control. If the Device answered
STALL, fail the test and throw the related assertion (6.30.2).

10. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR, and
GET_INFO. Issue all those request and verify that the request succeeded. If not, fail the
test and throw the related assertion (6.30.4). Verify also that if GET_LEN is supported, it
answers the correct Length (1). If not, fail the test and throw the related assertion
(6.30.10). Verify also that all requests return the correct size of parameter. If not, fail the
test and throw the related assertion (6.30.12).

11. Verify that the value returned by a GET_CUR request is 0, 1 or 2. If not, fail the test and
throw the related assertion (6.30.13).

12. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not, fail the test

and throw the related assertion (6.30.3).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is present. If not,

fail the test and throw the related assertion (6.30.5).

c. If the control is Asynchronous, verify that Control Change Interrupts are generated on

SET_CUR (Timeout 5s). Issue a SET_CUR request and wait during 5 s for a Control

Change Interrupt. If no Control Change Interrupt, fail the test and throw the related

assertion (6.30.6)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it completes

in less than 10 ms. If not fail the test and throw the related assertion (6.30.7).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 205

TD23.11 13. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (3). Verify
that the device answers STALL. If not fail the test and throw the related assertion
(6.30.52).

14. Issue a Probe and Commit negotiation to the Device and select the negotiated alternate
setting in order to ensure that the Device is Streaming.

15. If the Still capture Method is 2, issue a SET_CUR to the Still Image Control with a value of
2. Verify that the device answers STALL. If not, fail the test and throw the related
assertion (6.30.53). If the Still capture Method is 3, issue a SET_CUR to the Still Image
Control with a value of 1. Verify that the device answers STALL. If not, fail the test and
throw the related assertion (6.30.54). Issue a SET_CUR request with a value of 0. Verify
that the request succeeded. If not fail the test and throw the related assertion (6.30.55).

16. If the Still Image Capture Method is 2, issue a SET_CUR request with a value equal to 1.
Verify that the request succeeded and issue a GET_CUR Request to verify that the value
has been set. If not, fail the test and throw the related assertion (6.30.56). Verify that the
Still Image is sent. If not fail the test and throw the related assertion (6.30.57). Verify also
that the control returns to a value of 0 after transmission of the image (Issue a GET_CUR
to check the value). If not, fail the test and throw the related assertion (6.30.58).

17. If the Still Image Capture is 3, issue a SET_CUR request with a value equal to 2. Verify
that the request succeeded and issue a GET_CUR Request to verify that the value has
been set. If not, fail the test and throw the related assertion (6.30.56). Verify that the Still
Image is sent. If not fail the test and throw the related assertion (6.30.57). Verify also that
the control returns to a value of 0 after transmission of the image (Issue a GET_CUR to
check the value). If not, fail the test and throw the related assertion (6.30.58).

18. Issue a SET_CUR with the value corresponding to the right Still Image Capture Method.
Immediately after issue a SET_CUR with a value of 0 to abort the transmission of the Still
Image. Verify that the Request succeeded and that the transmission has stopped. If not,
fail the test and throw the related assertion (6.30.59). Verify also that the Stream Error
Code control answers 0x07 (Still Image Capture error). If not, fail the test and throw the
related assertion (6.30.60).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 206

TD 23.12 Generate Key Frame Control Test

This test verifies that the Generate Key Frame Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find a Class Specific VC Interface Input Header Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_INPUT_HEADER).
If no input Header found, issue a GET_CUR request to the Generate Key Frame Control
and verify that the device answers Stall. If not, fail the test and throw the related assertion
(6.30.70), exit the test. If an Input Header was found, execute steps 7 to 17.

7. In the Input Header, store the Format Indexes of the Formats that support the Control (bit
D4 set in bmaControls(i) for Format Index i).

8. Parse the Descriptors to find Video Streaming Interface Descriptors
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING).

9. For every Video Streaming Interface found and every Format Index found for this
interface. Issue a Probe and Commit Negotiation for the corresponding Format Index in
order to start a Stream.

10. If in the Input Header Generate Key Frame Control is not supported for the corresponding
Format, issue a GET_CUR request and verify that the Device answer Stall. If not, fail the
test and throw the related assertion (6.30.2) If the Control is supported for this Format,
repeat steps 11 to 17:

11. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR, and
GET_INFO. Issue all those request and verify that the request succeeded. If not, fail the
test and throw the related assertion (6.30.4). Verify also that if GET_LEN is supported, it
answers the correct Length (1). If not, fail the test and throw the related assertion
(6.30.10). Verify also that all requests return the correct size of parameter. If not, fail the
test and throw the related assertion (6.30.12).

12. Verify that the value returned by a GET_CUR request is 0 or 1. If not, fail the test and
throw the related assertion (6.30.13).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 207

TD 23.12 13. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not, fail the test

and throw the related assertion (6.30.3).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is present. If not,

fail the test and throw the related assertion (6.30.5).

c. If the control is Asynchronous, verify that Control Change Interrupts are generated on

SET_CUR (Timeout 5s). Issue a SET_CUR request and wait during 5 s for a Control

Change Interrupt. If no Control Change Interrupt, fail the test and throw the related

assertion (6.30.6)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it completes

in less than 10 ms. If not fail the test and throw the related assertion (6.30.7).

14. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (2). Verify
that the device answers STALL. If not fail the test and throw the related assertion
(6.30.71).

15. If SET_CUR is supported. Issue a SET_CUR request with a value of 1. Verify that the
request succeeded and issue a GET_CUR Request to verify that the value has been set.
If not, fail the test and throw the related assertion (6.30.72). Verify that a Key Frame has
been transmitted. If not fail the test and throw the related assertion (6.30.73). Verify by
issuing a GET_CUR to the Generate Key Frame Control to verify that the control is
automatically reset to 0 after transmission of the Key Frame. If not, fail the test and throw
the related assertion (6.30.74).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 208

TD 23.13 Update Frame Segment Control Test

This test verifies that the Update Frame Segment Control is compliant with the USBVC
Specification.

Device States For Test

This test is run once for each of the following device states: Configured.

Overview of Test Steps

The test software performs the following steps.

1. Execute the Init procedure

2. Put the device in the desired state

3. Issue a Get configuration Descriptor command for the selected configuration with a length
of 9 bytes.

4. Get the Configuration Descriptor for the selected configuration by issuing a Get
Configuration Descriptor command with a length of wTotalLength from the data returned
in step 3.

5. Parse the configuration Descriptor for VICs. Execute all the steps below for each VIC
found in the configuration Descriptor. For the rest of the test only parse Descriptors
belonging to the current tested VIC.

6. Parse the Descriptors to find a Class Specific VC Interface Input Header Descriptor
(bDescriptorType==CS_INTERFACE and bDescriptorSubType==VS_INPUT_HEADER).
If no input Header found, issue a GET_CUR request to the Update Frame Segment
Control and verify that the device answers STALL. If not, fail the test and throw the related
assertion (6.30.90), exit the test. If an Input Header was found, execute steps 7 to 15.

7. In the Input Header, store the Format Indexes of the Formats that support the Control (bit
D5 set in bmaControls(i) for Format Index i).

8. Parse the Descriptors to find Video Streaming Interface Descriptors
(bDescriptorType==INTERFACE and bInterfaceClass==CC_VIDEO and
bInterfaceSubClass==SC_VIDEOSTREAMING).

9. For every Video Streaming Interface found and every Format Index found for this
interface. Issue a Probe and Commit Negotiation for the corresponding Format Index in
order to start a Stream.

10. If in the Input Header Update Frame Segment Control is not supported for the
corresponding Format, issue a GET_CUR request and verify that the Device answer Stall.
If not, fail the test and throw the related assertion (6.30.2) If the Control is supported for
this Format, repeat steps 11 to 15:

11. Verify that the control supports all mandatory requests: SET_CUR, GET_CUR,
GET_INFO, GET_MIN, GET_MAX, GET_RES, and GET_DEF. Issue all those request
and verify that the request succeeded. If not, fail the test and throw the related assertion
(6.30.4). Verify also that if GET_LEN is supported, it answers the correct Length (2). If not,
fail the test and throw the related assertion (6.30.10). Verify also that all requests return
the correct size of parameter. If not, fail the test and throw the related assertion (6.30.12).

12. Verify that the value returned by a GET_CUR request is between MIN and MAX. If not, fail
the test and throw the related assertion (6.30.13).

USB Device Class Definition for Video Devices: Compliance Test Specification

Revision 1.09b October 11, 2013 209

TD 23.13 13. Issue a GET_INFO request:

a. Verify that Set and Get requests are supported (D0==1 and D1==1). If not, fail the test

and throw the related assertion (6.30.3).

b. If the Control is Asynchronous, verify that a Status Interrupt Endpoint is present. If not,

fail the test and throw the related assertion (6.30.5).

c. If the control is Asynchronous, verify that Control Change Interrupts are generated on

SET_CUR (Timeout 5s). Issue a SET_CUR request and wait during 5 s for a Control

Change Interrupt. If no Control Change Interrupt, fail the test and throw the related

assertion (6.30.6)

d. If the control is synchronous, issue a SET_CUR Request and verifies that it completes

in less than 10 ms. If not fail the test and throw the related assertion (6.30.7).

14. If SET_CUR is supported. Issue a SET_CUR request with out-of-bound value (MIN-1,
MAX+1, SHORT_MIN, SHORT_MAX). Verify that the device answers STALL. If not fail
the test and throw the related assertion (6.30.91).

16. Issue GET_MIN and GET_MAX request to store Min and Max values for the
wMultiplierLimit value. Verify that MIN<MAX. If not, fail the test and throw the related
assertion (6.30.11). Issue a GET_DEF Request and verify that the value returned is
between the Min-Max Range. If not fail the test and throw the related assertion (6.30.8).

17. Issue a GET_RES Request and verify that (MAX-MIN)/RES is an integral number. If not,
fail the test and throw the related assertion (6.30.14).

15. If SET_CUR is supported. Issue a SET_CUR request with a value equal to the default
value. Verify that the request succeeded and issue a GET_CUR Request to verify that the
value has been set. If not, fail the test and throw the related assertion (6.30.92). Repeat
this step for all the values in the Range.

