
Universal Serial Bus Device Class Definition for Audio Devices

USB Command Verifier Compliance Test Specification

Revision 1.10

Date: August 6,

2019

Revision: 1.10

Revision History

Sr. No. Revision Author Date Change Log

1 0.1 Sandip Feb 5, 2018 Descriptor Tests are defined for UAC
3.0 CTS spec

2 1.0 Abhijeet Feb 7, 2018 Descriptor Tests are defined for UAC
3.0 CTS spec

3 1.01 Soren June 24,
2019

Removed steps 21-24 from TD 4.61
(they duplicate TD 9.21 in USB 2
Chapter 9).

Consolidated TD 4.3 and TD 4.28. Now,
only the BADD specific requirements
are tested in TD 4.28: any
requirements that are identical for
both BADD and non-BADD AIAs are
tested in TD 4.3.

For all tests, specified whether they are
to be run for BADD AIAs, full Audio 3.0
AIAs or both.

Table of Contents

1. Scope ... 6

1.1. Limitations ... 6

1.2. Terminology ... 6

2. Test philosophy ... 8

2.1. Implementation ... 8

2.2. Multiple speeds.. 8

2.3. Multiple AIAs .. 8

2.4. USB Device state .. 8

2.5. UAC 3 Compliance Levels ... 8

3. Test Descriptions for Audio Devices 3.0 Descriptors .. 9

3.1. Common Procedures ... 9

3.1.1. Retrieve the Device Descriptor ... 9

3.1.2. Retrieve the Full Configuration Descriptor ... 9

3.1.3. Retrieve the Full BOS Descriptor... 9

3.1.4. Find all USB Audio Class 3.0 Functions ... 10

3.1.5. Initialize the Test ... 10

3.1.6. Determining BADD Generic I/O Profile Subtype: .. 10

3.2. Compliance Tests ... 11

3.2.1. Device Descriptor Test (All) ... 11

3.2.2. Standard Interface Association Descriptor Test (All) .. 11

3.2.3. Standard Interface Descriptor Test (All) ... 12

3.2.4. Standard Endpoint Descriptor Test (Full).. 13

3.2.5. Configuration Summary Descriptor Test (All) ... 14

3.2.6. Class Specific Audio Control Interface Descriptor Test (Full) 14

3.2.7. High Capability Descriptor Test (Full) ... 15

3.2.8. Cluster Descriptor Test (Full) .. 16

3.2.9. Input Terminal Descriptor Test (Full) .. 19

3.2.10. Output Terminal Descriptor Test (Full) ... 20

3.2.11. Extended Terminal Descriptor Test (Full) ... 21

3.2.12. Connector Descriptor Test (Full) ... 23

3.2.13. Mixer Unit Descriptor Test (Full) ... 24

3.2.14. Selector Unit Descriptor Test (Full) ... 25

3.2.15. Feature Unit Descriptor Test (Full) ... 26

3.2.16. Sampling Rate Converter Unit Descriptor Test (Full) .. 27

3.2.17. Effect Unit Descriptor Test (Full) ... 28

3.2.18. Processing Unit Descriptor Test (Full) ... 30

3.2.19. Extension Unit Descriptor Test (Full) .. 32

3.2.20. Clock Source Descriptor Test (Full) ... 33

3.2.21. Clock Selector Descriptor Test (Full) ... 34

3.2.22. Clock Multiplier Descriptor Test (Full) .. 34

3.2.23. Power Domain Descriptor Test (Full) .. 35

3.2.24. Class Specific Audio Streaming Interface Descriptor Test (Full) 36

3.2.25. Class-Specific AS Isochronous Audio Data Endpoint Descriptor Test (Full) 37

3.2.26. Class Specific String Descriptors Test (Full)... 38

3.2.27. Backward Compatibility Test (All) ... 38

3.2.28. BADD Standard Interface Descriptors Test (BADD) .. 39

3.2.29. BADD Standard Endpoint Descriptor Test (BADD).. 39

3.2.30. BADD Terminal Control Test (BADD) .. 41

3.2.31. BADD Mixer Control Test (BADD) ... 42

3.2.32. BADD Feature Unit Control Test (BADD) .. 42

3.2.33. BADD Clock Source Control Test (BADD) .. 45

3.2.34. BADD Power Domain Control Test (BADD) ... 45

3.2.35. Terminal Type Test (Full) ... 46

3.2.36. Audio Format Test (Full) ... 47

3.2.37. Audio Data Capture Test (Full) .. 48

3.2.38. Enable Control Test (Full) .. 49

3.2.39. Underflow Control Test (Full) ... 50

3.2.40. Overflow Control Test (Full) .. 51

3.2.41. Power Domain Control Test (Full) ... 53

3.2.42. Latency Control Test (Full) .. 55

3.2.43. Insertion Control Test (Full) .. 56

3.2.44. Overload Control Test (Full) .. 58

3.2.45. Mixer Unit Control Request Test (Full) ... 59

3.2.46. Selector Unit Control Request Test (Full) ... 61

3.2.47. Feature unit Control Request Test (Full) ... 62

3.2.48. Effect Unit Control Request Test: PARAMETRIC EQUALIZER SECTION EFFECT UNIT

(Full) .. 76

3.2.49. Effect Unit Control Request Test: REVERBERATION EFFECT UNIT (Full) 79

3.2.50. Effect Unit Control Request Test: MODULATION DELAY EFFECT UNIT (Full) 87

3.2.51. Effect Unit Control Request Test: DYNAMIC RANGE COMPRESSOR EFFECT UNIT

(Full) .. 94

3.2.52. Processing Unit Control Request Test: Up/Down-Mix Processing Unit (Full) 100

3.2.53. Processing Unit Control Request Test: Stereo Extender Processing Unit (Full) 101

3.2.54. Clock Source Control Request Test (Full) .. 103

3.2.55. Clock Selector Control Request Test (Full) .. 106

3.2.56. Clock Multiplier Control Request Test (Full) ... 107

3.2.57. Audio Streaming Control Test (Full) .. 110

3.2.58. Endpoint Control Request Test ... 112

3.2.59. Memory Requests Test (Full) .. 114

3.2.60. Class Specific String Request Control Test (Full) ... 115

3.2.61. L1 & L2 Tests (Full) .. 116

3.2.62. INTEN Block Test (Full) .. 117

3.2.63. BADD Latency Control Test (BADD) .. 119

3.2.64. BADD L1 & L2 Tests (BADD) .. 121

1. Scope

This document specifies test cases and procedures to verify assertions defined in the

documents listed below.

Audio Devices Class 3.0, USB Command Verifier Compliance Test Specification, Revision 0.1

Audio Device Formats 3.0, USB Command Verifier Compliance Test Specification, Revision 0.1

Audio Device Terminal Types 3.0, USB Command Verifier Compliance Test Specification,

Revision 0.1

Basic Audio Function Device Class 3.0, USB Command Verifier Compliance Test Specification,

Revision 0.1

1.1. Limitations

As mentioned in the specifications, the Test procedures defined in this specification doesn’t

cover below:

No validation is provided for streaming data (Audio data obtained/sent through isochronous or

bulk pipes) So payload headers and the data itself are not validated. The main reasons for this

are the lack of support for isochronous pipes in the USBCV framework and the fact that a lot of

the expected behavior is subjective.

No support for verification that auto-update controls send control change interrupts. The

reason being that it is impossible to really know for sure when a device has changed an auto-

update setting. This testing is intended to be in addition to standard USB Compliance testing;

assertions covered by the USBCV test document, for instance, are not covered here.

This testing applies to one configuration and all Audio Interface Association (AIA) at a time. This

testing covers the validation of the audio class-specific descriptors (including the possible

dependencies between them) and of the class-specific control requests (except those explicitly

excluded above)

1.2. Terminology

Device Under Test (DUT): Refers to the USB Audio 3.0 Device on which the tests are being run.

USB Implementers Forum (USB-IF): The non-profit organization that owns the trademark for

USB and which is responsible for the USB Compliance program.

USBCV Tool: USB Command Verifier (USBCV) is the tool for USB Hub and Device Framework

testing. All USB 2.x and USB 3.x peripherals are required to pass the Device Framework tests in

order to gain certification.

xHCI: Extensible Host Controller Interface. The USBCV Audio 3.0 Class tests must be run on an

xHCI host.

Interface Association Descriptor (IAD): A USB descriptor that groups together one or more USB

Interface Descriptors in order to describe a single USB Function.

Audio Interface Association (AIA): A USB Function that implements the USB Audio 3.0

specification. All AIAs on a USB device are associated with an IAD.

Note: This requirement places an additional restriction to the USB base specification, which

permits Functions consisting of a single interface to omit the IAD.

USB Audio Class 3.0 Function (Audio 3.0 or UAC 3.0 Function): A USB Function that is

compliant to the USB Audio Class 3.0 specification. Audio 3.0 Functions available in a given

Configuration are specified in the full Configuration Descriptor for that Configuration, with the

Class (the IAD field bFunctionClass) is set to AUDIO (0x01) and the Protocol (the IAD field

bFunctionProtocol) is set to AF_VERSION_03_00 (0x30).

Legacy USB Audio Class Function (Legacy Audio Function): A USB Function that is compliant to

an earlier version of the USB Audio Class specification. Legacy Audio Functions available in a

given Configuration are specified in the full Configuration Descriptor for that Configuration,

with the Class (the Interface Association Descriptor field bFunctionClass or the Interface

Descriptor field bInterfaceClass) set to AUDIO (0x01) and the Protocol (the IAD field

bFunctionProtocol or the Interface Descriptor field bInterfaceProtocol) set to either

AF_VERSION_01_00 (0x00) or AF_VERSION_02_00 (0x20).

Basic Audio Device Definition (BADD) USB Audio Class 3.0 Function (BADD Function): An

Audio 3.0 Function wherein bFunctionSubClass has a value in the range 0x20 - 0x26. A BADD

Function implements a strictly defined subset of the USB Audio Class 3.0 specification.

Full USB Audio Class 3.0 Function (Full Audio 3.0): An Audio 3.0 Function wherein

bFunctionSubClass = 0x01. A Full Audio 3.0 Function may implement any set of features allowed

by the full USB Audio Class 3.0 specification.

Audio Streaming Interface: a USB Interface that supports USB Audio Streaming. An Audio

Streaming Interface is identified by a USB Interface Descriptor with the following

characteristics:

• USB Audio 1.0 Class: bInterfaceClass = 0x01, bInterfaceSubClass = 0x02, and bInterfaceProtocol =

0x00.

• USB Audio 2.0 Class: bInterfaceClass = 0x01, bInterfaceSubClass = 0x02, and bInterfaceProtocol =

0x20

• USB Audio 3.0 Class: bInterfaceClass = 0x01, bInterfaceSubClass = 0x02, and bInterfaceProtocol =

0x30

2. Test philosophy

2.1. Implementation

The test descriptions specified by this document are integrated into the USBCV tool available

from the USB-IF. It is intended that all devices that report an audio class interface will be

required to pass this test in order to receive logo certification.

2.2. Multiple speeds.

Unless otherwise specified, tests shall be run at all speeds that on the DUT in which USB Audio

Class 3.0 is supported.

2.3. Multiple AIAs

Unless otherwise specified, tests shall be run on all USB Audio Class 3.0 AIAs on the DUT that

contain a UAC 3.0 AIA.

Unless otherwise specified, tests will be implemented to run on a single Configuration at a time.

Unless otherwise specified, if a Configuration contains multiple UAC 3.0 AIAs, then tests will be

implemented to loop over all of them.

2.4. USB Device state

Unless otherwise specified, tests shall be run with the DUT in the Configured state.

2.5. UAC 3 Compliance Levels

If a test is labeled as BADD, then only run that test on Audio 3.0 Functions that conform to a

BADD profile (bFunctionSubtype is in the range 0x20-0x26).

If a test is labeled as Full, then only run that test on Audio 3.0 Functions that do not implement

a BADD profile (bFunctionSubtype is set to 0x01).

If a test is labeled as All, then that test should be run on all Audio 3.0 Functions.

If bFunctionSubtype is not valid (is neither BADD or Full):

If a test is labeled as either BADD or Full then fail the test and skip all remaining steps.

3. Test Descriptions for Audio Devices 3.0 Descriptors

3.1. Common Procedures

Many tests perform similar tasks, in particular during test setup. Here we provide common

definitions for some of them.

3.1.1. Retrieve the Device Descriptor

Unless otherwise specified, record a failure and skip all remaining steps in the test and

record a failure if any step fails for any reason.

1. Send a GetDescriptor request to the DUT with the following values:

• wValue: set to 0x01 (Device) in the high byte, 0 in the low byte

• wIndex: set to 0

• wLength: 18d (The entire Device Descriptor)

3.1.2. Retrieve the Full Configuration Descriptor

Unless otherwise specified, record a failure and skip all remaining steps in the test and

record a failure if any step fails for any reason.

1. Send a GetDescriptor (wValue, wIndex, wLength, Data) request with the following values:

•

• wValue: set to 0x02 (Configuration) in the high byte, the index of the current configuration in

the low byte

• wIndex: set to 0

• wLength: 9d

2. Send a GetDescriptor (wValue, wIndex, wLength, Data) request with the following values:

•

• wValue: set to 0x02 (Configuration) in the high byte, the index of the current configuration in

the low byte

• wIndex: set to 0

• wLength: the wTotalLength field of the Configuration Descriptor obtained in the previous step

3.1.3. Retrieve the Full BOS Descriptor

Unless otherwise specified, record a failure and skip all remaining steps in the test and

record a failure if any step fails for any reason.

1. Send a GetDescriptor (wValue, wIndex, wLength, Data) request with the following values:

•

• wValue: set to 0x0F (BOS) in the high byte, 0 in the low byte

• wIndex: set to 0

• wLength: 5d

2. Send a GetDescriptor (wValue, wIndex, wLength, Data) request with the following values:

•

• wValue: set to 0x0F (BOS) in the high byte, 0 in the low byte

• wIndex: set to 0

• wLength: the wTotalLength field of the BOS Descriptor obtained in the previous step.

3.1.4. Find all USB Audio Class 3.0 Functions

Unless otherwise specified, record a failure and skip all remaining steps in the test and

record a failure if any step fails for any reason.

1. Retrieve the full Configuration Descriptor for the configuration being tested.

Parse the Configuration Descriptor into USB Functions, saving Audio 3.0 Functions for future

use.

3.1.5. Initialize the Test

Unless otherwise specified, record a failure and skip all remaining steps in the test and

record a failure if any step fails for any reason.

1. Retrieve the device descriptor.

2. Find all USB Audio Class 3.0 Functions for the configuration being tested.

3. Unless otherwise specified, if the configuration being tested does not contain a UAC 3.0

Function, then exit the test.

3.1.6. Determining BADD Generic I/O Profile Subtype:

A BADD Function that supports the Generic I/O Profile (bFunctionSubtype == 0x20) may take

one of three subtypes:

• Generic Out

• Generic In

• Generic I/O

To determine which it is, follow the following steps.

1. If the function has 2 streaming interfaces, then it is Generic I/O.

2. If the Function has 1 streaming interface, find the first Isochronous endpoint in that

interface.

• If bmAttributes bit D7 is set to 1, then it is Generic Out.

• If bmAttributes bit D7 is set to 0, then it is Generic In.

3. If the Function does not have a streaming interface, or if it has more than 2, then fail the

test, and skip the remaining steps.

4. If the Function does not have an isochronous Endpoint, then fail the test and skip the

remaining steps.

3.2. Compliance Tests

3.2.1. Device Descriptor Test (All)

Assertions Verified in this Test

4.1#1, 4.1#4

Test Procedure

This test encompasses all Audio 3.0 Functions in all Configurations. Therefore, it does not need

to be repeated for each Configuration.

1. Initialize the test.

2. Retrieve the full Configuration Descriptors for all Configurations the DUT supports and save

them for later use.

Note: this includes Configurations that do not have an Audio 3.0 Function.

3. Determine whether the DUT has a Configuration with at least one Audio Streaming

Interface. Save this result for further use.

4. Verify that bDeviceClass == 0xEF, bDeviceSubClass == 0x02 and bDeviceProtocol == 0x01.

5. Verify that bcdUSB is greater than 0x201.

6. Verify that if the DUT has an Audio Streaming Interface, then bNumConfigs is greater than

0.

3.2.2. Standard Interface Association Descriptor Test (All)

Assertions verified in this test

3.4.1#1, 3.4.2#1, 3.4.3#2, 3.14#1

Test Procedure

1. Initialize the test.

2. For each Audio 3.0 Function, verify the following:

a. The first descriptor in the Function is an IAD.

b. bFunctionSubClass is set to one of the values {0x00, 0x01, 0x20-0x26}

3.2.3. Standard Interface Descriptor Test (All)

Assertions Verified in this Test

3.4#1, 3.4.3#1, 3.5#1, 3.6#1, 3.14.1#1, 3.14.1#6, 3.14.2#1, 3.14.2#3, 4.1#5, 4.1#6, 4.1#7,

4.1#8, 4.1#9, 4.5.1#1 to 4.5.1#6, 4.6.1.1#1, 4.7.1#1, 4.7.1#2

Test Procedure

1. Initialize the test.

2. Parse each Audio 3.0 Function, saving the IAD and all Interface Descriptors for further use.

3. For each Interface Descriptor, verify the following:

a. bInterfaceClass = AUDIO (0x01)

b. bInterfaceProtocol = bFunctionProtocol of the IAD.

c. The first Interface Descriptor of the Function is AUDIOCONTROL (bInterfaceSubClass =

AUDIOCONTROL (0x01)).

d. No other Interface Descriptor in the Function is AUDIOCONTROL.

e. The AUDIOCONTROL Descriptor has the following values:

• bNumEndPoints shall be either 0x00 or 0x01.

• bInterfaceProtocol shall be 0x30.

f. AUDIOSTREAMING Interface Descriptors (bInterfaceSubClass = AUDIOSTREAMING

(0x02)) (if any) come directly after the AUDIOCONTROL Interface Descriptor and before

any other Audio 3.0 Interface Descriptors.

g. AUDIOSTREAMING Interface Descriptors have more than one Alternate Setting

(bAlternateSetting).

h. AUDIOSTREAMING Interface Descriptors in which bAlternateSetting = 0 have no

Endpoints (bNumEndpoints == 0).

i. AUDIOSTREAMING Interface Descriptors shall have the following values:

• bInterfaceProtocol shall be 0x30.

• bNumEndpoints shall be one of 0x00, 0x01, or 0x02.

• bInterfaceProtocol shall be 0x30.

j. MIDISTREAMING Interface Descriptors (bInterfaceSubclass = MIDISTREAMING (0x03)) (if

any) shall come directly after the AUDIOSTREAMING Interface Descriptor (if any). If

there are no AUDIOSTREAMING Interface Descriptors, then all MIDISTREAMING

Interface Descriptors shall come directly after the AUDIOCONTROL Interface Descriptor.

3.2.4. Standard Endpoint Descriptor Test (Full)

Assertions Verified in this Test

3.11#1, 3.14.2#2, 4.6.2.1#2, 4.6.2.1#3, 4.6.2.1#4, 4.6.2.1#5, 4.8.1#1, 4.8.1#2, 4.8.1#3,

4.8.2#1, 4.8.2.1#2, 4.8.2.1#3

Test Procedure

1. Initialize the test.

2. Examine the AUDIOCONTROL Interface Descriptor (bInterfaceSubClass ==

AUDIOCONTROL(0x01)). If bNumEndpoints == 0, then skip step 3.

3. Parse the Endpoint Descriptor for the AUDIOCONTROL Interface.

4. Verify that D7 of bEndpointAddress is set to 1 (IN)

5. Verify that D1..0 of bmAttributes is set to 11b (Interrupt)

6. Verify that D7..2 of bmAttributes is set to 0.

7. If the Function does not contain an AUDIOSTREAMING Interface Descriptor

(bInterfaceSubClass == AUDIOCONTROL(0x02)), then skip the remaining steps.

8. Examine each AUDIOSTREAMING Interface Descriptor. If bNumEndpoints = 0, then skip the

remaining steps and continue to the next AUDIOSTREAMING Interface (if any).

9. For the first Endpoint Descriptor in an AUDIOSTREAMING Interface, verify the following:

10. D1..0 of bmAttributes are set to 01b (Isochronous).

11. D3..2 of bmAttributes is not set to 00b (No Synchronization

12. D5..4 of bmAttributes is set to one of 00b (Data endpoint) or 10b (Implicit feedback Data

endpoint).

13. If the AUDIOSTREAMING Interface has a second Endpoint, verify the following:

14. D1..0 of bmAttributes are set to 01b (Isochronous).

15. D3..2 of bmAttributes is set to 00b (No Synchronization

16. D5..4 of bmAttributes is set to 01b (Feedback endpoint).

3.2.5. Configuration Summary Descriptor Test (All)

Assertions Verified in this Test

4.1#2, 4.1#3

Test Procedure

This test encompasses all Audio 3.0 Functions in all Configurations. Therefore, it does not

need to be repeated for each Configuration.

1. Initialize the test, with the following modification:

2. Retrieve the full Configuration Descriptors for all Configurations that have an Audio 3.0

function.

3. If Device Descriptor field bcdUSB is less than 0x201, then skip the remaining steps.

4. Retrieve the full BOS Descriptor.

5. Parse the full BOS descriptor, saving all Configuration Summary Descriptors

(bDescriptorType = 0x10, bDevCapabilityType = 0x10) for future use.

6. If the DUT has only one Configuration and there are no Configuration Summary Descriptors

then skip all remaining steps.

7. For each Audio 3.0 Function in each Configuration, verify that there is a Configuration

Summary Descriptor wherein:

• bClass == bFunctionClass

• bSubClass == bFunctionSubClass

• bProtocol == bFunctionProtocol

3.2.6. Class Specific Audio Control Interface Descriptor Test (Full)

Assertions Verified in this Test

3.8#1, 4.2.1#2, 4.2.1#3, 4.5.2#2, 4.5.2#3, 4.5.2#4, 4.5.2#5, 4.5.2#6, 4.5.2#7, 4.2.1.1.1#1 to

4.2.1.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType == CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found fail the test.

6. For the class-specific audio control interface descriptor verify:

a. bLength is 10

b. bCategory is in the range of 0x01-0x10

c. Bit D7 of the bDescriptorType field of a traditional class-specific descriptor is Reserved

and shall be set to 0

d. Bits D6..5 of the bDescriptorType field of a traditional class-specific descriptor must be

0b01 to indicate class specific descriptor

e. bTotalLength field of the class-specific AC interface descriptor contains the total length

in bytes of the entire descriptor, including header, CDs, UDs, TDs and PDD

f. Bits 2-31 of the bmControls field of the class-specific AC Interface Header Descriptor are

reserved and shall be set to 0

g. Bits 1..0 of the bmControls should be either 01b(Read only) or 00b(control is not

present)

7. further parse the class specific audio control interface and check that there exists a

descriptor with bDescriptorType = CS_INTERFACE and bDescriptorSubType =

INPUT_TERMINAL/OUTPUT_TERMINAL/EXTENDED_TERMINAL which are present in audio

function

8. further parse the class specific audio control interface and check that there exists a

descriptor with bDescriptorType = CS_INTERFACE and bDescriptorSubType =

MIXER_UNIT/SELECTOR_UNIT/FEATURE_UNIT/EFFECT_UNIT/PROCESSING_UNIT/EXTENSIO

N_UNIT which are present in audio function

9. The ID value 0x00 is reserved and must not be used in the ID (bClockID, bUnitId,

bTermanlID, bPowerDomainID) of an entity included in the class-specific AC Interface

Descriptor.

10. The IDs (bClockID, bUnitId, bTerminalID, bPowerDomainID) of all Entities included in the

class-specific AC Interface Descriptor must be unique

11. Test fails if any of the values are not as specified.

3.2.7. High Capability Descriptor Test (Full)

Assertions Verified in this Test

4.2#1, 4.2.2#1, 4.2.2#2, 4.2.2#4, 4.2.2#5, 4.2.2#6, 4.2#2

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with:

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. For the class-specific audio control interface descriptor check that

7. Further parse the class specific audio control interface and verify that there is no descriptor

with bDescriptorType=CS_INTERFACE and

bDescriptorSubType=EXTENDED_TERMINAL/CONNECTORS and also verify that there is no

descriptor with bDescriptorType = CS_CLUSTER.

8. further parse the class specific audio control interface and check that there exists a

descriptor with bDescriptorType = CS_INTERFACE and bDescriptorSubType =

INPUT_TERMINAL/MIXER_UNIT/PROCESSING_UNIT etc. which are present in audio function

and find the wClusterDescrID/ wExTerminalDescrID/ wConnectorsDescrID

9. Test exits if any of the values are not as specified.

10. Now issue a HIGH CAPABILITY REQUEST with following data & wLength = 2.

11. Fail if there is no ACK response or data retrieved is less than 2 Bytes

12. Parse the response and find the total length of the descriptor

13. Now issue a HIGH CAPABILITY REQUEST with following data & wLength =total length of the

descriptor found in step 4.

14. Parse the response and verify the following

15. wLength should be less than 64K bytes

16. Bit 7 of wDescriptorType should be 0b0

17. Bit 6,5 of wDescriptorType should be 0b01

18. wDescriptorId of high capability descriptor is unique

19. Test fails if any of the values are not as specified.

20. Now issue a HIGH CAPABILITY REQUEST with following wrong interface/wDescriptorID

21. Fail if there is no STALL response.

3.2.8. Cluster Descriptor Test (Full)

Assertions Verified in this Test

4.2.2#3, 4.3#2, 4.3#4, 4.3#5, 4.3.2#1, 4.3.2#2, 4.3.2#3, 4.3.2#4, 4.3.2#5, 4.3.2#6,

4.3.2.1#1, 4.3.2.1.1#1, 4.3.2.1.1#2, 4.3.2.1.2#1, 4.3.2.1.2#3, 4.3.2.1.3.1#1, 4.3.2.1.3.1#2,

4.3.2.1.3.1#3, 4.3.2.1.3.1#5, 4.3.2.1.3.2#1, 4.3.2.1.3.2#2, 4.3.2.1.3.2#3, 4.3.2.1.3.2#4,

4.3.2.1.3.2#5, 4.3.2.1.3.2#6, 4.3.2.1.3.2#8, 4.3.2.1.3.3#1, 4.3.2.1.3.4#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found skip 10th step.

6. For the class-specific audio control interface descriptor

7. Further parse the class specific audio control interface and check that there exists a

descriptor with

8. bDescriptorType = CS_INTERFACE and

9. bDescriptorSubType =

INPUT_TERMINAL/MIXER_UNIT/PROCESSING_UNIT/EXTENSION_UNIT for logical cluster

and/or

10. Find the wClusterDescrID

11. Parse & Read audio Streaming Descriptor with bDescriptorType == INTERFACE &

bInterfaceSubClass == AUDIO_STREAMING.

12. Parse Descriptor bDescriptorType = CS_INTERFACE and bDescriptorSubType = AS_GENERAL

for physical cluster which are present in audio function.

13. Find the wClusterDescrID.

14. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wClusterDescrID

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: 2

15. Fail if there is no ACK response or retrieved data is less than 2 bytes.

16. Parse the response and find the total length of the descriptor

17. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wClusterDescrID

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: total length of the descriptor found in step 16.

18. Fail if there is no ACK response.

19. Parse the response and verify the following

20. wLength should be less than 64K bytes

21. bDescriptorSubType of the Cluster descriptor must be SUBTYPE_UNDEFINED (0x00)

22. bDescriptorID of the Cluster descriptor is the Unique ID

23. bNrChannels field is 0 then wLength value must be equal to 7 and skip the following

24. first bSegmentType is equal to either CLUSTER_DESCRIPTION(0x01) or

CLUSTER_VENDOR_DEFINED(0x1F), then

25. Following bSegmentType in descriptor after this will never be CLUSTER_DESCRIPTION(0x01)

or CLUSTER_VENDOR_DEFINED(0x1F)

26. Next bSegmentType must be equal to CHANNEL_INFORMATION(0x20) or

CHANNEL_AMBISONIC(0x21)

27. First bSegmentType is not equal to CLUSTER_DESCRIPTION(0x01) or

CLUSTER_VENDOR_DEFINED(0x1F) then first bSegmentType must be equal to

CHANNEL_INFORMATION (0x20), CHANNEL_AMBISONIC (0x21), CHANNEL_DESCRIPTION

(0x22) or CHANNEL_VENDOR_DEFINED (0xfe)

28. In each block there should be at least a segment with bSegmentType

CHANNEL_INFORMATION (0x20) or CHANNEL_AMBISONIC (0x21), but not both.

29. Count number of END_SEGMENTS, it should be equal to bNrchannels field value or value + 1

30. bSegmentType field value is equal to CLUSTER_DESCRIPTION(0x01), then wLength of that

segment must be equal to 5

31. bSegmentType field value is equal to CLUSTER_VENDOR_DEFINED(0x1F) then wLength of

that segment must be greater than 3.

32. there should be bNrChannels segments with bSegmentType = END_SEGMENT(0xFF)

33. bSegmentType field value is equal to END_SEGMENT(0xFF) then wLength of that segment

must be equal to 3

34. Verify that the same segment order (segment layout) is used for each channel.

35. If bSegmentType field value is equal to CHANNEL_INFORMATION (0x20) then

36. bchPurpose field value is other than specified values fail it.

37. wChRelationship is equal to one of Channel Relationships (Table 4-8)

38. bchGroupID is equal among all the related channels.

39. wLength value is 6.

40. For every bSegmentType field value which is equal to CHANNEL_AMBISONIC(0x21) check

the following

41. bCompOrdering value (which should be one of the values specified in Appendix A.13,

“Ambisonic Component Ordering Convention Types.”) and make sure in every segment it

has same value

42. bACN contains Ambisonic Channel Number and should be less than bNrchannels field value.

43. bAmbNorm value (which should be one of the values in {NORM_TYPE_UNDEFINED (0x00),

maxN (0x01), SN3D (0x02), N3D (0x03), SN2D (0x04), N2D (0x05)}) and make sure in every

segment it has same value

44. bchGroupID is equal among all the related channels

45. wLength value is 7

46. Test fails if any of the values are not as specified.

3.2.9. Input Terminal Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.1#1, 4.5.2.1#2, 4.5.2.1#3, 4.5.2.1#5, 4.5.2.1#6, 4.5.2.1#7, 4.5.2.1#8,

4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Input Terminal Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == INPUT_TERMINAL

9. If INPUT_TERMINAL not found, skip the remaining steps and throw the related assertion

10. For all Input terminal descriptors check that

11. bLength is 20.

12. bTerminalID field of an Input Terminal Descriptor must be unique.

13. bAssocTerminal field of an Input Terminal Descriptor shall be set to 0 if there is no

association with a terminal pair.

14. wClusterDescrID field of an Input Terminal Descriptor contains the unique ID of the Cluster

descriptor

15. wExTerminalDescrID field of an Input Terminal Descriptor contains the unique ID of the

Extended Terminal descriptor

16. wConectorsDescrID field of an Input Terminal Descriptor contains the unique ID of the

Connectors descriptor

17. Bits 8-31 of the bmControls field of an Input Terminal are reserved and shall be set to 0

18. In bmControls

a. Bits 1..0 should be 01b (Read Only) or 00b (Control Not Present).

b. Bits 3..2 should be 01b (Read Only) or 00b (Control Not Present).

c. Bits 5..4 should be 01b (Read Only) or 00b (Control Not Present).

d. Bits 7..6 should be 01b (Read Only) or 00b (Control Not Present).

19. Test fails if any of the values are not as specified.

3.2.10. Output Terminal Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.2#1 to 4.5.2.2#5, 4.5.2.2#5, 4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and bDescriptorSubType == HEADER. If HEADER not found,

fail the test.

4. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all output Terminal Descriptors

(bDescriptorType == CS_INTERFACE and bDescriptorSubType == OUTPUT_TERMINAL. If

OUTPUT_TERMINAL not found, skip the remaining steps and throw the related assertion.

5. For all Output terminal descriptors check that

6. bLength is 19.

7. bTerminalID field of an Output Terminal Descriptor must be unique.

8. bAssocTerminal field of an Output Terminal Descriptor shall be set to 0 if there is no

association with a terminal pair.

9. wExTerminalDescrID field of an Input Terminal Descriptor contains the unique ID of the

Extended Terminal descriptor

10. wConectorsDescrID field of an Input Terminal Descriptor contains the unique ID of the

Connectors descriptor

11. Bits 8-31 of the bmControls field of an Input Terminal are reserved and shall be set to 0

12. In bmControls:

a. Bits 1..0 should be 01b (Read Only) or 00b (Control Not Present).

b. Bits 3..2 should be 01b (Read Only) or 00b (Control Not Present).

c. Bits 5..4 should be 01b (Read Only) or 00b (Control Not Present).

d. Bits 7..6 should be 01b (Read Only) or 00b (Control Not Present).

13. Test fails if any of the values are not as specified.

3.2.11. Extended Terminal Descriptor Test (Full)

Assertions Verified in this Test

4.2.2#3, 4.5.2.3#1 to 4.5.2.3#4, 4.5.2.3.2, 4.5.2.3.3.1#1, 4.5.2.3.3.1#2, 4.5.2.3.3.2.1#1,

4.5.2.3.3.3.1#1, 4.5.2.3.3.3.2#1, 4.5.2.3.3.3.3#1, 4.5.2.3.3.3.4#1, 4.5.2.3.3.3.5#1,

4.5.2.3.3.3.6#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

a. bDescriptorType == CS_INTERFACE

b. bDescriptorSubType == HEADER

3. If HEADER not found, fail the test.

4. For the class-specific audio control interface descriptor

5. Further parse the class specific audio control interface and check that there exist a

descriptor with

6. bDescriptorType = CS_INTERFACE and

7. bDescriptorSubType ==

INPUT_TERMINAL/MIXER_UNIT/PROCESSING_UNIT/EXTENSION_UNIT for Extended

Terminal

8. Find the wExTerminalDescrID

9. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wExTerminalDescrID and

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: 2

10. Fail if there is no ACK response or retrieved data is less than 2 bytes.

11. Parse the response and find the total length of the descriptor

12. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wExTerminalDescrID

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: total length of the descriptor found in step 13.

13. Fail if there is no ACK response.

14. Check that wLength is total length of the extended terminal Descriptor

15. For all Extended terminal descriptors check that

16. wDescriptorID field of an Extended Terminal Descriptor Header shall have contained the

Unique ID

17. If the first bSegmentType is equal to TERMINAL_VENDOR_DEFINED (1F), then this value

must not come till the end of this descriptor.

18. Verify that in each channel “bSegmentType” of each segment is following same order. If not

notify the user about mismatch of segments ordering in channel block

19. If the segment with bSegmentType is equal to TERMINAL_VENDOR_DEFINED (1F), then its

wLength must be greater than or equal to ‘3’.

20. Check that bSegmentType must be END_SEGMENT (0xFF) before ending of a block.

21. wLength field of an End Segment shall be set to 3

22. If the segment with bSegmentType CHANNEL_BANDWIDTH(0x20), then its wLength must be

equal to 11

23. If the segment with bSegmentType CHANNEL_MAGNITUDE_RESPONSE (0x21), then its

wLength must be equal to 3+n*6. Where n is the bNrChannels field value.

24. If the segment with bSegmentType CHANNEL_MAGNITUDE/PHASE_RESPONSE (0x22), then

its wLength must be equal to 3+n*8. Where n is the bNrChannels field value.

25. If the segment with bSegmentType is CHANNEL_POSITION_XYZ(0x23) or

CHANNEL_POSITION_RΘΦ(0x24), then its wLength must be equal to 15.

26. If the segment with bSegmentType is CHANNEL_VENDOR_DEFINED(0XFE), then its wLength

must be equal to greater than ‘3’

27. Test fails if any of the values are not as specified.

3.2.12. Connector Descriptor Test (Full)

Assertions Verified in this Test

4.2.2#3, 4.5.2.4#2 to 4.5.2.4#9, 4.5.2.4#10, 4.5.2.4#11, 4.5.2.4#12, 4.5.2.4#13, 4.5.2.4#14

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. For the class-specific audio control interface descriptor

7. Further parse the class specific audio control interface and check that there exist a

descriptor with

8. bDescriptorType = CS_INTERFACE and

9. bDescriptorSubType =

INPUT_TERMINAL/MIXER_UNIT/PROCESSING_UNIT/EXTENSION_UNIT for

Connector Descriptor ID

10. Find the wConnectorsDescrID

11. If all elements of an array of wConnectorsDescrID’s are 0, skip the test.

12. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wConnectorsDescrID and

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: 2

13. Fail if there is no ACK response or retrieved data is less than 2 bytes.

14. Parse the response and find the total length of the descriptor

15. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wConnectorsDescrID

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: total length of the descriptor found in step 11.

16. Fail if there is no ACK response

17. For all Connectors descriptors check that

18. wDescriptorID field of a Connectors descriptor is unique and shall not be set to 0.

19. The wLength should be equal to (7+bNrConnectors*11).

20. for bNrConnectors check that the following fields exists.

21. The field baConID(i) of the Connectors descriptor contains a unique identifier for

Connector(i)

22. The field waClusterDescrID(i) of the Connectors descriptor contains the unique ID of a

physical cluster descriptor

23. The field baConType(i) of the Connectors descriptor contains must be in the range 0x000x23

or 0xFF.

24. The value of 11b is reserved and shall not be used for bits 0-1 of the bmaConAttributes(i)

field in the Connectors Descriptor

25. If the value is 00b for bits 0-1 of the bmaConAttributes(i) field in the Connectors Descriptor,

then inform user that the connecter is gender neutral

26. If the value is 01b for bits 0-1 of the bmaConAttributes(i) field in the Connectors Descriptor,

then inform user that the connecter is male.

27. If the value is 10b for bits 0-1 of the bmaConAttributes(i) field in the Connectors Descriptor,

then inform user that the connecter is female.

28. The field daConColor(i) in the Connectors Descriptor shall contain either 0x00 or 0x01 in the

upper byte

29. Test fails if any of the values are not as specified.

3.2.13. Mixer Unit Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.5#1, 4.5.2.5#2, 4.5.2.5#3, 4.5.2.5#5, 4.5.2.5#6, 4.2.1.1.1#1 to 4.2.1.1.1#4,

4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Mixer Unit Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == MIXER_UNIT.

9. If MIXER_UNIT not found, skip the remaining steps and throw the related assertion

10. For all Mixer Unit descriptors check that

11. bUnitId has unique value

12. Verify that bLength of this descriptor is equal to 13 + p + n. where p is the bNrInPins field

and if ((((n *m)) % 8) < 0 || (((n *m)) % 8) > 0),then N=((n*m) DIV 8) + 1,else N=((n*m) DIV

8).

13. Verify each field after “bNrInPins” that “baSourceID(i) “represents the unit or terminal ID

14. wClusterDescrID field contains the unique ID of cluster descriptor

15. In bmControls

16. Bits 1..0 should be 01b Read Only or 00b control not present.

17. Bits 3..2 should be 01b Read only or 00b control not present.

18. Bits 4-31 of the bmControls field are reserved and shall be set to 0

19. Test fails if any of the values are not as specified.

3.2.14. Selector Unit Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.6#1, 4.5.2.6#2, 4.5.2.6#4, 4.5.2.6#5, 4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Selector Unit Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == SELECTOR_UNIT.

9. If SELECTOR_UNIT not found, skip the remaining steps and throw the related assertion

10. For all Feature Unit descriptors check that

11. bUnidID has unique value

12. Verify each field after “bNrInPins” that “baSourceID(i) “represents the unit or terminal ID

13. Verify the bLength is equal to 11+p where p is bNrInpins

14. In bmControls

15. Bits 1..0 should be either 01b Read Only or 11b Read-Write.

16. Bits 2-31 of the bmControls field are reserved and shall be set to 0

17. Test fails if any of the values are not as specified.

3.2.15. Feature Unit Descriptor Test (Full)

Assertions Verified in this Test

3.13.6#2, 4.5.2#1, 4.5.2.7#1, 4.5.2.7#2, 4.5.2.7#3, 4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Feature Unit Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == FEATURE_UNIT.

9. If FEATURE_UNIT not found, skip the remaining steps and throw the related assertion

10. For all Feature Unit descriptors check that

11. The bLength shall be set to 7+(ch+1) *4.

12. The bUnitId should be unique.

13. In bmControls:

a. bits 1..0 should be 11b (Read-Write) or 00b control not present.

b. Bits 3..2 should be 11b (Read-Write) or 00b control not present.

c. Bits 5..4 should be 11b (Read-Write) or 00b control not present.

d. Bits 7..6 should be 11b (Read-Write) or 00b control not present.

e. Bits 9..8 should be 11b (Read-Write) or 00b control not present.

f. Bits 11..10 should be 11b (Read-Write) or 00b control not present.

g. Bits 13..12 should be 11b (Read-Write) or 00b control not present.

h. Bits 15..14 should be 11b (Read-Write) or 00b control not present.

i. Bits 17..16 should be 11b (Read-Write) or 00b control not present.

j. Bits 19..18 should be 11b (Read-Write) or 00b control not present.

k. Bits 21..20 should be 11b (Read-Write) or 00b control not present.

l. Bits 23..22 should be 11b (Read-Write) or 00b control not present.

m. Bits 25..24 should be 11b (Read-Write) or 00b control not present.

n. Bits 27..26 should be 01b (Read Only) or 00b control not present.

o. Bits 29..28 should be 01b (Read Only) or 00b control not present.

p. Bits 30-31 of bmControl fields in the Feature Unit descriptor are reserved and must be

set to 0.

14. Test fails if any of the values are not as specified.

3.2.16. Sampling Rate Converter Unit Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.8#1, 4.5.2.8#2, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Sampling Rate Converter Unit

Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == SAMPLE_RATE_CONVERTER_UNIT

9. If SAMPLE_RATE_CONVERTER_UNIT not found, skip the remaining steps and throw the

related assertion

10. For all Sampling Rate Converter Unit descriptors check that

11. bUnitId field value is unique ID.

12. blength must be is 9

13. Test fails if any of the values are not as specified.

3.2.17. Effect Unit Descriptor Test (Full)

Assertions Verified in this Test

3.13.8#1, 4.5.2#1, 4.5.2.9#1, 4.5.2.9#2, 4.5.2.9#3, 4.5.2.9.1#2, 4.5.2.9.1#3, 4.5.2.9.2#1,

4.5.2.9.2#2, 4.5.2.9.3#1, 4.5.2.9.3#2, 4.5.2.9.4#1, 4.5.2.9.4#2, 4.2.1.1.1#1 to 4.2.1.1.1#4,

4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER.

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Effect Unit Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == EFFECT_UNIT

9. If EFFECT_UNIT not found, skip the remaining steps and throw the related assertion

10. For all Effect Unit descriptors check that

11. bUnitId field value is unique ID.

12. bEffectType field of the Effect Unit descriptor must contain a value in the range of 0x0001

to 0x0004

13. If bEffectType is PARAM_EQ_SECTION_EFFECT (0x0001) then

14. bLength field shall be set to 17+(ch*4)

15. In bmControls (for all channels present in PARAM_EQ_SECTION_EFFECT)

16. Bits 1..0 should be 11b (Read-write) or 00b control not present.

17. Bits 3..2 should be 11b (Read-Write) or 00b control not present.

18. Bits 5..4 should be 11b (Read-Write) or 00b control not present.

19. Bits 7..6 should be 01b (Read Only) or 00b control not present.

20. Bits 9..8 should be 01b (Read Only) or 00b control not present.

21. Bits 10-31 of the bmaControls are reserved and shall be set to 0.

22. If bEffectType is REVERBERATION_EFFECT (0x0002) then

23. bLength field shall be set to 17+(ch*4)

24. In bmControls (for all channels present in REVERBERATION_EFFECT)

25. Bits 1..0 should be 11b (Read-Write) or 00b control not present.

26. Bits 3..2 should be 11b (Read-Write) or 00b control not present.

27. Bits 5..4 should be 11b (Read-Write) or 00b control not present.

28. Bits 7..6 should be 11b (Read-Write) or 00b control not present.

29. Bits 9..8 should be 11b (Read-Write) or 00b control not present.

30. Bits 11..10 should be 11b (Read-Write) or 00b control not present.

31. Bits 13..12 should be 11b (Read-Write) or 00b control not present.

32. Bits 15..14 should be 01b (Read Only) or 00b (Control not present)

33. Bits 17..16 should be 01b (Read Only) or 00b (Control not present)

34. Bits 10-31 of the bmaControls are reserved and shall be set to 0.

35. If bEffectType is MOD_DELAY_EFFECT(0x0003) then

36. wLength field shall be set to 17+(ch*4)

37. In bmControls (for all channels present in MOD_DELAY_EFFECT)

38. Bits 1..0 should be 11b (Read-Write) or 00b control not present.

39. Bits 3..2 should be 11b (Read-Write) or 00b control not present.

40. Bits 5..4 should be 11b (Read-Write) or 00b control not present.

41. Bits 7..6 should be 11b (Read-Write) or 00b control not present.

42. Bits 9..8 should be 11b (Read-Write) or 00b control not present.

43. Bits 11..10 should be 11b (Read-Write) or 00b control not present.

44. Bits 13..12 should be 01b (Read Only) or 00b control not present.

45. Bits 15..14 should be 01b (Read Only) or 00b control not present.

46. Bits 16-31 of the bmaControls fields must be 0.

47. If bEffectType DYN_RANGE_COMP_EFFECT(0x004) then

48. bLength field shall be set to 17+(ch*4)

49. In bmControls (for all channels present in MOD_DELAY_EFFECT)

a. Bits 1..0 should be 11b (Read-Write) or 00b control not present.

b. Bits 3..2 should be 11b (Read-Write) or 00b control not present.

c. Bits 5..4 should be 11b (Read-Write) or 00b control not present.

d. Bits 7..6 should be 11b (Read-Write) or 00b control not present.

e. Bits 9..8 should be 11b (Read-Write) or 00b control not present.

f. Bits 11..10 should be 11b (Read-Write) or 00b control not present.

g. Bits 13..12 should be 01b (Read Only) or 00b control not present.

h. Bits 15..14 should be 01b (Read Only) or 00b control not present.

i. Bits 16-31 of the bmControls fields must be 0.

50. Test fails if any of the values are not as specified.

3.2.18. Processing Unit Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.10#1, 4.5.2.10#2, 4.5.2.10#3, 4.5.2.10#5, 4.5.2.10.1#1, 4.5.2.10.1#2,

4.5.2.10.1#3, 4.5.2.10.1#4, 4.5.2.10.1#5, 4.5.2.10.2#1, 4.5.2.10.2#3, 4.5.2.10.2#4,

4.5.2.10.3#1 to 4.5.2.10.3#6, 4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER.

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Processing Unit Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == PROCESSING_UNIT(0x09)

9. If PROCESSING_UNIT not found, skip the test and throw the related assertion

10. For all Processing Unit descriptors check that

11. bUnitId field value is unique ID.

12. wProcessType field shall be within the range of x0000-0x004.Note: range is from 0x0000

0x0003

13. check that a unique baSourceID (I) exist for bNrInPins

14. If wProcessType is UP/DOWNMIX_PROCESS (0x001) then

15. bNrLnPins must be 1

16. bNrModes value must be equal to last index of array waClusterDescrId ()

17. bLength must be 15+2*m, where m is bNrModes.

18. In bmControls Bits 1..0 should be 11b (Read-Write) or 00b control not present.

19. Bits 3..2 should be 01b (Read Only) or 00b control not present.

20. Bits 5..4 should be 01b (Read Only) or 00b control not present.

21. Bits 6-31 of the bmControls field must be 0.

22. If wProcessType is STEREO_EXTENDER_POCESS (0x0002) then

23. bNrLnPins must be 1

24. bLength field shall be set to 14

25. In bmControls

26. Bits 1..0 should be 11b (Read-Write)

27. Bits 3..2 should be 01b (Read Only) or 00b (Control not present)

28. Bits 5..4 should be 01b (Read Only) or 00b (Control not present)

29. Bits 6-31 of the bmaControls are reserved and shall be set to 0.

30. If wProcessType MULTI_FUNCTION_PROCESS (0x003) then

31. bLength must be 19 + p, where is p is bNrInPins

32. wClusterDescrID field value must not be equal to 0

33. bNrinPins value must be equal to last index of array baSourceID ()

34. wLength field shall be set to 17+(ch*4)

35. In bmControls

36. Bits 1..0 should be 01b (Read Only) or 00b (Control not present)

37. Bits 3..2 should be 01b (Read Only) or 00b (Control not present)

38. Bits 4-31 of the bmaControls fields must be 0.

39. 6-31 bits of the bmAlgorithms field must be 0.

40. Test fails if any of the values are not as specified.

3.2.19. Extension Unit Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.11#1, 4.5.2.11#3, 4.5.2.11#4, 4.5.2.11#5, 4.5.2.11#6, 4.2.1.1.1#1 to

4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Extension Unit Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == EXTENSION_UNIT(0x0A)

9. If EXTENSION_UNIT not found, skip the remaining steps and throw the related assertion

10. For all Extension Unit descriptors check that

11. bUnitId field has unique value

12. bLength field of the Extension Unit descriptor shall be set to 15+p where p is bNrInPns

13. bnrinPins value must be equal to last index of array baSourceID ()

14. wClusterDescrID field value must not be equal to 0

15. In bmControls

16. Bits 1..0 should be 01b (Read Only) or 00b (Control not present)

17. Bits 3..2 should be 01b (Read Only) or 00b (Control not present)

18. Bits 4-31 of bmControl fields in the Feature Unit descriptor are reserved and must be set to

0.

19. Test fails if any of the values are not as specified.

3.2.20. Clock Source Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.12#1, 4.5.2.12#3, 4.5.2.12#4, 4.5.2.12#5, 4.5.2.12#6, 4.5.2.12#7,

4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER.

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Clock Source Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == CLOCK_SOURCE(0x0B)

9. If CLOCK_SOURCE not found, skip the remaining steps and throw the related assertion

10. For all Clock Source descriptors check that

11. bUnitId field has unique value

12. If D0 bit is 0 then D1 bit must be 0 in bmAttributes field

13. the bLength value must be equal to 12.

14. Bits 2-7 of the bmAttributes field must be 0

15. Bits 4-31 of bmControl fields in the Feature Unit descriptor are reserved and must be set to

0.

16. In bmControls

17. Bits 1..0 should be 01b (Read Only) or 11b (Read-Write) or 00b control not present.

18. Bits 3..2 should be 01b (Read Only) or 00b control not present.

19. in bmAttributes, if bit D0 is 0 or D1 is 1, then bReferenceTerminal should be 0

20. Test fails if any of the values are not as specified.

3.2.21. Clock Selector Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.13#1, 4.5.2.13#2, 4.5.2.13#3, 4.5.2.13#4, 4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER. If HEADER not found, fail the test.

5. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Clock Selector Descriptors

6. bDescriptorType == CS_INTERFACE and

7. bDescriptorSubType == CLOCK_SELECTOR(0x0C)

8. If CLOCK_SELECTOR not found, skip the remaining steps and throw the related assertion

9. For all Clock Selector descriptors check that

10. bUnitId field has unique value

11. the bnrinPins value must be equal to last index of array baSourceID ()

12. bLength must be 11+p

13. In bmControls

14. Bits 1..0 should be 01b (Read Only) or 00b (Control not present) or 00b control not present.

15. Bits 2-31 of the bmControls field must be 0

16. Test fails if any of the values are not as specified.

3.2.22. Clock Multiplier Descriptor Test (Full)

Assertions Verified in this Test

4.5.2#1, 4.5.2.14#1, 4.5.2.15#2, 4.2.1.1.1#1 to 4.2.1.1.1#4, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Clock Multiplier Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == CLOCK_MULTIPLIER(0x0D)

9. If CLOCK_MULTIPLIER not found, skip the remaining steps and throw the related assertion

10. For all Clock multiplier descriptors check that

11. bUnitId field has unique value

12. In bmControls

13. Bits 1..0 should be 01b (Read Only) or 00b (Control not present)

14. Bits 3..2 should be 01b (Read Only) or 00b (Control not present)

15. Bits 4-31 of the bmControls field must be 0

16. Test fails if any of the values are not as specified.

3.2.23. Power Domain Descriptor Test (Full)

Assertions Verified in this Test

3.10#1, 4.5.2#1, 4.5.2.15#1 to 4.5.2.15#5, 4.2.1#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio control descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType == HEADER.

5. If HEADER not found, fail the test.

6. Parse the Descriptors following class-specific audio control descriptor (starting bLength

after), and stopping wTotalLength after. Look for all Power Domain Descriptors

7. bDescriptorType == CS_INTERFACE and

8. bDescriptorSubType == POWER_DOMAIN(0x10)

9. If POWER_DOMAIN not found, skip the remaining steps and throw the related assertion

10. For all Power Domain descriptors check that

11. bUnitId field has unique value

12. Only ID's of Input Terminals, Output Terminals, Effect Units, Processing Units, and Extension

Units shall be present in baEntityID ()

13. No ID's should be overlap with other power domain descriptor

14. bNrEntities field value must be equal to last index of array baEntityID ()

15. bLength must be 11+p, where p is bNrInPins

16. Test fails if any of the values are not as specified.

3.2.24. Class Specific Audio Streaming Interface Descriptor Test (Full)

Assertions Verified in this Test

3.13.2#1, 3.13.3#1, 3.14.2#4, 3.14.2#5, 3.14.2.1#1, 4.4#4, 4.7.2#1, 4.7.2#2, 4.7.3#1

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio streaming descriptor with

3. bDescriptorType =CS_INTERFACE and

4. bDescriptorSubType=AS_GENERAL(0x01)

5. If AS_GENERAL not found skip 10th step.

6. For the class-specific audio streaming interface descriptor check that

7. bLength is 23

8. Bits 6-31 of the bmControls of the Class-Specific AS Interface descriptor are Reserved and

shall be set to 0.

9. The wClusterDescrID should be unique or 0.

10. Test fails if any of the values are not as specified.

11. Parse the configuration descriptor for class-specific audio streaming descriptor with

12. bDescriptorType == CS_INTERFACE and

13. bDescriptorSubType == AS_VALID_FREQ_RANGE(0x02)

14. If AS_VALID_FREQ_RANGE not found skip step 7 the test.

15. For the all class-specific AS valid frequency range audio streaming interface descriptor check

that bLength is 23

16. Test fails if any of the values are not as specified.

17. Parse the endpoint descriptor which is present after this, read the bEndpointAddress field in

the endpoint descriptor.

18. From the bTerminalLink read the respective Terminal descriptor, then if the wTerminal

value is other than 0x101 or 0x100 or 0x1FF then bNumEndPoints in audio streaming

descriptor should be equal to 0x00.

19. If the step 9 fails or skips, then do steps 11 & 12.

20. If bit D7 is specifies OUT, then bTerminalLink in class specific audio streaming descriptor

should be the unique terminal ID of INPUT TERMINAL.

21. If bit D7 is specifies IN, then bTerminalLink in class specific audio streaming descriptor

should be the unique terminal ID of OUTPUT TERMINAL.

3.2.25. Class-Specific AS Isochronous Audio Data Endpoint Descriptor

Test (Full)

Assertions Verified in this Test

4.8.1.2#2, 4.8.1.2#3, 4.8.1.2#4

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for class-specific audio streaming isochronous data

endpoint descriptor with

3. bDescriptorType = CS_ENDPOINT(0x25) and

4. bDescriptorSubType=EP_GENERAL(0x01)

5. If EP_GENERAL not found skip the test.

6. For the class-specific audio streaming interface descriptor check that

7. bLength is 10

8. Bits 6-31 of the bmControls are reserved and shall be set to 0.

9. Values 3-255 of the bLockDelayUnits field must not be present.

10. Test fails if any of the values are not as specified.

3.2.26. Class Specific String Descriptors Test (Full)

Assertions Verified in this Test

4.9#4, 4.9#5, 4.9#6, 4.9#7

Test Procedure

1. Initialize the test.

2. Parse the configuration descriptor for specific descriptor to get its corresponding

wStrDescId

3. Now issue a CONTROL REQUEST with following values

4. Parse the response for class specific string descriptor in Data field. If class specific string

descriptor not found, fail the test.

5. Check for following in class specific string descriptor

6. wLength field of the Class-Specific String descriptor must be less than 65,529 bytes in

length.

7. bDescriptorType field of a Class-Specific String descriptor shall be set to CS_STRING (0x23)

8. bDescriptorSubtype field of a Class-Specific String descriptor shall be set to

SUBTYPE_UNDEFINED (0x00)

9. bLangID field of the Class-Specific String descriptor shall be in the range 0-125

10. Test fails if any of the values are not as specified.

3.2.27. Backward Compatibility Test (All)

Assertions Verified in this Test

3.3#1, 3.3#2, 3.3#3, 3.3#4

Test Procedure

This test encompasses all Audio 3.0 Functions in all Configurations. Therefore it does not

need to be repeated for each Configuration.

1. Initialize the test, with the following modifications:

a. Retrieve the full Configuration Descriptors for all Configurations the DUT supports and

save them for later use.

Note: this includes those that do not have an Audio 3.0 Function.

2. Determine whether the DUT has a Configuration with at least one Audio Streaming

Interface. Save this result for further use.

3. Test fails if there is no Legacy Audio Function defined in the full Configuration Descriptor

for Configuration Index 0.

4. Retrieve all Audio 3.0 Functions from all Configurations.

5. If the DUT has an Audio Streaming Interface, verify the following:

• The DUT has more than one Configuration.

• A Configuration other than Configuration index 0 has a BADD Function.

6. Verify that no Configuration has more than one BADD Function.

7. Verify that if the Device has more than one BADD Function, then all of them are the same.

a. Two BADD Functions are the same if the following Descriptors are byte-wise identical:

• The IAD (other than the bFirstInterface field)

• All Interface Descriptors (other than the bInterfaceNumber field):

• Endpoint Descriptors (other than bits 3:0 of the bEndpointAddress field)

• Endpoint Companion Descriptors (if applicable)

3.2.28. BADD Standard Interface Descriptors Test (BADD)

Assertions Verified in this Test

3#1, 3#2, 4.2#3, 4.2.2#1, 6.1#1, 6.1#2, 6.2.2.1#2, 6.2.2.1#3, 6.2.2.1#4, 6.2.2.1#5, 6.2.4#1,

6.2.4.1.1#1, 6.2.4.1.1#2, 6.2.4.1.1#3, 6.2.4.1.1#4, 6.2.4.1.1#5, 6.2.4.1.1#6, 6.2.4.1.1#7,

6.2.4.1.2.1#1, .2.4.1.2.1#2, 6.2.4.1.2.1#3, 6.2.4.1.2.1#4, 6.2.4.1.2.1#5, 6.2.4.1.2.1#6,

4.2.1#1

Test Procedure

1. Initialize the test.

2. Test fails if the Device is Low Speed.

3. Test fails unless there is at least one AUDIOSTREAMING Interface Descriptor in the data

returned.

4. Test fails if there are any audio-specific descriptors in the Function.

5. For each of the returned interface descriptors verify the following:

• If bFunctionSubClass is 0x25 (HEADSET_ADAPTER)/bInterfaceSubClass is AUDIOCONTROL (0x01),

then bNumEndPoints shall be set to 1

• If bInterfaceSubclass is not MIDISTREAMING (0x03)

3.2.29. BADD Standard Endpoint Descriptor Test (BADD)

Assertions Verified in this Test

4.2#2, 4.2.3#1, 4.2.3#2, 6.2.3#1, 6.2.3#2, 6.2.3#3, 6.2.3.1#1, 6.2.3.1#2, 6.2.3.1#3,

6.2.3.1#4, 6.2.4.1.2.3#1, 6.2.4.1.2.3#2, 4.2.3#3

Test Procedure

1. Initialize the test.

2. For each Function, parse the BADD Function descriptors, saving all Endpoint Descriptors for

further use.

3. If bFunctionSubClass is 0x25 (HEADSET_ADAPTER), then bmAttributes should be equal to

0x03.

4. There should be minimum 2 endpoint descriptor with bit ‘7’ in bEndpointAddress one with

value 1 and other with value 0.

5. For all standard endpoint descriptors verify the following

6. Bits 3-2 of the bmAttributes are same for all data endpoint descriptors.

7. The allowed bmAttributes for the data endpoint descriptors are 0x05 or 0x0D.

8. If bit 7 of the bEndpointAddress field is 0 and bmAttributes is 0x0D, then there should be an

endpoint descriptor with bmAttributes equal to 0x11.

9. bmAttributes is as follows

10. D1..0: Transfer type

11. 01b = Isochronous

12. 11b = Interrupt

13. If D1..0 is 11b then

14. bmAttributes should be 0x03.

15. maxPacketSize should be 0x06.

16. (all other bits are reserved) - this is used to notify the host for changes in audio function.

17. If (D1..0: Transfer type: (01b == Isochronous)) then

18. check that D3..2: Synchronization Type: 01b = Asynchronous.

19. 10b = Adaptive.

20. 11b = Synchronous.

21. D5..4: Usage Type:

22. 00b = Data endpoint or

23. 10b = Implicit feedback Data endpoint

24. Test fails if any of the values are not as specified

3.2.30. BADD Terminal Control Test (BADD)

Assertions Verified in this Test

7.1.2.1#1

Test Procedure

1. Initialize the test.

2. For each BADD Function, parse the descriptors, saving all Interface Descriptors for further

use.

3. If bFunctionSubClass is not 0x25 skip the remaining steps and go on to the next BADD

Function.

4. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

5. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = TE_INSERTION_CONTROL/CN = 0

• wIndex: Entity ID = 0x04/Interface = Interface number

• wLength: Desired

6. If the request does not succeed, then fail the test and throw the related assertion

7. Read the parameter data block for get request, and verify

8. Now for each bNrConnectors, verify that if D2 of bmaConAttributes(i) is 0 then D[i-1] in

bmaConInserted is also 0

9. Verify that if D2 of bmaConAttributes(i) is one then D[i-1] in bmaConInserted is either 0/one

10. Verify that bSize of response is equal to D[n..o]/8 of bmaConInserted.

11. Verify that the bits (bSize * 8 – bNrConnectors) on MSB of bmConINserted is always 0

12. If anyone fails then fail the test, and throw the related assertion.

13. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE/INTEN

• wValue: CS = TE_INSERTION_CONTROL/CN = 0

• wIndex: Entity ID = 0x04/Interface = Interface number

• wLength: Desired

14. If the control does not answer with STALL, then fail the test and throw the related assertion.

15. Repeat steps 6 - 10 for Output terminal descriptors with bUnitId = 0x03 &

wConnectorsDescrID = 0x004 in audio control interface descriptor.

3.2.31. BADD Mixer Control Test (BADD)

Assertions Verified in this Test

7.1.2.2#1

Test Procedure

1. Initialize the test.

2. For each BADD Function, if bFunctionSubClass is not equal to 0x25 or 0x24 skip the

remaining steps and go on to the next Function.

3. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

Mixer Control Test

Note: The Mixer Unit descriptor reports which Controls are programmable in the

bmMixerControls bitmap field. This bitmap shall be interpreted as a two-dimensional bit

array that has a row for each logical input channel and a column for each logical output

channel. If a bit at position [u, v] is set to one, this means that the Mixer Unit contains a

programmable Mixer Control that connects input channel u to output channel v. If bit [u,

v] is set to 0, this indicates that the connection between input channel u and output

channel v is non-programmable

4. The bmMixerControls field stores the bit array row after row where the MSb of the first

(highest) byte corresponds to the connection between input channel 1 and output channel

1.

5. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR (For any programmable/Non-Programmable)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = 0x08/Interface = Interface number

• wLength: Desired

6. If the request does not succeed, then fail the test and throw the related assertion

3.2.32. BADD Feature Unit Control Test (BADD)

Assertions Verified in this Test

7.1.2.3#1

Test Procedure

1. Initialize the test.

2. For each BADD Function, parse the Descriptors to find the Audio Control Interface

Descriptor (bDescriptorType == INTERFACE and bInterfaceSubClass == AUDIO_CONTROL),

Retrieve the Interface number of this Audio Control Interface descriptor.

Mute Control Test

3. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_MUTE_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

4. If the request does not succeed, then fail the test and throw the related assertion

5. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_MUTE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

7. If the control does not answer with STALL, then fail the test and throw the related assertion.

Volume Control Test

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

9. If the request does not succeed, then fail the test and throw the related assertion

10. Parse the parameter data block for get request, and verify

11. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

12. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

13. If retrieved data should be same value we sent.

14. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

15. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

16. For all sub ranges Min value should be less than max value.

17. For all sub ranges max of one Sub range should be equal to another sub range.

18. If max and min are equal then RES should be 0.

19. The RES attribute of the Volume Control can only have positive values and range from

1/256db (0x0001) to +127.9961 dB (0x7FFF).

20. The code 0x8000 for the RES attribute shall never be reported as the MIN attribute value.

21. If any of one fails then fail the test, and throw the related assertion

22. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

23. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.33. BADD Clock Source Control Test (BADD)

Assertions Verified in this Test

7.1.2.4#1

Test Procedure

1. Initialize the test.

2. For each BADD Function, parse the Descriptors to find the Audio Control Interface

Descriptor (bDescriptorType == INTERFACE and bInterfaceSubClass == AUDIO_CONTROL),

Retrieve the Interface number of this Audio Control Interface descriptor.

3. Sampling Frequency Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Parse the parameter data block for get request, if the CUR attributes can range from 0 Hz

(0x00000000) to 4,294,967,295 Hz (0xFFFFFFFF) then fail the test and throw the related

assertion.

3.2.34. BADD Power Domain Control Test (BADD)

Assertions Verified in this Test

7.1.2.5#1, 4.3#1.0

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = 0x0A/Interface = Interface number

• wLength: 1

4. If the request does not succeed, then fail the test and throw the related assertion

5. Verify the parameter data block for get request, if data is not positive values ranging from 0

to 2 then fail the test and throw the related assertion.

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE/INTEN

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = 0x0A/Interface = Interface number

• wLength: 5

7. If the control does not answer with STALL, then fail the test and throw the related assertion.

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = 0x0A/Interface = Interface number

• wLength: 1

• In parametric block bCur Value 0.

9. Direct the user to measure the current manually. Save the result for future use.

10. Repeat steps 9 - 10 with bCur value = 1.

11. Repeat steps 9 - 10 with bCur value = 2.

12. Test fails if the power measured for bCur == 1 is not less than for bCur == 0.

13. Test fails if the power measured for bCur == 2 is not less than for bCur == 1.

14. Repeat steps 10-13 with EntityID = 0x0B.

15. Read bmAttributes field in configuration Descriptor, if bit 6 is set to 1, then skip the

remaining steps.

3.2.35. Terminal Type Test (Full)

Assertions Verified in this Test

2.1#1, 2.4#3, 2.4#4, 2.5#1

Test Procedure

1. Initialize the test.

2. Parse all the input and output terminals with bDescriptorType == CS_INTERFACE and

bInterfaceSubClass == INPUT_TERMINAL or OUTPUT_TERMINAL.

3. If the wTerminalType = 0x0101 or 0x100 or 0x1FF then store the bTerminalID of that

terminals

4. Parse the class specific audio streaming descriptor with bDescriptorType == CS_INTERFACE

and bInterfaceSubClass == AS_GENERAL. If not present skip the below step.

5. The bTerminalLink value should be one of the stored values.

6. If the wTerminalType == 0x400 to 0x405 then their bAssocTerminal value should be ID of I/p

terminal if it o/p terminal & I/p terminal if it is o/p terminal and their wTerminalType should

be same.

7. If the wTerminalType == 0x600 to 0x60A then their bAssocTerminal value should be ID of I/p

terminal if it o/p terminal & I/p terminal if it is o/p terminal and their wTerminalType should

be same.

8. Test fails if any value is not as specified.

3.2.36. Audio Format Test (Full)

Assertions Verified in this Test

2.3.1.6#1, 2.3.1.6#2, 2.3.3#1, 2.5#3, 2.5#4, 2.5#5, 2.5#6, 2.5#7, 2.5#9, 2.5#10, 2.5#11,

2.5#15, 2.5#15, 2.5#16, 2.3.1.3#1

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_STREAMING), Retrieve the Interface number

of this Audio Control Interface descriptor.

3. Parse the class specific audio streaming with bDescriptorType == CS_INTERFACE and

bInterfaceSubClass == AS_GENERAL.

4. The bSubslotSize value should be either 1 or 2 or 3 or 4 or 8.

5. Find input or output terminal descriptor with bTerminalID = bTerminalLink

6. Read wTerminalType from that if it has values other than 0x100 or 0x101 or 0x1FF, then it is

Type I or Type III format, otherwise it is Type IV format.

7. In bmFormats only one bit should be set in bits D0-D6 for Type 1 format.

8. bsubSlotSize value should either 1 or 2 or 3 or 4 or 8, if it is Type 1 format.

9. The bSubslotSize value should be 2, & bBitresolution should be ‘16’, if it is Type III format

10. The bSubslotSize value should be 0, & bBitresolution should be 0, if it is Type IV format

11. The bits 31..6 should be equal to 0.

12. If bmAuxProtocols value is 0 then bControlSize should be 0.

13. If bmAuxProtocols is not 0 & it is Type I, then bControlSize should not be be 0. And it should

be 0 for remaining Types.

14. Test fails if any of the values are not as specified.

3.2.37. Audio Data Capture Test (Full)

Assertions Verified in this Test

2.4#1, 2.4#3, 2.4#4, 2.4#5, 2.4#6, 2.4#8, 2.4.1#1, 3.1#1, 3.1#2, 3.1#3, 2.3.1.1.1#1

Test Procedure

1. Initialize the test.

2. If bmAuxProtocols == 0 and bControlSize == 0, then skip this test.

3. Parse Standard Audio data endpoint with bDescriptorType = ENDPOINT, with bit 7 of

bEndpointAddress is 1. If ENDPOINT not found skip the remaining steps

4. Poll the endpoint for streaming data.

5. From the retrieved data parse SIP Descriptor

6. Bits 15..3 of bmFlags must be equal to 0.

7. At least one bit of 2..0 of bmFlags must be 1.

8. If bit 0 is set then wHeaderLength must not be equal to 0.

9. Test fails if any of the values are not as specified.

10. In SIP Descriptor if wHeaderLength is not equal to 0 then parse the header descriptor that

should be present after SIP Descriptor.

11. In Each sub header wSubHeaderID value should be 0x00 or 0x01.

12. HDCP Protocol sub header should be present at every HDCP_PACKET_HEADER_TIME

(512ms).

13. Parse HDCP protocol sub header

14. The bOffset field should less than 16.

15. bReserved field should be 0x00.

16. Test fails if any of the values are not as specified.

17. Parse Standard Audio data endpoint with bDescriptorType = ENDPOINT, with bit 7 of

bEndpointAddress is 0. If ENDPOINT not found skip the remaining steps

18. Write some data through that endpoint. If this fails fail the test and throw related assertion.

3.2.38. Enable Control Test (Full)

Assertions Verified in this Test

5.2#2, 5.2.1.4.1#1, 5.2.1.4.1#2, 5.2.1.4.1#3, 5.2.1.4.1#4, 5.2.1.4.1#5, 5.2.1.2#6, 5.2.1.3#1

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of this

Audio Control Interface descriptor.

3. Parse descriptors to find Parametric equalizer section effect Unit Descriptor

(bDescriptorType == CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and

wEffectType = PARAM_EQ_SECTION_EFFECT (PE), If no Parametric equalizer section effect

Unit Descriptors found, skip the remaining steps. If a Parametric equalizer section effect

Unit is found, retrieve the Unit ID and begin the test on the Control

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = XX_ENABLE_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. If step 5 passes then issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = XX_ENABLE_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

7. If the request does not succeed, then fail the test and throw the related assertion

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = XX_ENABLE_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 4.

9. If short packet is not returned fail the test and throw the related assertion.

10. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

11. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE/INTEN

• wValue: CS = XX_ENABLE_CONTROL/CN = non-0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

12. If the control does not answer with STALL, then fail the test and throw the related assertion.

13. Repeat steps 6 - 11 for wEffectType =

14. REVERBERATION EFFECT UNIT (RV)

15. MODULATION DELAY EFFECT UNIT (MD)

16. DYNAMIC RANGE COMPRESSOR EFFECT UNIT (DR).

3.2.39. Underflow Control Test (Full)

Assertions Verified in this Test

5.2.1.4.2#3, 5.2.1.4.2#4, 5.2.1.4.2#5, 5.2.1.4.2#6, 5.2.1.4.2#7, 5.2.1.2#4, 5.2.1.2#5,

5.2.1.12#1

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Input Terminal Unit Descriptor (bDescriptorType == CS_INTERFACE

and bDescriptorSubType == INPUT_TERMINAL(TE) and, if no Input Terminal Unit Descriptors

found, skip the remaining steps. If an Input Terminal Unit is found, retrieve the Unit ID and

begin the test on the Control

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = XX_UNDERFLOW_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Verify the parameter data block for get request, if data is not either TRUE or FALSE then fail

the test and throw the related assertion.

7. If data is TRUE, repeat steps 4 - 6.

8. Verify the parameter data block for get request, if data is not FALSE then fail the test and

throw the related assertion.

9. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE/INTEN

• wValue: CS = XX_UNDERFLOW_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

10. If the control does not answer with STALL, then fail the test and throw the related assertion.

11. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE/INTEN/CUR

• wValue: CS = XX_UNDERFLOW_CONTROL/CN = Desired Channel

• wIndex: Entity ID = unknown ID or interface = unknown Interface number

• wLength: Desired

12. If the control does not answer with STALL, then fail the test and throw the related assertion.

13. Repeat steps 3 - 12 for bDescriptorSubType ==

14. OUTPUT_TERMINAL(TE)

15. MIXER_UNIT(MU)

16. PARAMETRIC EQUALIZER SECTION EFFECT UNIT (PE)

17. REVERBERATION EFFECT UNIT (RV)

18. MODULATION DELAY EFFECT UNIT (MD)

19. DYNAMIC RANGE COMPRESSOR EFFECT UNIT (DR)

20. UP/DOWN-MIX PROCESSING UNIT (UD)

21. STEREO EXTENDER PROCESSING UNIT (ST_EXT)

22. EXTENSION UNIT (XU)

3.2.40. Overflow Control Test (Full)

Assertions Verified in this Test

5.2.1.1#1, 5.2.1.4.3#3, 5.2.1.4.3#4, 5.2.1.4.3#5, 5.2.1.4.3#6, 5.2.1.4.3#7, 5.2.1.12#1,

5.2#1, 5.2.1.1#1, 5.2.1.2#3

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Input Terminal Unit Descriptor (bDescriptorType == CS_INTERFACE

and bDescriptorSubType == INPUT_TERMINAL(TE) and, if no Input Terminal Unit Descriptors

found, skip the remaining steps. If a Input Terminal Unit is found, retrieve the Unit ID and

begin the test on the Control

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = XX_OVERFLOW_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

7. If data is TRUE, repeat steps 4 - 5.

8. Verify the parameter data block for get request, if data is not False then fail the test and

throw the related assertion.

9. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE/INTEN

• wValue: CS = XX_OVERFLOW_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

10. If the control does not answer with STALL, then fail the test and throw the related assertion.

11. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = XX_OVERFLOW_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

12. If the control does not answer with STALL, then fail the test and throw the related assertion.

13. For extension unit issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = unsupported control/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

14. If the control pipe doesn’t stall fail the test.

15. Repeat steps 6 - 11 for bDescriptorSubType ==

a. OUTPUT_TERMINAL(TE)

b. MIXER_UNIT(MU)

c. PARAMETRIC EQUALIZER SECTION EFFECT UNIT (PE)

d. REVERBERATION EFFECT UNIT (RV)

e. MODULATION DELAY EFFECT UNIT (MD)

f. DYNAMIC RANGE COMPRESSOR EFFECT UNIT (DR)

g. UP/DOWN-MIX PROCESSING UNIT (UD)

h. STEREO EXTENDER PROCESSING UNIT (ST_EXT)

i. EXTENSION UNIT (XU)

3.2.41. Power Domain Control Test (Full)

Assertions Verified in this Test

5.2.1.4.4#1, 5.2.1.4.4#2, 5.2.1.4.4#3, 5.2.1.4.4#4, 5.2.1.4.4#5, 5.2.1.4.4#6, 5.2.1.4.4#7,

5.2.1.4.4#8, 3.14.4#9, 3.14.4#10, 3.14.4#11, 6.1#2, 6.1#21

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Power Domain Descriptor (bDescriptorType == CS_INTERFACE and

bDescriptorSubType == POWER_DOMAIN and, if no Power Domain Unit Descriptors found,

skip the remaining steps. If a Power Domain Unit is found, retrieve the Unit ID and begin the

test on the Control

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

5. If the request does not succeed, then fail the test and throw the related assertion

6. Verify the parameter data block for get request, if data is not positive values ranging from 0

to 2 then fail the test and throw the related assertion.

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE/INTEN

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 5

8. If the control does not answer with STALL, then fail the test and throw the related assertion.

9. Record the current time on the test computer, and save it for future use.

10. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• In parametric block bCur Value 1. & note the time.

11. Now issue a CONTROL REQUEST with following values until we get value 0 and the note the

time:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• In parametric block bCur Value 0.

12. Now issue a CONTROL REQUEST with following values until we get value 0 and the note the

time:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

13. Record the current time on the test computer.

a. The difference between this time and the time recorded in step 10 should be less than

or equal to waRecoveryTime(1) value.

14. Now do steps 10 – 14, setting bCur to 2 in all steps, and comparing the time recorded to

waRecoveryTime(2) in step 14a.

15. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• In parametric block bCur Value 0.

16. Direct the user to measure the current manually. Record the value for future use.

17. Repeat steps 16 - 17 with bCur value == 1 & 2.

18. Test fails if power measured when bCur = 1 is greater than or equal to when bCur = 0.

19. Test fails if power measured when bCur = 2 is greater than or equal to when bCur = 1.

20. If bNumEndpoints = 1 in audio control interface descriptor, then poll interrupt Endpoint for

bInterval time. If the response is other than NACK fail the test and throw related assertion.

3.2.42. Latency Control Test (Full)

Assertions Verified in this Test

5.2.1.4.5#4, 5.2.1.4.5#5, 5.2.1.4.5#6, 5.2.1.4.5#7, 5.2.1.12#1

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find class specific header Descriptor (bDescriptorType == CS_INTERFACE

and bDescriptorSubType == HEADER and read bits 1..0 of bmControls field in it. If it is set to

00b skip this step.

a. Parse descriptors to find Input Terminal Unit Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == INPUT_TERMINAL(TE) and, if no Input

Terminal Unit Descriptors found, skip the remaining steps. If an Input Terminal Unit is

found, retrieve the Unit ID and begin the test on the Control

b. Issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = XX_LATENCY_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

c. If the request does not succeed, then fail the test and throw the related assertion

d. Verify the parameter data block for get request, if data doesn't range from 0ns to

4,294,967,295ns in steps of 1ns then fail the test and throw the related assertion.

e. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE/INTEN

• wValue: CS = XX_LATENCY_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

f. If the control does not respond with STALL, then fail the test and throw the related

assertion.

4. Repeat step 3 for the following bDescriptorSubType values:

• OUTPUT_TERMINAL(TE)

• MIXER_UNIT(MU)

• SELECTOR UNIT (SU)

• FEATURE UNIT (FU)

• PARAMETRIC EQUALIZER SECTION EFFECT UNIT (PE)

• REVERBERATION EFFECT UNIT (RV)

• MODULATION DELAY EFFECT UNIT (MD)

• DYNAMIC RANGE COMPRESSOR EFFECT UNIT (DR)

• UP/DOWN-MIX PROCESSING UNIT (UD)

• STEREO EXTENDER PROCESSING UNIT (ST_EXT)

• EXTENSION UNIT (XU)

3.2.43. Insertion Control Test (Full)

Assertions Verified in this Test

5.2.1.6.1#2, 5.2.1.6.1#3, 5.2.1.6.1#4, 5.2.1.6.1#5, 5.2.1.6.1#6, 5.2.1.6.1#7, 5.2.1.6.1#8,

5.2.1.6.1#9, 5.2.1.6.1#10

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Input Terminal Descriptor (bDescriptorType == CS_INTERFACE and

bDescriptorSubType == INPUT_TERMINAL and, if no Input Terminal Descriptors are found,

skip the remaining steps.

4. Parse descriptors to find the connector descriptor ID in the input Terminal Descriptor. If no

Connector ID is found, skip the remaining steps.

5. Now issue a CONTROL REQUEST with following Values:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wConnectorsDescrID and

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: 2

6. Fail if there is no ACK response or retrieved data is less than 2 bytes.

7. Parse the response and find the total length of the descriptor

8. Now issue a request with:

• bmRequestType: 10100001B

• bRequest: HIGH_CAPABILITY_DESCRIPTOR(0x06)

• wValue: wConnectorsDescrID

• wIndex: 0 in higher byte & Interface number in lower byte

• wLength: total length of the descriptor found in step 6.

9. Test fails if there is no ACK response.

10. retrieve the bNrConnectors and bmaAttributes(i) of each connectors.

11. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = TE_INSERTION_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

12. If the request does not succeed, then fail the test and throw the related assertion

13. Read the parameter data block for get request, and verify

14. For each bNrConnectors, verify that if D2 of bmaConAttributes(i) is 0 then D[i-1] in

bmaConInserted is also 0

15. Verify that if D2 of bmaConAttributes(i) is one then D[i-1] in bmaConInserted is either 0/one

16. Verify that bSize of response is equal to D[n..o]/8 of bmaConInserted.

17. Verify that the bits (bSize * 8 – bNrConnectors) on MSB of bmConINserted is always 0

18. If any one of fails then fail the test, and throw the related assertion.

19. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE/INTEN

• wValue: CS = TE_INSERTION_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

20. If the control does not answer with STALL, then fail the test and throw the related assertion.

21. Repeat steps 2 - 13 for all Input and Output terminal descriptors in audio control interface

descriptor.

3.2.44. Overload Control Test (Full)

Assertions Verified in this Test

5.2.1.6.2#2, 5.2.1.6.2#3, 5.2.1.6.2#4, 5.2.1.6.2#5

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Input Terminal Unit Descriptor (bDescriptorType == CS_INTERFACE

and bDescriptorSubType == INPUT_TERMINAL and, if no Input Terminal Unit Descriptors

found, skip the remaining steps. If a Input Terminal Descriptor is found, retrieve the Unit ID

and begin the test on the Control

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = TE_OVERLOAD_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE/INTEN

• wValue: CS = TE_OVERLOAD_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

8. If the control does not answer with STALL, then fail the test and throw the related assertion.

9. Repeat steps 2 - 8 for all Input and Output terminal descriptors in audio control interface

descriptor.

3.2.45. Mixer Unit Control Request Test (Full)

Assertions Verified in this Test

3.13.4#2, 4.5.2.5#4, 5.2.1.7.1#1, 5.2.1.7.1#2, 5.2.1.7.1#3, 5.2.1.7.1#4, 5.2.1.7.1#6,

5.2.1.7.1#7, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4, 5.2.1.7.1#5

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Mixer Unit Descriptor (bDescriptorType == CS_INTERFACE and

bDescriptorSubType == MIXER_UNIT) and, if no Mixer Unit Descriptors found, skip the

remaining steps.

4. If a Mixer Unit Descriptor is found, retrieve the Unit ID and bmMixerControls and begin the

test on the Control

5. Mixer Control Test

Note: The Mixer Unit descriptor reports which Controls are programmable in the

bmMixerControls bitmap field. This bitmap shall be interpreted as a two-dimensional bit

array that has a row for each logical input channel and a column for each logical output

channel. If a bit at position [u, v] is set to one, this means that the Mixer Unit contains a

programmable Mixer Control that connects input channel u to output channel v. If bit [u,

v] is set to 0, this indicates that the connection between input channel u and output

channel v is non-programmable

The bmMixerControls field stores the bi t array row after row where the MSb of the

first (highest) byte corresponds to the connection between input channel 1 and output

channel 1.

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR (For any programmable/Non-Programmable)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

7. If the request does not succeed, then fail the test and throw the related assertion

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE (For only programmable channel numbers)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

9. If the request does not succeed, then fail the test and throw the related assertion

Note: As per specification, every input channel can virtually be mixed into all of the

output channels. If n is the total number of logical input channels, contained in all the

Clusters that are entering the Mixer Unit and m is the number of logical output channels,

then there are (n · m) Mixer Controls in the Mixer Unit, some of which may not be

programmable.

Note: (n · m) shall be limited to 256.

Mixer Control Number (MCN) = (𝑢−1).𝑚+(𝑣−1)

The valid range for u is from one to n. The valid range for v is from one to m

10. Parse the parameter data block for get request, and verify

11. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE (For only programmable channel numbers)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

12. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE (For only programmable channel numbers)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR.

13. If retrieved data is the same value we sent:

14. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

15. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

16. For all sub ranges Min value should be less than max value.

17. For all sub ranges max of one Sub range should be equal to another sub range.

18. If max and min are equal then RES should be 0.

19. The code 0x8000 for the RES attribute shall never be reported as the MIN attribute value.

20. If any one fails then fail the test, and throw the related assertion.

21. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE (For only programmable channel numbers)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value 0x8000.

22. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR (For Non-Programmable channel number)

• wValue: CS = MU_MIXER_CONTROL/MCN = Mixer Control Number

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

23. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.46. Selector Unit Control Request Test (Full)

Assertions Verified in this Test

5.2.1.8.1#1, 5.2.1.8.1#2, 5.2.1.8.1#3, 5.2.1.8.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Selector Unit Descriptor (bDescriptorType == CS_INTERFACE and

bDescriptorSubType == SELECTOR_UNIT and, if no Selector Unit Descriptors found, skip the

remaining steps. If a Selector Unit Descriptor is found, retrieve the Unit ID and bNrPins and

begin the test on the Control

4. Selector Control Test

5. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = SU_SELECTOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

6. If the request does not succeed, then fail the test and throw the related assertion

7. Parse the parameter data block for get request, and verify the CUR attribute of the Selector

Control is from one up to the number of Input pins (bNrPins) of the Selector Unit

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = SU_SELECTOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

9. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.47. Feature unit Control Request Test (Full)

Assertions Verified in this Test

3.14.1#2, 3.14.1.1#1, 5.2.1.9.1#1, 5.2.1.9.1#2, 5.2.1.9.1#3, 5.2.1.9.2#1, 5.2.1.9.2#2,

5.2.1.9.2#3, 5.2.1.9.2#4, 5.2.1.9.2#5, 5.2.1.9.2#6, 5.2.1.9.2#7, 5.2.1.9.3#1, 5.2.1.9.3#2,

5.2.1.9.3#3, 5.2.1.9.3#4, 5.2.1.9.3#5, 5.2.1.9.4#1, 5.2.1.9.4#2, 5.2.1.9.4#3, 5.2.1.9.4#4,

5.2.1.9.4#5, 5.2.1.9.5#1, 5.2.1.9.5#2, 5.2.1.9.5#3, 5.2.1.9.5#4, 5.2.1.9.6#1, 5.2.1.9.6#2,

5.2.1.9.6#3, 5.2.1.9.6#4, 5.2.1.9.6#5, 5.2.1.9.6#6, 5.2.1.9.6#7, 5.2.1.9.7#1, 5.2.1.9.7#2,

5.2.1.9.7#3, 5.2.1.9.8#1, 5.2.1.9.8#2, 5.2.1.9.8#3, 5.2.1.9.9#1, 5.2.1.9.9#2, 5.2.1.9.9#3,

5.2.1.9.10#1, 5.2.1.9.10#2, 5.2.1.9.10#3, 5.2.1.9.11#1, 5.2.1.9.11#2, 5.2.1.9.11#3,

5.2.1.9.11#4, 5.2.1.9.12#1, 5.2.1.9.12#2, 5.2.1.9.12#3, 5.2.1.9.12#4, 5.2.1.9.13#1,

5.2.1.9.13#2, 5.2.1.9.13#3, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Feature Unit Descriptor (bDescriptorType == CS_INTERFACE and

bDescriptorSubType == FEATURE_UNIT and, if no Feature Unit Descriptors found, skip the

remaining steps. If a Feature Unit Descriptor is found, retrieve the Unit ID and begin the test

on the Control

Mute Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_MUTE_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_MUTE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

8. If the control does not answer with STALL, then fail the test and throw the related assertion.

Volume Control Test

9. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

10. If the request does not succeed, then fail the test and throw the related assertion

11. Parse the parameter data block for get request, and verify

12. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

13. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

14. If retrieved data is the same value we sent:

15. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

16. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

17. For all sub ranges Min value should be less than max value.

18. For all sub ranges max of one Sub range should be equal to another sub range.

19. If max and min are equal then RES should be 0.

20. the RES attribute of the Volume Control can only have positive values and range from

1/256db (0x0001) to +127.9961 dB (0x7FFF).

21. The code 0x8000 for the RES attribute shall never be reported as the MIN attribute value.

22. If any one fails then fail the test, and throw the related assertion

23. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

24. If the control does not answer with STALL, then fail the test and throw the related assertion.

Bass Control Test

25. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = FU_BASS_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

26. If the request does not succeed, then fail the test and throw the related assertion

27. Parse the parameter data block for get request, and verify

28. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_BASS_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

29. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_BASS_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

30. If retrieved data is the same value we sent:

a. For each max value, if it is less than 0x7F add RES value to it and do step (i) with the

calculated value, it should be STALL.

b. For each min value, if it is less than 0xFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

c. For all sub ranges Min value should be less than max value.

d. For all sub ranges max of one Sub range should be equal to another sub range.

e. If max and min are equal then RES should be 0.

f. the RES attribute of the Bass Control can only have positive values and range from 0.25

dB (0x01) to +31.75 dB (0x7F) if any one fails then fail the test, and throw the related

assertion

g. Test fails if any of the values are not as specified

31. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_VOLUME_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

32. If the control does not answer with STALL, then fail the test and throw the related assertion.

MID Control Test

33. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = FU_MID_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

34. If the request does not succeed, then fail the test and throw the related assertion

35. Parse the parameter data block for get request, and verify

36. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_MID_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

37. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_MID_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

38. If retrieved data is the same value we sent:

a. For each max value, if it is less than 0x7F add RES value to it and do step (i) with the

calculated value, it should be STALL.

b. For each min value, if it is less than 0xFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

c. For all sub ranges Min value should be less than max value.

d. For all sub ranges max of one Sub range should be equal to another sub range.

e. If max and min are equal then RES should be 0.

f. the RES attribute of the Bass Control can only have positive values and range from 0.25

dB (0x01) to +31.75 dB (0x7F) if any one fails then fail the test, and throw the related

assertion

g. Test fails if any of the values are not as specified

39. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_MID_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

40. If the control does not answer with STALL, then fail the test and throw the related assertion.

Treble Control Test

41. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_TREBLE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

42. If the request does not succeed, then fail the test and throw the related assertion

43. Parse the parameter data block for get request, and verify

44. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_TREBLE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

45. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_TREBLE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

46. If retrieved data is the same value we sent:

47. For each max value, if it is less than 0x7F add RES value to it and do step (i) with the

calculated value, it should be STALL.

48. For each min value, if it is less than 0xFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

49. For all sub ranges Min value should be less than max value.

50. For all sub ranges max of one Sub range should be equal to another sub range.

51. If max and min are equal then RES should be 0.

52. the RES attribute of the Bass Control can only have positive values and range from 0.25 dB

(0x01) to +31.75 dB (0x7F) if any one fails then fail the test, and throw the related assertion

53. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_ TREBLE _CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

54. If the control does not answer with STALL, then fail the test and throw the related assertion.

Graphic Equalizer Test

55. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_ GRAPHIC_EQUALIZER_CONTROL/CN = Desired Channel (from 0 to the number

of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

56. If the request does not succeed, then fail the test and throw the related assertion

57. Parse the parameter data block for get request, and verify

58. count the no of bits set in bmBandsPresent field

59. the wLength is equal to 4 + count, else fail the test

60. the D30 and D31 of bmBandsPresent are 0. If not fail the test

61. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_GRAPHIC_EQUALIZER_CONTROL/CN = Desired Channel (from 0 to the number

of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

62. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_GRAPHIC_EQUALIZER_CONTROL/CN = Desired Channel (from 0 to the number

of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

63. If retrieved data is the same value we sent:

64. For each max value, if it is less than 0x7F add RES value to it and do step (i) with the

calculated value, it should be STALL.

65. For each min value, if it is less than 0xFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

66. For all sub ranges Min value should be less than max value.

67. For all sub ranges max of one Sub range should be equal to another sub range.

68. If max and min are equal then RES should be 0.

69. the CUR, MIN and MAX attributes of the Graphic Equalizer Control can range from +31.75

dB (0x7F) down to -32.00b dB (0x80) in steps of 0.25 dB (0x01). if any one fails then fail the

test, and throw the related assertion

70. Test fails if any of the values are not as specified

71. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_GRAPHIC_EQUALIZER_CONTROL/CN = Desired Channel (not from 0 to the

number of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

72. If the control does not answer with STALL, then fail the test and throw the related assertion.

Automatic Gain Control Test

73. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = FU_AUTOMATIC_GAIN_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

74. If the request does not succeed, then fail the test and throw the related assertion

75. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

76. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_AUTOMATIC_GAIN_CONTROL/CN = Desired Channel (not from 0 to the

number of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

77. If the control does not answer with STALL, then fail the test and throw the related assertion.

Delay Control Test

78. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_DELAY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

79. If the request does not succeed, then fail the test and throw the related assertion

80. Parse the parameter data block for get request, and verify

81. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_DELAY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

82. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_DELAY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

83. If retrieved data should be same value we sent:

84. For each max value, if it is less than 0xFFFFFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

85. For each min value, if it is less than 0x00000000 subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

86. For all sub ranges Min value should be less than max value.

87. For all sub ranges max of one Sub range should be equal to another sub range.

88. If max and min are equal then RES should be 0.

89. Test fails if any of the values are not as specified

90. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_DELAY_CONTROL/CN = Desired Channel (not from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

91. If the control does not answer with STALL, then fail the test and throw the related assertion.

Bass Boost Control Test

92. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = FU_BASS_BOOST_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

93. If the request does not succeed, then fail the test and throw the related assertion

94. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

95. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_BASS_BOOST_CONTROL/CN = Desired Channel (not from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

96. If the control does not answer with STALL, then fail the test and throw the related assertion.

Loudness Control Test

97. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = FU_LOUDNESS_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

98. If the request does not succeed, then fail the test and throw the related assertion

99. Verify the parameter data block for get request, if data is not either TRUE or False then fail

the test and throw the related assertion.

100. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_LOUDNESS_CONTROL/CN = Desired Channel (not from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

101. If the control does not answer with STALL, then fail the test and throw the related

assertion.

Input Gain Control Test

102. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_INPUT_GAIN__CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

103. If the request does not succeed, then fail the test and throw the related assertion

104. Parse the parameter data block for get request, and verify

105. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_INPUT_GAIN_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

106. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_INPUT_GAIN_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

107. If retrieved data should be same value we sent:

108. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

109. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

110. For all sub ranges Min value should be less than max value.

111. For all sub ranges max of one Sub range should be equal to another sub range.

112. If max and min are equal then RES should be 0.

113. the RES attribute of the Input Gain Pad control can only have positive values and range

from 1/256 dB (0x0001) to +127.9961 dB (0x7FFF). If it fails then fail the test and throw the

related assertion

114. Test fails if any of the values are not as specified

115. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_INPUT_GAIN__CONTROL/CN = Desired Channel (not from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

116. If the control does not answer with STALL, then fail the test and throw the related

assertion.

117. Input Gain Pad Control Test

118. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR/RANGE

• wValue: CS = FU_INPUT_GAIN_PAD_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

119. If the request does not succeed, then fail the test and throw the related assertion

120. Parse the parameter data block for get request, and verify

121. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = FU_GAIN_PAD_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

122. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = FU_GAIN_PAD_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

123. If retrieved data should be same value we sent:

124. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

125. For each min value, if it is less than 0xFFFFsubtract RES value to it and do step (i) with

the calculated value, it should be STALL.

126. For all sub ranges Min value should be less than max value.

127. For all sub ranges max of one Sub range should be equal to another sub range.

128. If max and min are equal then RES should be 0.

129. the RES attribute of the Input Gain Pad control can only have positive values and range

from 1/256 dB (0x0001) to +127.9961 dB (0x7FFF). if fails then fail the test, and throw the

related assertion

130. Test fails if any of the values are not as specified

131. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = FU_INPUT_GAIN_PAD_CONTROL/CN = Desired Channel (not from 0 to the number

of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

132. If the control does not answer with STALL, then fail the test and throw the related

assertion.

Phase Inverter Control Test

133. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = FU_PHASE_INVERTER_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number, w

• Length = Desired

134. If the request does not succeed, then fail the test and throw the related assertion

135. Verify the parameter data block for get request, if data is not either TRUE or False then

fail the test and throw the related assertion.

136. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = FU_PHASE_INVERTER_CONTROL/CN = Desired Channel (not from 0 to the number

of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

137. If the control does not answer with STALL, then fail the test and throw the related

assertion.

3.2.48. Effect Unit Control Request Test: PARAMETRIC EQUALIZER

SECTION EFFECT UNIT (Full)

Assertions Verified in this Test

5.2.1.10.1.2#1, 5.2.1.10.1.2#2, 5.2.1.10.1.2#3, 5.2.1.10.1.3#1, 5.2.1.10.1.3#2,

5.2.1.10.1.3#3, 5.2.1.10.1.3#4, 5.2.1.10.1.4#1, 5.2.1.10.1.4#2, 5.2.1.10.1.4#3,

5.2.1.10.1.4#4, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Parametric equalizer section effect Unit Descriptor

(bDescriptorType == CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and

wEffectType = PARAM_EQ_SECTION_EFFECT(PE), If no Parametric equalizer section effect

Unit Descriptors found, skip the remaining steps. If a Parametric equalizer section effect

Unit is found, retrieve the Unit ID and begin the test on the Control

4. Center Frequency Control Test

5. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = PE_CENTER_FREQ_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

6. If the request does not succeed, then fail the test and throw the related assertion

7. Parse the parameter data block for get request.

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = PE_CENTRAL_FREQ_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

9. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = PE_CENTRAL_FREQ_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

10. If retrieved data is the same value we sent:

11. For each max value, if it is less than 0xFFFFFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

12. For each min value, if it is less than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

13. For all sub ranges Min value should be less than max value.

14. For all sub ranges max of one Sub range should be equal to another sub range.

15. If max and min are equal then RES should be 0.

16. Test fails if any of the values are not as specified

Qfactor Control Test

17. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = PE_QFACTOR_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

18. If the request does not succeed, then fail the test and throw the related assertion

19. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = PE_QFACTOR_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

20. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = PE_QFACTOR_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

21. If retrieved data is the same value we sent:

22. For each max value, if it is less than 0xFFFFFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

23. For each min value, if it is less than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

24. For all sub ranges Min value should be less than max value.

25. For all sub ranges max of one Sub range should be equal to another sub range.

26. If max and min are equal then RES should be 0.

27. Test fails if any of the values are not as specified

Gain Control Test

28. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = PE_GAIN_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

29. If the request does not succeed, then fail the test and throw the related assertion

30. Parse the parameter data block for get request

31. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = PE_GAIN_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

32. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = PE_GAIN_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired, and

• wCUR value from retrieved valid range value

33. If retrieved data is the same value we sent:

34. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

35. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

36. For all sub ranges Min value should be less than max value.

37. For all sub ranges max of one Sub range should be equal to another sub range.

38. If max and min are equal then RES should be 0.

39. If the RES attribute of the Gain Control does not have positive values and range from 1/256

dB (0x0001) to +127.9961 dB (0x7FFF) then fail the test and throw the related assertion.

40. Test fails if any of the values are not as specified

3.2.49. Effect Unit Control Request Test: REVERBERATION EFFECT UNIT

(Full)

Assertions Verified in this Test

5.2.1.10.2.2#2, 5.2.1.10.2.2#3, 5.2.1.10.2.2#4, 5.2.1.10.2.2#5, 5.2.1.10.2.3#1,

5.2.1.10.2.3#2, 5.2.1.10.2.3#3, 5.2.1.10.2.4#1, 5.2.1.10.2.4#2, 5.2.1.10.2.4#3,

5.2.1.10.2.5#1, 5.2.1.10.2.5#2, 5.2.1.10.2.5#3, 5.2.1.10.2.5#4, 5.2.1.10.2.6#1,

5.2.1.10.2.6#2, 5.2.1.10.2.6#3, 5.2.1.10.2.7#1, 5.2.1.10.2.7#2, 5.2.1.10.2.7#3,

5.2.1.10.2.8#1, 5.2.1.10.2.8#2, 5.2.1.10.2.8#3, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Reverberation effect Unit Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and wEffectType =

REVERBERATION_EFFECT. If no Reverberation effect Unit Descriptors are found, skip the

remaining steps. If a Reverberation effect Unit is found, retrieve the Unit ID and begin the

test on the Control

Type Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_TYPE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_TYPE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_TYPE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

8. If retrieved data is the same value we sent:

9. For each max value, if it is less than 255 add RES value to it and do step (i) with the

calculated value, it should be STALL.

10. For each min value, if it is less than RES value subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

11. For all sub ranges Min value should be less than max value.

12. For all sub ranges max of one Sub range should be equal to another sub range.

13. If max and min are equal then RES should be 0.

14. Test fails if any of the values are not as specified

15. Parse the parameter data block for get request, if the CUR, MIN, and MAX attributes of the

Type Control is not from 0 to 255 or if The RES attribute of the Type Control can not have a

value of 1. then fail the test and throw the related assertion.

16. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = RV_TYPE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion.

Level Control Test

18. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_LEVEL_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

19. If the request does not succeed, then fail the test and throw the related assertion

20. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_LEVEL_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

21. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_LEVEL_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

22. If retrieved data is the same value we sent:

23. For each max value, if it is less than 0xFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

24. For each min value, if it is less than RES value subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

25. For all sub ranges Min value should be less than max value.

26. For all sub ranges max of one Sub range should be equal to another sub range.

27. If max and min are equal then RES should be 0.

28. Test fails if any of the values are not as specified

29. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = RV_LEVEL_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

30. If the control does not answer with STALL, then fail the test and throw the related assertion.

Time Control Test

31. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

32. If the request does not succeed, then fail the test and throw the related assertion

33. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_TIME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

34. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_TIME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

35. If retrieved data is the same value we sent:

36. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

37. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

38. For all sub ranges Min value should be less than max value.

39. For all sub ranges max of one Sub range should be equal to another sub range.

40. If max and min are equal then RES should be 0.

41. Test fails if any of the values are not as specified

42. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = RV_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

43. If the control does not answer with STALL, then fail the test and throw the related assertion.

Delay Feedback Control Test

44. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_TYPE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

45. If the request does not succeed, then fail the test and throw the related assertion

46. Parse the response and verify that bCUR value is either 6 or 7, then test below assertions if

not skip them

47. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_FEEDBACK_CONTROLand CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

48. If the request does not succeed, then fail the test and throw the related assertion

49. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_FEEDBACK_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

50. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_FEEDBACK_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

51. If retrieved data is the same value we sent:

52. For each max value, if it is less than 0xFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

53. For each min value, if it is less than RES value subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

54. For all sub ranges Min value should be less than max value.

55. For all sub ranges max of one Sub range should be equal to another sub range.

56. If max and min are equal then RES should be 0.

57. Test fails if any of the values are not as specified

58. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = RV_FEEDBACK_CONTROLand CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

59. If the control does not answer with STALL, then fail the test and throw the related assertion.

Pre-Delay Control Test

60. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_PREDELAY_CONTRO/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

61. If the request does not succeed, then fail the test and throw the related assertion

62. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_PREDELAY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

63. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_PREDELAY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

64. If retrieved data is the same value we sent:

65. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

66. For each min value, if it is less than 0x0 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

67. For all sub ranges Min value should be less than max value.

68. For all sub ranges max of one Sub range should be equal to another sub range.

69. If max and min are equal then RES should be 0.

70. Test fails if any of the values are not as specified

71. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = RV_PREDELAY_CONTRO/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

72. If the control does not answer with STALL, then fail the test and throw the related assertion.

73. Density Control Test

74. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_DENSITY_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

75. If the request does not succeed, then fail the test and throw the related assertion

76. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_DENSITY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

77. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS RV_DENSITY_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

78. If retrieved data is the same value we sent:

79. For each max value, if it is less than 0x64 add RES value to it and do step (i) with the

calculated value, it should be STALL.

80. For each min value, if it is less than RES value subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

81. For all sub ranges Min value should be less than max value.

82. For all sub ranges max of one Sub range should be equal to another sub range.

83. If max and min are equal then RES should be 0.

84. Test fails if any of the values are not as specified

85. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR/RANGE/INTEN

• wValue: CS = RV_DENSITY_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/bCUR value greater than 0x64.

86. If the control does not answer with STALL, then fail the test and throw the related assertion.

Hi-Freq Roll-Off Control Test

87. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = RV_HIFREQ_ROLLOFF_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

88. If the request does not succeed, then fail the test and throw the related assertion

89. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = RV_HIFREQ_ROLLOFF_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

90. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = RV_HIFREQ_ROLLOFF_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

91. If retrieved data is the same value we sent:

92. For each max value, if it is less than 0xFFFFFFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

93. For each min value, if it is less than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

94. For all sub ranges Min value should be less than max value.

95. For all sub ranges max of one Sub range should be equal to another sub range.

96. If max and min are equal then RES should be 0.

97. Test fails if any of the values are not as specified

98. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = RV_HIFREQ_ROLLOFF_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

99. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.50. Effect Unit Control Request Test: MODULATION DELAY EFFECT

UNIT (Full)

Assertions Verified in this Test

5.2.1.10.3.2#1, 5.2.1.10.3.2#2, 5.2.1.10.3.2#3, 5.2.1.10.3.2#4, 5.2.1.10.3.3#1,

5.2.1.10.3.3#2, 5.2.1.10.3.3#3, 5.2.1.10.3.4#1, 5.2.1.10.3.4#2, 5.2.1.10.3.4#3,

5.2.1.10.3.5#1, 5.2.1.10.3.5#2, 5.2.1.10.3.5#3, 5.2.1.10.3.6#1, 5.2.1.10.3.6#2,

5.2.1.10.3.6#3, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Modulation Delay effect Unit Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and wEffectType =

MODULATION_DELAY_EFFECT, If no Modulation Delay effect Unit Descriptors found, skip

the remaining steps. If a Modulation Delay effect Unit is found, retrieve the Unit ID and

begin the test on the Control

Balance Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = MD_BALANCE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = MD_BALANCE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = MD_BALANCE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

8. If retrieved data is the same value we sent.

9. Do step (i) with the value greater than +100, it should be STALL.

10. Do step (i) with the value less than -100, it should be STALL.

11. For all sub ranges Min value should be less than max value.

12. For all sub ranges max of one Sub range should be equal to another sub range.

13. If max and min are equal then RES should be 0.

14. Test fails if any of the values are not as specified

15. If the RES attribute of the Balance Control can only have positive values and range from 1%

(0x01) to 100% (0x64) then fail the test and throw the related assertion.

16. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = MD_BALANCE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion.

Rate Control Test

18. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = MD_RATE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

19. If the request does not succeed, then fail the test and throw the related assertion

20. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = MD_RATE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

21. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = MD_RATE_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

22. If retrieved data is the same value we sent:

23. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

24. For each min value, if it is less than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

25. For all sub ranges Min value should be less than max value.

26. For all sub ranges max of one Sub range should be equal to another sub range.

27. If max and min are equal then RES should be 0.

28. Test fails if any of the values are not as specified

29. Parse the parameter data block for get request, if theRES attributes of the Rate Control can

range from 0Hz (0x0000) to 255.9961Hz (0xFFFF) then fail the test and throw the related

assertion.

30. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = MD_RATE_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

31. If the control does not answer with STALL, then fail the test and throw the related assertion.

Depth Control Test

32. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = MD_DEPTH_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

33. If the request does not succeed, then fail the test and throw the related assertion

34. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = MD_DEPTH_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

35. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = MD_DEPTH_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

36. If retrieved data is the same value we sent:

37. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

38. For each min value, if it is less than RES value subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

39. For all sub ranges Min value should be less than max value.

40. For all sub ranges max of one Sub range should be equal to another sub range.

41. If max and min are equal then RES should be 0.

42. Test fails if any of the values are not as specified

43. Parse the parameter data block for get request, if the CUR, MIN, MAX, and RES attributes

for the Depth Control can range from 1ms (0x0000) to 255.9961ms (0xFFFF) in steps of

1/256ms (0x0001) then fail the test and throw the related assertion.

44. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = MD_DEPTH_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

45. If the control does not answer with STALL, then fail the test and throw the related assertion.

Time Control Test

46. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = MD_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

47. If the request does not succeed, then fail the test and throw the related assertion

48. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = MD_TIME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

49. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = MD_TIME_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

50. If retrieved data is the same value we sent:

51. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

52. For each min value, if it is less than RES value, subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

53. For all sub ranges Min value should be less than max value.

54. For all sub ranges max of one Sub range should be equal to another sub range.

55. If max and min are equal then RES should be 0.

56. Test fails if any of the values are not as specified

57. Parse the parameter data block for get request, if the CUR, MIN, MAX, and RES attributes of

the Time Control can not range from 0ms (0x0000) to 255.9961ms (0xFFFF) in steps of

1/256ms (0x0001) then fail the test and throw the related assertion.

58. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = MD_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

59. If the control does not answer with STALL, then fail the test and throw the related assertion.

Feedback Level Control Test

60. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = MD_FEEDBACK_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

61. If the request does not succeed, then fail the test and throw the related assertion

62. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = MD_FEEDBACK_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

63. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = MD_FEEDBACK_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

64. If retrieved data is the same value we sent:

65. For each max value, if it is less than 0xFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

66. For each min value, if it is greater than RES value subtract RES value to it and do step (i) with

the calculated value, it should be STALL.

67. For all sub ranges Min value should be less than max value.

68. For all sub ranges max of one Sub range should be equal to another sub range.

69. If max and min are equal then RES should be 0.

70. Test fails if any of the values are not as specified

71. Parse the parameter data block for get request, if the CUR, MIN, MAX, and res attributes of

the Feedback Level Control is not from 0% to 255% then fail the test and throw the related

assertion.

72. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = MD_FEEDBACK_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

73. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.51. Effect Unit Control Request Test: DYNAMIC RANGE

COMPRESSOR EFFECT UNIT (Full)

Assertions Verified in this Test

5.2.1.10.4.2#1, 5.2.1.10.4.2#2, 5.2.1.10.4.2#3, 5.2.1.10.4.3#1, 5.2.1.10.4.3#2,

5.2.1.10.4.3#3, 5.2.1.10.4.3#4, 5.2.1.10.4.4#1, 5.2.1.10.4.4#2, 5.2.1.10.4.4#3,

5.2.1.10.4.4#4, 5.2.1.10.4.5#1, 5.2.1.10.4.5#2, 5.2.1.10.4.5#3, 5.2.1.10.4.6#1,

5.2.1.10.4.6#2, 5.2.1.10.4.6#3, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Dynamic Range Compressor effect Unit Descriptor

(bDescriptorType == CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and

wEffectType = MODULATION_DELAY_EFFECT, If no Dynamic Range Compressor effect Unit

Descriptors found, skip the remaining steps. If a Dynamic Range Compressor effect Unit is

found, retrieve the Unit ID and begin the test on the Control

Compression Ratio Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = DR_COMPRESSION_RATIO_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = DR_COMPRESSION_RATIO_CONTROL/CN = Desired Channel (from 0 to the

number of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = DR_COMPRESSION_RATIO_CONTROL/CN = Desired Channel (from 0 to the

number of logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

8. If retrieved data is the same value we sent:

9. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

10. For each min value, if it is greater than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

11. For all sub ranges Min value should be less than max value.

12. For all sub ranges max of one Sub range should be equal to another sub range.

13. If max and min are equal then RES should be 0.

14. Test fails if any of the values are not as specified

15. Parse the parameter data block for get request, if the CUR, MIN, MAX, and RES attributes of

the Compression Ration Control is not from 0 (0x0000) to 255.9961 (0xFFFF) in steps of

1/256 (0x0001) then fail the test and throw the related assertion.

16. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = DR_COMPRESSION_RATIO_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion.

MaxAmpl Control Test

18. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = DR_MAXAMPL_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

19. If the request does not succeed, then fail the test and throw the related assertion

20. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = DR_MAXAMPL_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

21. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = DR_MAXAMPL_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

22. If retrieved data is the same value we sent:

23. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

24. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

25. For all sub ranges Min value should be less than max value.

26. For all sub ranges max of one Sub range should be equal to another sub range.

27. If max and min are equal then RES should be 0.

28. Test fails if any of the values are not as specified

29. Parse the parameter data block for get request, the CUR, MIN, and MAX attributes of the

MaxAmpl Control can not range from -128.0000 dB (0x8000) to +127.9961 Db (0x7FFF) in

steps of 1/256 dB (0x0001) or if the RES attribute of the MaxAmpl Control can not have

positive values and range from 1/256 dB (0x0001) to +127.9961 dB (0x7FFF) then fail the

test and throw the related assertion.

30. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = DR_MAXAMPL_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

31. If the control does not answer with STALL, then fail the test and throw the related assertion.

Threshold Control Test

32. Now issue a CONTROL REQUEST with following value:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = DR_TRESHOLD_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

33. If the request does not succeed, then fail the test and throw the related assertion

34. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = DR_THRESHOLD_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

35. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = DR_THRESHOLD_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

36. If retrieved data is the same value we sent:

37. For each max value, if it is less than 0x7FFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

38. For each min value, if it is less than 0xFFFF subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

39. For all sub ranges Min value should be less than max value.

40. For all sub ranges max of one Sub range should be equal to another sub range.

41. If max and min are equal then RES should be 0.

42. Test fails if any of the values are not as specified

43. Parse the parameter data block for get request, the CUR, MIN, and MAX attributes of the

Threshold Control can not range from -128.0000 dB (0x8000) to +127.9961 dB (0x7FFF) in

steps of 1/256 dB (0x0001) or if the RES attribute of the Threshold Control can not have

positive values and range from 1/256 dB (0x0001) to +127.9961 dB (0x7FFF) then fail the

test and throw the related assertion.

44. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = DR_TRESHOLD_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

45. If the control does not answer with STALL, then fail the test and throw the related assertion.

Attack Time Control Test

46. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = DR_ATTACK_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

47. If the request does not succeed, then fail the test and throw the related assertion

48. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = DR_ATTACK_TIME_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

49. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = DR_ATTACK_TIME_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

50. If retrieved data is the same value we sent:

51. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

52. For each min value, if it is greater than 0x0 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

53. For all sub ranges Min value should be less than max value.

54. For all sub ranges max of one Sub range should be equal to another sub range.

55. If max and min are equal then RES should be 0.

56. Test fails if any of the values are not as specified

57. Parse the parameter data block for get request, if the CUR, MIN, MAX, and RES attributes of

the Attack Time Control can not range from 0 ms (0x0000) to 255.9961 ms (0xFFFF) in steps

of 1/256 ms (0x0001). then fail the test and throw the related assertion.

58. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = DR_ATTACK_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

59. If the control does not answer with STALL, then fail the test and throw the related assertion

Release Time Control

60. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = DR_RELEASE_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

61. If the request does not succeed, then fail the test and throw the related assertion

62. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = DR_RELEASE_TIME_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

63. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = DR_RELEASE_TIME_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

64. If retrieved data is the same value we sent:

65. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

66. For each min value, if it is greater than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

67. For all sub ranges Min value should be less than max value.

68. For all sub ranges max of one Sub range should be equal to another sub range.

69. If max and min are equal then RES should be 0.

70. Test fails if any of the values are not as specified

71. Parse the parameter data block for get request, if the CUR, MIN, MAX, and RES attributes of

the Attack Time Control can range from 0ms (0x0000) to 255.9961 ms (0xFFFF) in steps of

1/256 ms (0x0001) then fail the test and throw the related assertion.

72. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: other than CUR/RANGE/INTEN

• wValue: CS = DR_RELEASE_TIME_CONTROL/CN = Desired Channel

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

73. If the control does not answer with STALL, then fail the test and throw the related assertion

3.2.52. Processing Unit Control Request Test: Up/Down-Mix Processing

Unit (Full)

Assertions Verified in this Test

5.2.1.11.1.1#1, 5.2.1.11.1.1#2, 5.2.1.11.1.1#3

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Up/Down-Mix Processing Unit Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and wProcessType =

UP/DOWNMIX_PROCESS, If no Up/Down-Mix Processing Unit Descriptors found, skip the

remaining steps. If a Up/Down-Mix Processing Unit is found, retrieve the Unit ID and

bNrModes and begin the test on the Control

Mode Select Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: CUR

• wValue: CS = UD_MODE_SELECT_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Parse the parameter data block for get request, if the CUR attribute of the Mode Select

Control is not from one to the number of modes supported by the Entity (bNrModes) then

fail the test and throw the related assertion.

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = UD_MODE_SELECT_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

8. If the control does not answer with STALL, then fail the test and throw the related assertion

3.2.53. Processing Unit Control Request Test: Stereo Extender

Processing Unit (Full)

Assertions Verified in this Test

5.2.1.11.1.2#1, 5.2.1.11.1.2#2, 5.2.1.11.1.2#3, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Stereo Exntender Processing Unit Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == EFFECT_UNIT and wProcessType =

STEREO_EXTENDER_PROCESS, If no Stereo Exntender Processing Unit Descriptors found,

skip the remaining steps. If a Stereo Exntender Processing Unit is found, retrieve the Unit ID

and begin the test on the Control

Width Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = ST_EXT_WIDTH_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertions

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = ST_EXT_WIDTH_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = ST_EXT_WIDTH_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

8. If retrieved data is the same value we sent:

9. For each max value, if it is less than 0XFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

10. For each min value, if it is greater than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

11. For all sub ranges Min value should be less than max value.

12. For all sub ranges max of one Sub range should be equal to another sub range.

13. If max and min are equal then RES should be 0.

14. Test fails if any of the values are not as specified

15. Parse the parameter data block for get request, if the CUR, MIN, MAX and RES attributes of

the Width Control is from 0 to 255 then fail the test and throw the related assertion.

16. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = ST_EXT_WIDTH_CONTROL/CN = Non 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion

3.2.54. Clock Source Control Request Test (Full)

Assertions Verified in this Test

4.5.2.12#2, 5.2.1.13.1#1, 5.2.1.13.1#2, 5.2.1.13.1#3, 5.2.1.13.1#6, 5.2.1.13.2#1,

5.2.1.13.2#2, 5.2.1.13.2#3, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4, 5.2.2.1.1#2, 5.2.2.1.1#4,

5.2.2.1.1#5

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Stereo Clock Source Descriptor (bDescriptorType == CS_INTERFACE

and bDescriptorSubType == CLOCK_SOURCE, If no Clock Source Descriptors found, skip the

remaining steps. If a Clock Source is found, retrieve the Unit ID and begin the test on the

Control

Sampling Frequency Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR/RANGE,

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Check D0 bit of bmAttributes, whether clock is 0 (External) or 1 (Internal). If it is Internal,

issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid CUR value

7. If it is External, issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid CUR value. If the request does not not

completed with STALL, then fail the test/throw the related assertion

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = Desired Channel (from 0 to the number of logical

channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

9. If retrieved data is the same value we sent:

10. For each max value, if it is less than 0xFFFFFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

11. For each min value, if it is greater than 0x00, subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

12. For all sub ranges Min value should be less than max value.

13. For all sub ranges max of one Sub range should be equal to another sub range.

14. If max and min are equal then RES should be 0.

15. Test fails if any of the values are not as specified

16. Parse the Descriptors to find the CLASS-SPECIFIC AS INTERFACE DESCRIPTOR

(bDescriptorType == CS_INTERFACE and bDescriptorSubType == AS_GENERAL), Retrieve the

bTerminalLink and bSubslotSize from CLASS-SPECIFIC AS INTERFACE DESCRIPTOR. Check in

bmControls whether Active Alternate Setting Control is present or not. If it is not present

skip the remaining steps.

17. If it is present, find the descriptors with ID’s associated with bTerminalLink and calculate the

number of channels corresponding to the descriptors associated with bTerminalLink.

18. Parse the Descriptors to find the STANDARD ENDPOINT DESCRIPTOR

(bDescriptorType=USB_ENDPOINT_DESCRIPTOR_TYPE), Retrieve the bInterval from

STANDARD ENDPOINT DESCRIPTOR.

19. Gets the Device speed. Calculate BW(BandWidth) according to formula for

UsbHighSpeed/UsbFullSpeed.

20. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

21. If the control does answer with STALL, then fail the test and throw the related assertion.

22. Now for each range values, if BandWidth(BW) >

(1024(UsbHighSpeed)/1023(UsbFullSpeed)), then Set the current Interface and

AlternateSetting not equal to 0.

23. Now set sampling frequency for which BW exceed according to device speed by issuing a

CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR,

• wValue: CS = CS_SAM_FREQ_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 4, Data = range value

24. If the request is completed with STALL, then issue a CONTROL REQUEST with following

values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AS_ACT_ALT_SETTING_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

25. If the request is not completed with STALL, then fail the test and throw the related assertion

26. Check whether Alternate Setting is set to 0 or not. If it is not set to 0, then fail the test and

throw the related assertion.

27. If it is set to 0, then issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR,

• wValue: CS = AS_VAL_ALT_SETTINGS_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: 1.

28. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR,

• wValue: CS = AS_VAL_ALT_SETTINGS_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: 1+size.

29. Now check the bit corresponding to current alternate setting in bmValidAltSettings, it

should be set to 0. If it is not set to 0, then fail the test and throw the related assertion.

Clock Validity Control Test

30. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR,

• wValue: CS = CS_CLOCK_VALID_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

31. If the request does not succeed, then fail the test and throw the related assertion

32. Parse the parameter data block for get request, if the CUR attributes is either TRUE or FALSE

then fail the test and throw the related assertion.

33. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = CS_CLOCK_VALID_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

34. If the control does not answer with STALL, then fail the test and throw the related assertion

35. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = CS_CLOCK_VALID_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

36. If the control does not answer with STALL, then fail the test and throw the related assertion

3.2.55. Clock Selector Control Request Test (Full)

Assertions Verified in this Test

5.2.1.14.1#1, 5.2.1.14.1#2, 5.2.1.14.1#3

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Stereo Clock Selector Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == CLOCK_SELECTOR.

a. If no Clock Selector Descriptors found, skip the remaining steps.

4. Retrieve the Unit ID and bNrInPins and begin the test on the Control

Clock Selector Control Test

5. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR,

• wValue: CS = CX_CLOCK_SELECTOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

6. If the request does not succeed, then fail the test and throw the related assertion

7. Parse the parameter data block for get request, if the CUR attribute of the Clock Selector

Control is not from one up to the number of Clock Input Pins of the Clock Selector

(bNrInPins) then fail the test and throw the related assertion.

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = CX_CLOCK_SELECTOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

9. If the control does not answer with STALL, then fail the test and throw the related assertion

3.2.56. Clock Multiplier Control Request Test (Full)

Assertions Verified in this Test

5.2.1.15.1#1, 5.2.1.15.1#2, 5.2.1.15.1#3, 5.2.1.15.1#4, 5.2.1.15.2#1, 5.2.1.15.2#2,

5.2.1.15.2#3, 5.2.1.15.2#4, 5.2.1.1#2, 5.2.1.1#3, 5.2.1.1#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse descriptors to find Stereo Clock Multiplier Descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == CLOCK_MULTIPLIER, If no Clock Multiplier

Descriptors found, skip the remaining steps. If a Clock Multiplier is found, retrieve the Unit

ID and begin the test on the Control

Numerator Control Test

4. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = CM_NUMERATOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

5. If the request does not succeed, then fail the test and throw the related assertion

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = CM_NUMERATOR_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

7. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = CM_NUMERATOR_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

8. If retrieved data should be same value we sent.

9. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

10. For each min value, if it is greater than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

11. For all sub ranges Min value should be less than max value.

12. For all sub ranges max of one Sub range should be equal to another sub range.

13. If max and min are equal then RES should be 0.

14. Test fails if any of the values are not as specified

15. Parse the parameter data block for get request, if the CUR, MIN, MAX and RES of the

Numerator Control is not in the range 0x0001 to 0xFFFF then fail the test and throw the

related assertion.

16. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR/RANGE

• wValue: CS = CM_NUMERATOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion

Denominator Control Test

18. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = CM_DENAMIRATOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

19. If the request does not succeed, then fail the test and throw the related assertion

20. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = CM_DENOMINATOR_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

21. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = CM_DENOMINATOR_CONTROL/CN = Desired Channel (from 0 to the number of

logical channels in the Cluster)

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired/wCUR value from retrieved valid range value

22. If retrieved data should be same value we sent.

23. For each max value, if it is less than 0xFFFF add RES value to it and do step (i) with the

calculated value, it should be STALL.

24. For each min value, if it is greater than 0x00 subtract RES value to it and do step (i) with the

calculated value, it should be STALL.

25. For all sub ranges Min value should be less than max value.

26. For all sub ranges max of one Sub range should be equal to another sub range.

27. If max and min are equal then RES should be 0.

28. Test fails if any of the values are not as specified

29. Parse the parameter data block for get request, if the CUR, MIN, MAX and RES attributes for

the Denominator Control can range from 1 (0x0001) to 2^16 – 1 (0xFFFF) then fail the test

and throw the related assertion.

30. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR/RANGE

• wValue: CS = CM_DENAMIRATOR_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

31. If the control does not answer with STALL, then fail the test and throw the related assertion

3.2.57. Audio Streaming Control Test (Full)

Assertions Verified in this Test

5.2.2.1.1#1, 5.2.2.1.1#6, 5.2.2.1.1#8, 5.2.2.1.1#9, 5.2.2.1.1#10, 5.2.2.1.2#1, 5.2.2.1.2#2,

5.2.2.1.2#3, 5.2.2.1.2#4, 5.2.2.1.2#5, 5.2.2.1.2#6, 5.2.2.1.2#7, 5.2.2.1.2#8, 5.2.2.1.2#9,

5.2.2.1.2#10, 5.2.2.1.2#11, 5.2.2.1.2#12, 5.2.2.1.3#1, 5.2.2.1.3#2, 5.2.2.1.3#3, 5.2.2.1.3#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_STREAMING), Retrieve the Interface number

of this Audio Streaming Interface descriptor.

3. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AS_ACT_ALT_SETTING_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

4. If the request does not succeed, then fail the test and throw the related assertion

5. Verify the parameter data block for get request, the value of an Active Alternate Setting

Control CUR attribute shall only be either the last set Alternate Setting or 0 if not then fail

the test and throw the related assertion.

6. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AS_ACT_ALT_SETTING_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

7. If the control does not answer with STALL, then fail the test and throw the related assertion.

8. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = AS_ACT_ALT_SETTING_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

9. If the control does not answer with STALL, then fail the test and throw the related assertion.

10. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AS_VAL_ALT_SETTINGS_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

11. If the request does not succeed, then fail the test and throw the related assertion

12. Read the bSize and bmValidAltSettings and verify that, for each bit in bSize value is

13. D0 is always set for AS0

14. D1….. Dm is corresponding set/reset positions for alternative settings.

15. Test fails if any of the values/response is not as specified.

16. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AS_VAL_ALT_SETTINGS_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion.

18. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AS_AUDIO_DATA_FORMAT_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

19. If the request does not succeed, then fail the test and throw the related assertion

20. Read the bmFormats from response and verify that only one bit can be set. If not fail the

test.

21. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AS_AUDIO_DATA_FORMAT_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

22. If the control does not answer with STALL, then fail the test and throw the related assertion.

23. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: RANGE

• wValue: CS = AS_AUDIO_DATA_FORMAT_CONTROL/CN = 0

• wIndex: Entity ID = 0/Interface = Interface number

• wLength: Desired

24. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.58. Endpoint Control Request Test

Assertions Verified in this Test

5.2.2.2.1#1, 5.2.2.2.1#2, 5.2.2.2.1#3, 5.2.2.2.2#1, 5.2.2.2.2#2, 5.2.2.2.2#3, 5.2.2.2.2#4,

5.2.2.2.3#1, 5.2.2.2.3#2, 5.2.2.2.3#3, 5.2.2.2.3#4

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Endpoint Descriptor (bDescriptorType == ENDPOINT),

Retrieve the endpoint number(bEndpointAddress[3:0]).

Pitch Control Test

3. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Ser/Get for interface

• bRequest: CUR

• wValue: CS = EP_PITCH_CONTROL/CN = 0

• wIndex: 0 in MSB/Endpoint Number in LSB

• wLength: Desired

4. If the request does not succeed, then fail the test and throw the related assertion

5. Verify the parameter data, The value of a Pitch Control CUR attribute shall be either TRUE

(1) or FALSE (0): if not fail the test and throw the related assertion.

6. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set/Get for interface

• bRequest: RANGE

• wValue: CS = EP_PITCH_CONTROL/CN = 0

• wIndex: 0 in MSB/Endpoint Number in LSB

• wLength: Desired

7. If the control does not answer with STALL, then fail the test and throw the related assertion.

Data Overrun Control Test

8. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = EP_DATA_OVERRUN_CONTROL/CN = 0

• wIndex: 0 in MSB/Endpoint Number in LSB

• wLength: Desired

9. If the request does not succeed, then fail the test and throw the related assertion

10. Verify the parameter data, The value of a Pitch Control CUR attribute shall be either TRUE

(1) or FALSE (0): if not fail the test and throw the related assertion.

11. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = EP_DATA_OVERRUN_CONTROL/CN = 0

• wIndex: 0 in MSB/Endpoint Number in LSB

• wLength: Desired

12. If the control does not answer with STALL, then fail the test and throw the related assertion.

Data Underrun Control test

13. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = EP_DATA_UNDERRUN_CONTROL/CN = 0

• wIndex: 0 in MSB/Endpoint Number in LSB

• wLength: Desired

14. If the request does not succeed, then fail the test and throw the related assertion

15. Verify the parameter data, The value of a Pitch Control CUR attribute shall be either TRUE or

FALSE if not fail the test and throw the related assertion.

16. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = EP_DATA_UNDERRUN_CONTROL/CN = 0

• wIndex: 0 in MSB/Endpoint Number in LSB

• wLength: Desired

17. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.59. Memory Requests Test (Full)

Assertions Verified in this Test

5.2.3.1#1, 5.2.3.1#4, 5.2.3.1#5, 6.1#3, 6.1#21

Test Procedure

1. Initialize the test.

2. Issue a MEMORY REQUEST with following values:

• <figure out from code>

3. If the request does not succeed, then fail the test and throw the related assertion

4. Issue a CONTROL REQUEST with the following values:

• bmRequestType: 0010001B

• bRequest: MEM

• wValue a 0-based offset value

• wIndex: Entity ID = UnknownID/Interface = wrong Interface number or 0 in MSB/Endpoint

Number in LSB

• wLength: Desired

5. If the control does not answer with STALL, then fail the test and throw the related assertion.

6. Issue a MEMORY REQUEST with following values:

• bmRequestType: 0010001B

• bRequest: INTEN

• wValue a 0-based offset value

• wIndex: Entity ID = AnyID/Interface = Interface number or 0 in MSB/Endpoint Number in LSB

• wLength: 1

• data as 0/1

7. If the request does not succeed, then fail the test and throw the related assertion

8. If bNumEndpoints == 1 in audio control interface descriptor, then poll interrupt Endpoint for

bIntervalTime. If the response is other than NACK, fail the test and throw related assertion.

9. Issue a CONTROL REQUEST with the following values:

• bmRequestType: 0010001B

• bRequest: INTEN

• wValue a 0-based offset value

• wIndex: Entity ID = AnyId/Interface = interface number or 0 in MSB/Endpoint Number in LSB

• wLength: 1/data other than 0/1.

10. If the control does not answer with STALL, then fail the test and throw the related assertion.

3.2.60. Class Specific String Request Control Test (Full)

Assertions Verified in this Test

5.2.3.2#1, 5.2.3.2#2, 5.2.3.2#3, 5.2.3.2#4, 5.2.3.2#5, 5.2.3.2#6, 5.2.3.2#7

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse the Audio Control Interface descriptor and retrieve the wStrDescrID of required entity

of audio function.

4. If wStrDescrID is less than 255, fail the test and throw related assertion.

5. Now issue a class specific string request with following data:

• <figure out from code>

6. If the request does not succeed, then fail the test and throw the related assertion

7. Repeat step 5 with wLength greater than the length of the string descriptor. If more bytes

are returned than the length of the string descriptor, fail the test and throw related

assertion.

8. Now issue a class specific string request with following data but provide unknown

wStrDescrId/Interface numbers:

• <figure out from code>

9. If the control does not answer with STALL, then fail the test and throw the related assertion.

10. Repeat step 5 with wValue 0 in higher byte and standard string descriptor ID in the lower

byte. If there is no ACK response, fail the test and throw related assertion.

3.2.61. L1 & L2 Tests (Full)

Assertions Verified in this Test

3.14.5#1, 3.14.5#2, 3.14.5#3, 3.14.5#4, 3.14.4#7, 3.14.4#8

Test Procedure

1. Initialize the test.

2. Read bmAttributes field in the current Configuration Descriptor.

3. Retrieve the full BOS Descriptor.

4. Parse the BOS descriptor for a USB 2 Extension Descriptor (bDescriptorType =

DEVICECAPABILITY and bDevCapabilityType = USB 2.0 EXTENSION (02H)).

5. Check bit D6 of the bmAttributes field in the current Configuration Descriptor:

a. If D6 == 0:

i. If no USB 2 Extension Descriptor was found in step 4, then fail the test.

ii. If a USB 2 Extension Descriptor was found, check bit D1 of its bmAttributes field:

• If D1 == 0, then fail the test.

6. If no USB 2 Extension Descriptor was found, or if one was found and D1 of its bmAttributes

field is not set to 1, then skip all remaining steps.

7. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

8. Parse descriptors to find Power Domain Descriptor (bDescriptorType == CS_INTERFACE and

bDescriptorSubType == POWER_DOMAIN).

9. If no Power Domain Descriptor is found, then skip all remaining steps.

10. For each Power Domain Unit:

a. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• In Parametric data Block, bCur = 2.

b. Confirm that the last CONTROL REQUEST succeeded by issuing another CONTROL

REQUEST with the following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

i. Fail the test if the data returned is not equal to 2.

c. Now send an L2 Request to the DUT.

d. Bring the DUT back to L0.

e. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

i. Fail the test if the data returned is not equal to 2.

3.2.62. INTEN Block Test (Full)

Assertions Verified in this Test

5.2.1.1#6, 5.2.1.1#7, 5.2.1.1#8, 5.2.1.1#9, 5.2.1.3#2

Test Procedure

1. Initialize the test.

2. Parse the Descriptors to find the Audio Control Interface Descriptor (bDescriptorType ==

INTERFACE and bInterfaceSubClass == AUDIO_CONTROL), Retrieve the Interface number of

this Audio Control Interface descriptor.

3. Parse the Descriptors to find the Class Specific header descriptor (bDescriptorType ==

CS_INTERFACE and bDescriptorSubType == HEADER).

4. Retrieve the total length from the header descriptor.

5. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Get for interface

• bRequest: INTEN

• wValue: CS = 0/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

6. Test fails if response is not either success or STALL.

7. If the response of the step 5 is success:

a. Issue CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: INTEN

• wValue: CS = 0/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• bINTEN = 0

b. Issue CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: INTEN

• wValue: CS = 0/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

c. Test fails if response data is not 0.

d. Issue CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: INTEN

• wValue: CS = 0/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• bINTEN = 1

e. Issue CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: INTEN

• wValue: CS = 0/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

f. Test fails if response data is not 1.

8. Issue CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: INTEN

• wValue: CS = 0/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: 1

• bINTEN = 2

9. The response should be STALL.

10. Test fails if any of the values are not as specified.

3.2.63. BADD Latency Control Test (BADD)

Assertions Verified in this Test

BADD6.2.2.2#1

Test Procedure

1. Initialize the test.

2. For every Terminal and Unit defined in the BADD Profile (as defined by bFunctionSubtype):

Note: The required values for XX_LATENCY_CONTROL and Entity Id for each profile are

given in the following steps.

a. Issue a CONTROL REQUEST with following values:

• bmRequestType: Get for interface

• bRequest: CUR

• wValue: CS = XX_LATENCY_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId (for Units) or bTerminalId (for Terminals)/Interface = interface

number

• wLength: 4

b. If the request did not succeed, then fail the test and throw the related assertion

c. Verify the parameter data block for get request, if data doesn't range from 0ns to

4,294,967,295ns in steps of 1ns then fail the test and throw the related assertion.

d. Now issue a CONTROL REQUEST with following values:

• bmRequestType: Set for interface

• bRequest: RANGE

• wValue: CS = XX_LATENCY_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId (for Units) or bTerminalId (for Terminals)/Interface = interface

number

• wLength: 14

e. If the control does not answer with STALL, then fail the test and throw the related

assertion.

3. If bFunctionSubtype == GENERIC_I/O (0x20:

a. Determine BADD Generic I/O Profile Subtype.

b. If the Function is Generic Out, then perform step 2 for each of the following sets of

values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

c. If the Function is Generic In, then perform step 2 for each of the following sets of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 4

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 6

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 5

d. If the Function is Generic I/O, then perform step 2 for each of the following sets of

values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 4

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 6

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 5

4. If bFunctionSubtype == HEADPHONE (0x21), then perform step 2 for each of the following

sets of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

5. If bFunctionSubtype == SPEAKER (0x22), then perform step 2 for each of the following sets

of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

6. If bFunctionSubtype == MICROPHONE (0x23), then perform step 2 for each of the following

sets of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 4

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 6

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 5

7. If bFunctionSubtype == HEADSET (0x24), then perform step 2 for each of the following sets

of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 4

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 6

• CS = MU_LATENCY_CONTROL (0x04), Entity Id = 8

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 5

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 7

8. If bFunctionSubtype == HEADSET_ADAPTER (0x25), then perform step 2 for each of the

following sets of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 4

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 6

• CS = MU_LATENCY_CONTROL (0x04), Entity Id = 8

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 5

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 7

9. If bFunctionSubtype == SPEAKERPHONE (0x26), then perform step 2 for each of the

following sets of values:

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 1

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 4

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 3

• CS = TE_LATENCY_CONTROL (0x05), Entity Id = 6

• CS = MU_LATENCY_CONTROL (0x04), Entity Id = 8

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 2

• CS = FU_LATENCY_CONTROL (0x10), Entity Id = 5

3.2.64. BADD L1 & L2 Tests (BADD)

Assertions Verified in this Test

3.14.5#1, 3.14.5#2, 3.14.5#3, 3.14.5#4, 3.14.4#7, 3.14.4#8

Test Procedure

1. Initialize the test.

2. Read bmAttributes field in the current Configuration Descriptor.

3. Retrieve the full BOS Descriptor.

4. Parse the BOS descriptor for a USB 2 Extension Descriptor (bDescriptorType =

DEVICECAPABILITY and bDevCapabilityType = USB 2.0 EXTENSION (02H)).

5. Check bit D6 of the bmAttributes field in the current Configuration Descriptor:

a. If D6 == 0:

i. If no USB 2 Extension Descriptor was found in step 4, then fail the test.

ii. If a USB 2 Extension Descriptor was found, check bit D1 of its bmAttributes field:

• If D1 == 0, then fail the test.

6. If no USB 2 Extension Descriptor was found, or if one was found and D1 of its bmAttributes

field is not set to 1, then skip all remaining steps.

7. For every Terminal and Unit defined in the BADD Profile (as defined by bFunctionSubtype):

Note: The required values of bUnitId for each profile are given in the following steps.

a. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

• In Parametric data Block, bCur = 2.

b. Now send an L2 Request to the DUT.

c. Bring the DUT back in L0.

d. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

e. Fail the test if the data returned is not equal to 2.

f. Issue a CONTROL REQUEST with the following values:

• bmRequestType: Set for interface

• bRequest: CUR

• wValue: CS = AC_POWER_DOMAIN_CONTROL/CN = 0

• wIndex: Entity ID = bUnitId/Interface = Interface number

• wLength: Desired

g. Fail the test if the data returned is not equal to 2.

8. If bFunctionSubtype == GENERIC_I/O (0x20:

a. Determine BADD Generic I/O Profile Subtype.

b. If the Function is Generic Out, then perform step 7 for each of the following sets of

values:

• bUnitId = 10

c. If the Function is Generic In, then perform step 7 for each of the following sets of values:

• bUnitId = 11

d. If the Function is Generic I/O, then perform step 7 for each of the following sets of

values:

• bUnitId = 10

• bUnitId = 11

9. If bFunctionSubtype == HEADPHONE (0x21), then perform step 7 for each of the following

sets of values:

• bUnitId = 10

10. If bFunctionSubtype == SPEAKER (0x22), then perform step 7 for each of the following sets

of values:

• bUnitId = 10

11. If bFunctionSubtype == MICROPHONE (0x23), then perform step 7 for each of the following

sets of values:

• bUnitId = 11

12. If bFunctionSubtype == HEADSET (0x24), then perform step 7 for each of the following sets

of values:

• bUnitId = 10

• bUnitId = 11

13. If bFunctionSubtype == HEADSET_ADAPTER (0x25), then perform step 7 for each of the

following sets of values:

• bUnitId = 10

• bUnitId = 11

14. If bFunctionSubtype == SPEAKERPHONE (0x26), then perform step 7 for each of the

following sets of values:

• bUnitId = 10

• bUnitId = 11

	1. Scope
	1.1. Limitations
	1.2. Terminology

	2. Test philosophy
	2.1. Implementation
	2.2. Multiple speeds.
	2.3. Multiple AIAs
	2.4. USB Device state
	2.5. UAC 3 Compliance Levels

	3. Test Descriptions for Audio Devices 3.0 Descriptors
	3.1. Common Procedures
	3.1.1. Retrieve the Device Descriptor
	3.1.2. Retrieve the Full Configuration Descriptor
	3.1.3. Retrieve the Full BOS Descriptor
	3.1.4. Find all USB Audio Class 3.0 Functions
	3.1.5. Initialize the Test
	3.1.6. Determining BADD Generic I/O Profile Subtype:

	3.2. Compliance Tests
	3.2.1. Device Descriptor Test (All)
	3.2.2. Standard Interface Association Descriptor Test (All)
	3.2.3. Standard Interface Descriptor Test (All)
	3.2.4. Standard Endpoint Descriptor Test (Full)
	3.2.5. Configuration Summary Descriptor Test (All)
	3.2.6. Class Specific Audio Control Interface Descriptor Test (Full)
	3.2.7. High Capability Descriptor Test (Full)
	3.2.8. Cluster Descriptor Test (Full)
	3.2.9. Input Terminal Descriptor Test (Full)
	3.2.10. Output Terminal Descriptor Test (Full)
	3.2.11. Extended Terminal Descriptor Test (Full)
	3.2.12. Connector Descriptor Test (Full)
	3.2.13. Mixer Unit Descriptor Test (Full)
	3.2.14. Selector Unit Descriptor Test (Full)
	3.2.15. Feature Unit Descriptor Test (Full)
	3.2.16. Sampling Rate Converter Unit Descriptor Test (Full)
	3.2.17. Effect Unit Descriptor Test (Full)
	3.2.18. Processing Unit Descriptor Test (Full)
	3.2.19. Extension Unit Descriptor Test (Full)
	3.2.20. Clock Source Descriptor Test (Full)
	3.2.21. Clock Selector Descriptor Test (Full)
	3.2.22. Clock Multiplier Descriptor Test (Full)
	3.2.23. Power Domain Descriptor Test (Full)
	3.2.24. Class Specific Audio Streaming Interface Descriptor Test (Full)
	3.2.25. Class-Specific AS Isochronous Audio Data Endpoint Descriptor Test (Full)
	3.2.26. Class Specific String Descriptors Test (Full)
	3.2.27. Backward Compatibility Test (All)
	3.2.28. BADD Standard Interface Descriptors Test (BADD)
	3.2.29. BADD Standard Endpoint Descriptor Test (BADD)
	3.2.30. BADD Terminal Control Test (BADD)
	3.2.31. BADD Mixer Control Test (BADD)
	3.2.32. BADD Feature Unit Control Test (BADD)
	3.2.33. BADD Clock Source Control Test (BADD)
	3.2.34. BADD Power Domain Control Test (BADD)
	3.2.35. Terminal Type Test (Full)
	3.2.36. Audio Format Test (Full)
	3.2.37. Audio Data Capture Test (Full)
	3.2.38. Enable Control Test (Full)
	3.2.39. Underflow Control Test (Full)
	3.2.40. Overflow Control Test (Full)
	3.2.41. Power Domain Control Test (Full)
	3.2.42. Latency Control Test (Full)
	3.2.43. Insertion Control Test (Full)
	3.2.44. Overload Control Test (Full)
	3.2.45. Mixer Unit Control Request Test (Full)
	3.2.46. Selector Unit Control Request Test (Full)
	3.2.47. Feature unit Control Request Test (Full)
	3.2.48. Effect Unit Control Request Test: PARAMETRIC EQUALIZER SECTION EFFECT UNIT (Full)
	3.2.49. Effect Unit Control Request Test: REVERBERATION EFFECT UNIT (Full)
	3.2.50. Effect Unit Control Request Test: MODULATION DELAY EFFECT UNIT (Full)
	3.2.51. Effect Unit Control Request Test: DYNAMIC RANGE COMPRESSOR EFFECT UNIT (Full)
	3.2.52. Processing Unit Control Request Test: Up/Down-Mix Processing Unit (Full)
	3.2.53. Processing Unit Control Request Test: Stereo Extender Processing Unit (Full)
	3.2.54. Clock Source Control Request Test (Full)
	3.2.55. Clock Selector Control Request Test (Full)
	3.2.56. Clock Multiplier Control Request Test (Full)
	3.2.57. Audio Streaming Control Test (Full)
	3.2.58. Endpoint Control Request Test
	3.2.59. Memory Requests Test (Full)
	3.2.60. Class Specific String Request Control Test (Full)
	3.2.61. L1 & L2 Tests (Full)
	3.2.62. INTEN Block Test (Full)
	3.2.63. BADD Latency Control Test (BADD)
	3.2.64. BADD L1 & L2 Tests (BADD)

